



#### Clustering Algorithms Overview

#### RW and Flowmap

Delay-Optimal Clustering

#### RW

- "general-delay model"
  - ▶ Each node has a unique delay, inter-cluster edge has delay D, intra-cluster edge has zero delay
- Cluster size is bounded

#### Flowmap

- "unit-delay model"
  - Inter-cluster delay has a unit (1) delay, nodes and intra-cluster edges do not incur any delay
- Cluster connections are bounded ("pin-constraint")

3

CE438 - CAD Algorithms II 8/3/2016

#### Rajaraman-Wong (RW) Algorithm

#### Cluster Delays

- Inter-cluster edge has constant delay D
- Intra-cluster edge has delay of zero

#### Two phases: labelling and clustering

- Labelling phase: compute node label in topological order
  - label denotes longest path delay from an PI to each node, including both node delay and inter-cluster delay
- Clustering phase: actual grouping and duplication occurs while visiting the nodes in reverse topological order
- Maximum Delay from Pls to POs is minimised
- An n x n matrix Delta is computed containing all-pair maximum delay (longest level-based path) values
- Labels of Pls are initialized to 1, of other nodes to 0
- Non-Pls are then visited in topological order to compute their labels

4

#### Rajaraman-Wong (RW) Algorithm - Labelling

- Given a node v, to compute I(v), its label:
  - We compute the sub-graph rooted at v, denoted Gv, that includes all the predecessors of v.
  - We compute lv(x) for each node  $x \in Gv\setminus\{v\}$ , where  $lv(x) = l(x) + \Delta(x, v)$ 
    - I(x) denotes the current label for x, and  $\Delta(x, v)$  is Delta matrix
  - We sort all nodes in Gv\{v} in decreasing order of their Iv-values and put them into a set S
  - We remove a node from S one-by-one in the sorted order and add it to the cluster for v, denoted cluster(v), until a size constraint is violated
  - We compute two values /I and /2
    - If cluster(v) contains any PI nodes, the maximum Iv value among these PI nodes becomes II
    - If S is not empty after filling up cluster(v), the maximum lv + D among the nodes remaining in S becomes l2, where D is the inter-cluster delay
  - The new label for v is the maximum between 11 and 12

5

CE438 - CAD Algorithms II 8/3/2016

# Rajaraman-Wong (RW) Algorithm - Clustering

#### ▶ Clustering Phase:

- During the clustering phase, we first put all PO nodes in a set L
- We then remove a node from L and form its cluster. Given a node v, we form a cluster by grouping all nodes in cluster(v), which was computed during the labeling phase
- ▶ We then compute *input*(*v*), the set of input nodes of *cluster*(*v*).
- Next, we remove a node x from input(v) one-by-one and add it to L if we have not formed the cluster for x yet
- ▶ We repeat the entire process until *L* becomes empty

6

- ▶ Perform RW clustering on the following di-graph.
  - ▶ Inter-cluster delay = 3, node delay = I
  - ▶ Size limit = 4
  - ► Topological order T = [d,e,f,g,h,i,j,k,l] (not unique)



- 7

CE438 - CAD Algorithms II 8/3/2016

# Rajaraman-Wong Algorithm Example

- Max-Delay Matrix
  - All-pair delay matrix  $\Delta(x,y)$ 
    - Max delay from output of the Pls to output of destination



|                | a | b | c | d | e | f | g | h | i | j | k | l |
|----------------|---|---|---|---|---|---|---|---|---|---|---|---|
| $\overline{a}$ | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 3 | 0 |
| b              | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 3 | 3 | 4 | 4 |
| c              | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 3 | 3 | 4 | 4 |
| d              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
| e              | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 3 | 3 |
| f              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
| g              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 |
| h              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 |
| i              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| j              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| k              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| l              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                |   |   |   |   |   |   |   |   |   |   |   |   |

8

#### ▶ Label and Clustering Computation

▶ Compute *l*(*d*) and *cluster*(*d*)

First,  $G_d = \{a, b, d\}$ . By definition l(a) = l(b) = 1. Thus,

$$l_d(a) = l(a) + \Delta(a, d) = 1 + 1 = 2$$
  
 $l_d(b) = l(b) + \Delta(b, d) = 1 + 1 = 2$ 

Then we have  $S = \{a,b\}$  (recall that S contains  $G_d \setminus \{d\}$  with their  $l_d$  values sorted in a decreasing order). Since both a and b can be clustered together with d while not violating the size constraint of 4, we form

$$cluster(d) = \{a, b, d\}$$

Since both a and b are PI nodes, we see that

$$l_1 = \max\{l_d(a), l_d(b)\} = 2$$

Since S is empty after clustering,  $l_2$  remains zero. Thus,

$$l(d) = \max\{l_1, l_2\} = 2$$

9

CE438 - CAD Algorithms II 8/3/2016

### Rajaraman-Wong Algorithm Example

#### ▶ Label Computation

► Compute *l(i)* and *cluster(i)* 

node i:  $G_i = \{a, b, c, d, e, f, g, i\}$  (see Figure 1.3). Thus,

$$l_i(a) = l(a) + \Delta(a, i) = 1 + 2 = 3$$

$$l_i(b) = l(b) + \Delta(b, i) = 1 + 3 = 4$$

$$l_i(c) = l(c) + \Delta(c, i) = 1 + 3 = 4$$

$$l_i(d) = l(d) + \Delta(d, i) = 2 + 1 = 3$$

$$l_i(e) = l(e) + \Delta(e, i) = 2 + 2 = 4$$

$$l_i(f) = l(f) + \Delta(f, i) = 2 + 1 = 3$$

$$l_i(q) = l(q) + \Delta(q, i) = 3 + 1 = 4$$



 $S=\{g,e,c,b,a,d,f\}$ , and we form  $cluster(i)=\{i,g,e,c\}.^1$  Note that c is PI, so  $l_1=l_i(c)=4$ . Since  $S=\{b,a,d,f\}\neq\emptyset$  after clustering, we have  $l_2=l_i(m(S))+D=l_i(b)+D=4+3=7$  (recall that m(S) is the node in S with the maximum value of  $l_i$  value). Thus,  $l(i)=\max\{l_1,l_2\}=7$ .

10

#### Labelling Summary

- Labeling phase generates the following information.
  - Max label = max delay= 8

| node | label | clustering       |
|------|-------|------------------|
| a    | 1     | $\{a\}$          |
| b    | 1     | $\{b\}$          |
| c    | 1     | $\{c\}$          |
| d    | 2     | $\{a, b, d\}$    |
| e    | 2     | $\{b, c, e\}$    |
| f    | 2     | $\{a, f\}$       |
| g    | 3     | $\{b, c, e, g\}$ |
| h    | 2     | $\{c,h\}$        |
| i    | 7     | $\{c, e, g, i\}$ |
| j    | 7     | $\{b,e,g,j\}$    |
| k    | 8     | $\{g,i,j,k\}$    |
| l    | 8     | $\{e,g,j,l\}$    |



11

CE438 - CAD Algorithms II 8/3/2016

# Rajaraman-Wong Algorithm Example

#### Clustering Phase

▶ Initially  $L = POs = \{k,l\}$ . remove k from L, and add cl(k) to  $S = \{cl(k)\}$ . According to Table 1.1, we see that  $cl(k) = \{g, i, j, k\}$ . Then,  $I[cl(k)] = \{f, d, e, h\}$  as illustrated in Figure 1.4. Since S does not contain clusters rooted at f, d, e, and h, we have  $L = \{l\} \cup \{f, d, e, h\} = \{l, f, d, e, h\}$ .



cluster(k

12

- ▶ Clustering Summary
  - ▶ Clustering phase generates 8 clusters.
    - ▶ 8 nodes are duplicated

| root | elements      |
|------|---------------|
| k    | $\{g,i,j,k\}$ |
| l    | $\{e,g,j,l\}$ |
| f    | $\{a, f\}$    |
| d    | $\{a,b,d\}$   |
| e    | $\{b,c,e\}$   |
| h    | $\{c,h\}$     |
| b    | $\{b\}$       |
| c    | $\{c\}$       |



13

CE438 - CAD Algorithms II 8/3/2016

# Rajaraman-Wong Algorithm Example

▶ Final Clustering Result

14

### Flowmap Algorithm

- Cluster Delays
  - Inter-cluster edge has unit (1) delay
  - Intra-cluster edge has delay of zero
- Cluster External Connections are Constrained
  - Applicable to FPGA Technology-Mapping
- Two phases: labelling and mapping
  - Labelling phase: compute node label, and clustering ~Xv
    - ~Xv denotes set of nodes to be clustered together with v
    - label denotes longest path delay from an PI to each node, where only inter-cluster edges incur unit delay
  - Mapping phase: actual grouping and duplication occurs while visiting the nodes in reverse topological order
- Maximum Delay from Pls to POs is minimised
- Labels of Pls are initialized to 0
- Non-Pls are then visited in topological order to compute their labels and ~X sets

15

CE438 - CAD Algorithms II 8/3/2016

### Flowmap Algorithm - Labelling

- Given a node t, we do the following to compute its new label, I(t):
  - ▶ We compute the sub-graph rooted at t, denoted Nt, that includes all of the predecessors of t. We then add a source node s to Nt and connect it to all Pls in Nt
  - We compute p, the maximum label among all fan-in nodes of t.
  - We obtain N't, where all nodes with their labels equal to p are collapsed into t
  - We obtain a flow-network N"t, where each node x in N't except s and t is split into two nodes (x, x'), and connected via a "bridging edge" e(x, x'). We assign the capacity of I to all bridging edges and infinity to all non-bridging edges of N"t
  - We compute a cut  $C(X'', \sim X'')$  that separates s and t in N''t with the cutsize not larger than K, the pin constraint. This is performed by identifying augmenting paths from s to t. If multiple cuts are found, select the minimum-height cut, i.e. maximum label of X nodes
  - We include all nodes of  $\sim X''$  into  $\sim Xt$ . If a node x is split and e(x, x') is cut in C, x' is removed from  $\sim X''$ ; l(t) = p
  - If C is not found,  $\sim X''$  contains t only and I(t) = p + I

16

# Flowmap Algorithm - Mapping

- During Mapping, all PO nodes are placed in set L
- ▶ We then remove a node from L and form its cluster as follows:
  - $\triangleright$  given a node v, we form a cluster, named v', by grouping all non-PI nodes in  $\sim Xv$ , computed during labelling phase
  - We then compute input(v'), the set of input nodes of v', and include them in L
    - A node x is an input node of v' if e(x, y) exists in the original DAG, and y is in v'.
- ▶ Process is repeated until L is empty

17

CE438 - CAD Algorithms II 8/3/2016

### Flowmap Algorithm Example

- ▶ Perform clustering on the following 2-bounded network
  - Intra-cluster and node delay = 0, inter-cluster = I
  - ▶ Pin constraint = 3



18

#### Label Computation

First, all PIs are assigned zero for their label. We then visit the remaining nodes in topological order T = [a, b, c, d, e, f, g, h, i, j, k].

(a) node a: We first build  $N_a$  as shown in Figure 1.7(a). We see that p=0. This helps us build  $N_a'$  and  $N_a''$  as shown in Figure 1.7(b) and Figure 1.7(c). Note that it is not possible to find a cut in  $N_a''$  with a cutsize smaller or equal to K=3. Thus,  $\overline{X}_a=\{a\}$  and l(a)=p+1=1.



19

CE438 - CAD Algorithms II 8/3/2016

### Flowmap Algorithm Example

#### ▶ Label Computation

(c) node d: Figure 1.8 shows  $N_d$ ,  $N_d'$ , and  $N_d''$  under p=1. There is a possible cut in  $N_d''$  as shown on Figure 1.8(c), where the maximum flow value and the cutsize is 3. The height of this cut is zero because the label for all nodes in the source-side partition is zero. Node a and d are partitioned to the sink-side. Thus,  $\overline{X}_d = \{a,d\}$ , and l(d) = p = 1.



20

#### ▶ Label Computation

(f) node g: Figure 1.9 shows  $N_g$ ,  $N_g'$ , and  $N_g''$ . There is only one cut possible in  $N_g''$  as shown on Figure 1.9(c). Thus,  $\overline{X}_g=\{c,g\}$ , and l(g)=p=1.



21

CE438 - CAD Algorithms II 8/3/2016

# Flowmap Algorithm Example

#### ▶ Label Computation

(h) node i: Figure 1.11 shows  $N_i$ ,  $N_i'$ , and  $N_i''$ . We see that p=1. In this case,  $N_i''$  does not contain a K-feasible cut. Thus,  $\overline{X}_i=\{i\}$ , and l(i)=p+1=2.



22

#### ▶ Label Computation

(i) node j: Figure 1.12 shows  $N_j, N'_j$ , and  $N''_j$ . p=2 in this case. There is only one K-feasible cut in  $N''_j$ , and its height is 1. Thus,  $\overline{X}_j=\{i,j\}$ , and l(j)=p=2.



# Flowmap Algorithm Example

#### ▶ Label Computation

23

(i) node j: Figure 1.12 shows  $N_j, N_j'$ , and  $N_j''$ . p=2 in this case. There is only one K-feasible cut in  $N_j''$ , and its height is 1. Thus,  $\overline{X}_j=\{i,j\}$ , and l(j)=p=2.



#### ▶ Label Computation

(j) node k: Figure 1.13 shows  $N_k$ ,  $N'_k$ , and  $N''_k$ . p=2 in this case. There is only one K-feasible cut in  $N''_k$ , and its height is 1. Thus,  $\overline{X}_k = \{i, k\}$ , and l(k) = p = 2.



# Flowmap Algorithm Example

#### Summary

25

Max label = max delay in the clustered network = 2

| node            | label | clustering  |
|-----------------|-------|-------------|
| $\overline{a}$  | 1     | $\{a\}$     |
| b               | 1     | $\{b\}$     |
| c               | 1     | $\{c\}$     |
| d               | 1     | $\{a,d\}$   |
| e               | 1     | $\{e\}$     |
| f               | 1     | $\{c,f\}$   |
| g               | 1     | $\{c,g\}$   |
| h               | 1     | $\{a,d,h\}$ |
| i               | 2     | $\{i\}$     |
| j               | 2     | $\{i,j\}$   |
| $\underline{k}$ | 2     | $\{i,k\}$   |

26

- Clustering Phase
  - ▶ Traverse the nodes from PO to PI
    - We begin with  $L = POs = \{h,j,k\}$
    - Clustering is based on:



| node           | label | clustering  |
|----------------|-------|-------------|
| $\overline{a}$ | 1     | $\{a\}$     |
| b              | 1     | $\{b\}$     |
| c              | 1     | $\{c\}$     |
| d              | 1     | $\{a,d\}$   |
| e              | 1     | $\{e\}$     |
| f              | 1     | $\{c, f\}$  |
| g              | 1     | $\{c,g\}$   |
| h              | 1     | $\{a,d,h\}$ |
| i              | 2     | $\{i\}$     |
| j              | 2     | $\{i, j\}$  |
| k              | 2     | $\{i,k\}$   |

27

CE438 - CAD Algorithms II 8/3/2016

# Flowmap Algorithm Example

- Clustering Phase
  - (a) remove h from L. Then, h', the K-LUT implementation of h, contains  $\{a,d,h\}$  according to Table 1.3. We note that input(h') contains three PI nodes as shown in Figure 1.14(a). Since we do not add PI nodes into L, we have  $L=\{j,k\}$ .







28

#### Clustering Phase

- (b) remove j from L:  $j'=\{i,j\}$  according to Table 1.3. We see that  $input(j')=\{e,b,f\}$  as shown in Figure 1.14(b). Thus,  $L=\{k\}\cup\{e,b,f\}=\{k,e,b,f\}$ .
- (c) remove k from L:  $k'=\{i,k\}$ , and  $input(k')=\{b,f,g\}$  as shown in Figure 1.14(c). Thus,  $L=\{e,b,f\}\cup\{b,f,g\}=\{e,b,f,g\}$ .



29

CE438 - CAD Algorithms II 8/3/2016

# Flowmap Algorithm Example

#### Summary

- ▶ 6 clusters (= LUT-3) are generated
- Node c and i are duplicated

| root           | elements    |
|----------------|-------------|
| $\overline{h}$ | $\{a,d,h\}$ |
| j              | $\{i,j\}$   |
| k              | $\{i,k\}$   |
| e              | $\{e\}$     |
| b              | $\{b\}$     |
| f              | $\{c,f\}$   |
| g              | $\{c,g\}$   |

30

- Clustered Network
  - ▶ Max delay = 2



31

CE438 - CAD Algorithms II 8/3/2016

# Hmetis Algorithm

- ▶ Combination of Clustering and Partitioning
- ▶ Clustering is multi-level, i.e. takes place in multiple passes
  - First Iteration: level | clusters
  - Second Iteration: level 2 clusters
  - ... until K-levels of clustering hierarchy exist
- Partitioning Phase
  - Bipartitioning using existing algorithm e.g. FM
  - K-level clusters are decomposed into K-1 level clusters
  - Decomposition and refinement process
- ▶ Hmetis Clustering
  - (I) Edge Coarsening (EC), (2) Hyperedge Coarsening (HEC),
    - (3) Modified Hyperedge Coarsening (MHEC)

32

#### Hmetis Algorithm - EC

#### Edge Coarsening (EC)

- ▶ Hypergraph nodes are visited in a random order
- For an unmarked node, v, collect neighbours of v
  - > Set of unmarked nodes contained in v's hyperedges
- For each neighbour, n, compute weight of edge (v, n), by assigning a weight I/(|h|-1) to relevant hyperedge h
- Select neighbour with maximum edge weight m
  - Merge v and m together
  - Mark them so that these nodes are not re-clustered
- ▶ Repeat until all nodes are marked

33

CE438 - CAD Algorithms II 8/3/2016

#### Hmetis Algorithm - HEC

#### Hyperedge Coarsening:

- Unmark all nodes
- Sort hyperedges in increasing size order
  - If weighted, sort in decreasing order of weight, and break ties for smaller size
- Visit hyperedges in sorted order
  - If hyperedge does NOT contain an already marked node
    - ☐ Group all nodes in the hyperedge to form a cluster
  - ▶ Else skip to next
- After visiting all hyperedges, each node that is NOT part of any cluster becomes a singleton cluster

34

#### Hmetis Algorithm - MHEC

#### Modified Hyperedge Coarsening:

- Apply HEC first
- After clustered hyperedges have been selected, visit them again in sorted order
- ▶ For each hyperedge that is NOT yet clustered because it contains marked nodes – all unmarked nodes are clustered together

35

CE438 - CAD Algorithms II 8/3/2016

### Hmetis Algorithm Example

- ▶ Perform Edge Coarsening (EC)
  - Visit nodes and break ties in alphabetical order
  - Explicit clique-based graph model is not necessary





36

### Hmetis Algorithm Example – Edge Coarsening

- (a) visit a: Note that a is contained in  $n_1$  only. So,  $neighbor(a) = \{c, e\}$ . The weight of  $(a, c) = 1/(|n_1| 1) = 0.5$ . The weight of  $(a, e) = 1/(|n_1| 1) = 0.5$ . Thus, we break the tie based on alphabetical order. So, a merges with c. We form  $C_1 = \{a, c\}$  and mark a and c.
- (b) visit b: Note that b is contained in  $n_2$  only. So,  $neighbor(b) = \{c, d\}$ . Since c is already marked, b merges with d. We form  $C_2 = \{b, d\}$  and mark b and d.
- (c) since c and d are marked, we skip them.



| cluster | nodes     |
|---------|-----------|
| $C_1$   | $\{a,c\}$ |
| $C_2$   | $\{b,d\}$ |
| $C_3$   | $\{e,g\}$ |
| $C_4$   | $\{f,h\}$ |

37

CE438 - CAD Algorithms II 8/3/2016

### Hmetis Algorithm Example – Edge Coarsening - 2

- (d) visit e: the unmarked neighbors of e are g and f. We see that w(e,g)=1 and w(e,f)=0.5. So, e merges with g. We form  $C_3=\{e,g\}$  and mark e and g.
- (e) visit f: Node f is contained in  $n_3$ ,  $n_4$ , and  $n_6$ . So,  $neighbor(f) = \{c, d, e, g, h\}$ . But, the only unmarked neighbor is h. So, f merges with h. We form  $C_4 = \{f, h\}$  and mark f and h.
- (f) since g and h are marked, we skip them.



| nodes     |
|-----------|
| $\{a,c\}$ |
| $\{b,d\}$ |
| $\{e,g\}$ |
| $\{f,h\}$ |
|           |

38

### Hmetis Algorithm Example – Obtaining Clustered-level Netlist

▶ # of nodes/hyperedges reduced: 4 nodes, 5 hyperedges

| net              | gate-level    | cluster-level       | final             | cluster | nodes     |
|------------------|---------------|---------------------|-------------------|---------|-----------|
| $\overline{n_1}$ | $\{a, c, e\}$ | $\{C_1,C_1,C_3\}$   | $\{C_1,C_3\}$     | $C_1$   | $\{a,c\}$ |
| $n_2$            | $\{b,c,d\}$   | $\{C_2,C_1,C_2\}$   | $\{C_1, C_2\}$    | $C_2$   | $\{b,d\}$ |
| $n_3$            | $\{c, e, f\}$ | $\{C_1,C_3,C_4\}$   | $\{C_1,C_3,C_4\}$ | $C_3$   | $\{e,g\}$ |
| $n_4$            | $\{d, f\}$    | $\{C_2, C_4\}$      | $\{C_2, C_4\}$    | $C_4$   | $\{f,h\}$ |
| $n_5$            | $\{e,g\}$     | $\{C_3,C_3\}$       | Ø                 |         |           |
| $n_6$            | $\{f,g,h\}$   | $\{C_4, C_3, C_4\}$ | $\{C_3, C_4\}$    |         |           |





39

CE438 - CAD Algorithms II 8/3/2016

### Hmetis Algorithm Example – Hyperedge Coarsening

- ▶ Initial setup
  - Sort hyper-edges in increasing size:  $n_4$ ,  $n_5$ ,  $n_1$ ,  $n_2$ ,  $n_3$ ,  $n_6$
  - Unmark all nodes



40

# Hmetis Algorithm Example – Hyperedge Coarsening

- (a) visit  $n_4 = \{d, f\}$ : since d and f are not marked yet, we form  $C_1 = \{d, f\}$  and mark d and f.
- (b) visit  $n_5 = \{e, g\}$ : since e and g are not marked yet, we form  $C_2 = \{e, g\}$  and mark e and g.
- (c) visit  $n_1 = \{a, c, e\}$ : since e is already marked, we skip  $n_1$ .



| cluster | nodes                |
|---------|----------------------|
| $C_1$   | $\overline{\{d,f\}}$ |
| $C_2$   | $\{e,g\}$            |
| $C_3$   | $\{a\}$              |
| $C_4$   | $\{b\}$              |
| $C_5$   | $\{c\}$              |
| $C_6$   | $\{h\}$              |

41

CE438 - CAD Algorithms II 8/3/2016

### Hmetis Algorithm Example – Hyperedge Coarsening - 2

- (d) visit  $n_2 = \{b, c, d\}$ : since d is already marked, we skip  $n_2$ .
- (e) visit  $n_3 = \{c, e, f\}$ : since e and f are already marked, we skip  $n_3$ .
- (f) visit  $n_6 = \{f, g, h\}$ : since f and g are already marked, we skip  $n_6$ .



| cluster | nodes      |
|---------|------------|
| $C_1$   | $\{d, f\}$ |
| $C_2$   | $\{e,g\}$  |
| $C_3$   | $\{a\}$    |
| $C_4$   | $\{b\}$    |
| $C_5$   | $\{c\}$    |
| $C_6$   | $\{h\}$    |

42

### Hmetis Algorithm Example – Obtaining Clustered-level Netlist

# of nodes/hyperedges reduced: 6 nodes, 4 hyperedges

| net              | gate-level    | cluster-level       | final               |
|------------------|---------------|---------------------|---------------------|
| $\overline{n_1}$ | $\{a, c, e\}$ | $\{C_3, C_5, C_2\}$ | $\{C_3, C_5, C_2\}$ |
| $n_2$            | $\{b,c,d\}$   | $\{C_4, C_5, C_1\}$ | $\{C_4, C_5, C_1\}$ |
| $n_3$            | $\{c, e, f\}$ | $\{C_5, C_2, C_1\}$ | $\{C_5, C_2, C_1\}$ |
| $n_4$            | $\{d,f\}$     | $\{C_1,C_1\}$       | Ø                   |
| $n_5$            | $\{e,g\}$     | $\{C_2, C_2\}$      | Ø                   |
| $n_6$            | $\{f,g,h\}$   | $\{C_1,C_2,C_6\}$   | $\{C_1,C_2,C_6\}$   |

| cluster | nodes      |
|---------|------------|
| $C_1$   | $\{d, f\}$ |
| $C_2$   | $\{e,g\}$  |
| $C_3$   | $\{a\}$    |
| $C_4$   | $\{b\}$    |
| $C_5$   | $\{c\}$    |
| $C_6$   | $\{h\}$    |
|         |            |



43

CE438 - CAD Algorithms II 8/3/2016

#### Hmetis Algorithm Example – Modified Hyperedge Coarsening

- ▶ Revisit skipped nets during hyperedge coarsening
  - We skipped  $n_1, n_2, n_3, n_6$
  - ▶ Coarsen un-coarsened nodes in each net



44

### Hmetis Algorithm Example -Modified Hyperedge Coarsening

- (a) visit  $n_1 = \{a, c, e\}$ : since e is already marked during HEC, we group the remaining unmarked nodes a and c. We form  $C_3 = \{a, c\}$  and mark a and c.
- (b) visit  $n_2 = \{b, c, d\}$ : since d is marked during HEC and c during MHEC as above, we form  $C_4 = \{b\}$  and mark b.
- (c) visit  $n_3 = \{c, e, f\}$ : all nodes are already marked, so we skip  $n_3$ .
- (d) visit  $n_6 = \{f, g, h\}$ : since f and g are already marked, we form  $C_5 =$  $\{h\}$  and mark h.



| cluster | nodes     |
|---------|-----------|
| $C_1$   | $\{d,f\}$ |
| $C_2$   | $\{e,g\}$ |
| $C_3$   | $\{a,c\}$ |
| $C_4$   | $\{b\}$   |
| $C_5$   | $\{h\}$   |

45

CE438 - CAD Algorithms II 8/3/2016

### Hmetis Algorithm Example -Obtaining Clustered-level Netlist

#### # of nodes/hyperedges reduced: 5 nodes, 4 hyperedges

| net              | gate-level    | cluster-level       | final               | cluster  | nodes     |
|------------------|---------------|---------------------|---------------------|----------|-----------|
| $\overline{n_1}$ | $\{a, c, e\}$ | $\{C_3, C_3, C_2\}$ | $\{C_3,C_2\}$       | $C_1$    | $\{d,f\}$ |
| $n_2$            | $\{b, c, d\}$ | $\{C_4, C_3, C_1\}$ | $\{C_4, C_3, C_1\}$ | $C_2$    | $\{e,g\}$ |
| $n_3$            | $\{c,e,f\}$   | $\{C_3, C_2, C_1\}$ | $\{C_3,C_2,C_1\}$   | $C_3$    | $\{a,c\}$ |
| $n_4$            | $\{d, f\}$    | $\{C_1, C_1\}$      | Ø                   | $C_4$    | $\{b\}$   |
| $n_5$            | $\{e,g\}$     | $\{C_2, C_2\}$      | Ø                   | $C_5$    | $\{h\}$   |
| $n_6$            | $\{f,g,h\}$   | $\{C_1,C_2,C_5\}$   | $\{C_1,C_2,C_5\}$   | <u> </u> |           |





(b)

46

### Best Choice Clustering

#### Score Function

- ▶ Hyperedge weight we of e is defined as I/|e|
  - > Weight is inversely proportional to objects incident to hyperedge
- Given two objects u and v, the clustering score d(u, v) is defined as:  $\nabla w_a$

 $d(u,v) = \sum_{e} \frac{w_e}{a(u) + a(v)}$ 

Where a(u) and a(v) are the corresponding areas of objects u

#### Closest object

- For object u, let Nu be the neighboring objects of u
- Closest object of u, c(u) is the neighbor with largest clustering score to u, i.e.:

$$c(u) = v : d(u, v) = \max_{N_u} d(u, z), \forall z \in N_u$$

47

CE438 - CAD Algorithms II 8/3/2016

### Best Choice Clustering Algorithm

#### ▶ Termination Conditions

- ▶ Goal cluster bottom-up until a desired # is reached:
  - Clustering Ratio a

Input: Flat Netlist

Output: Clustered Netlist

- 1. Until target object number is reached:
  - 2. Find *closest pair* of objects
  - 3. Cluster them
  - 4. Update netlist

48

### Best Choice Clustering Algorithm

Input: Flat Netlist Output: Clustered Netlist

#### Phase I. Priority-queue PQ Initialization:

- 1. For each object u:
- 2. Find closest object v, and its associated clustering score d
- 3. Insert tuple (u, v, d) into PQ with d as key

#### Phase II. Clustering:

- 1. While *target object number* is not reached and top tuple's score d > 0:
  - 2. Pick top tuple (u, v, d) of PQ
  - 3. Cluster u and v into new object u'
  - 4. Update netlist
  - 5. Find *closest object* v' to u' with its clustering score d'
  - 6. Insert tuple (u', v', d') into PQ with d' as key
  - 7. Update clustering scores of all neighbors of u'

#### Step 7 is most time-consuming step

 Clustering scores of the neighbors of the new object u', (equivalently all neighbors of u and v) are re-calculated

49

CE438 - CAD Algorithms II 8/3/2016

#### Best Choice Clustering - Lazy Speedup

Input: Flat Netlist

Output: Clustered Netlist

#### Phase II. Clustering:

- 1. While *target object number* is not reached and top tuple's score d > 0:
  - 2. Pick top tuple (u, v, d) of PQ
  - 3. If u is marked as invalid, re-calculate *closest object* v' and score d' and insert tuple (u, v', d') to PQ
  - else
    - 5. Cluster u and v into new object u'
    - 6. Update netlist
    - 7. Find *closest object* v' to u' with its clustering score d'
    - 8. Insert tuple (u', v', d') into PQ with d' as key
    - 9. Mark all neighbors of u' as invalid

#### Lazy-Update technique

 delays updates of clustering scores as late as possible, thus reducing the actual number of score update operations on the priority queue

50

### Best Choice Clustering Example

- Assume the input netlist with 5 objects
  - {A, B, C, D, E, F} and 8 hyperedges {A, B}, {A, D}, {A, E}, {A, F}, {A, C}, another {A, C}, {B, C} and {A, C, F}



- d(C, B) = 1/2, d(A, B) = 1/2, d(A, C) = 4/3,d(A, D) = 1/2, d(A, E) = 1/2, and d(A, F) = 5/6.
- ► d(A, C) has the highest score, and C is declared as the closest object to A



51

CE438 - CAD Algorithms II 8/3/2016

# Best Choice Clustering Example

- If we assume that d(A, C) is the highest score in the priority queue,
  - A will be clustered with C and the circuit netlist will be updated as shown
- With new object AC introduced, corresponding cluster scores will be
  - d(AC, F)= 1, d(AC, E) = 1/2, d(AC, D) = 1/2, and d(AC, B) = 1.



52

#### Cluster Size Bounds

- Without an area control, gigantic clustered objects might be formed by absorbing small objects and/or clusters around it
- Indirect Area Control

$$d(u,v) = \sum_{e} w_e / [a(u) + a(v)]^k$$

- where  $k = \lceil (a(u) + a(v))/\mu \rceil$
- $\mu$  = average cell area x clustering ratio
  - > and represents the expected average area of clustered objects
- Another possibility is to use cluster # of pins

#### Direct Area Control

- ▶ Hard Bound: if resultant area >  $(k \times \mu)$ , reject clustering
- ▶ Soft Bound: if resultant area >  $(k \times \mu)$ , accept with probability

•

$$2^{(\mu/(a(u)+a(v)))^k}-1$$
 where  $k \ge 1$ 

53

