
FRAIGs: Functionally Reduced AND-INV Graphs

Alan Mishchenko, Roland Jiang, Satrajit Chatterjee, Robert Brayton

Department of EECS, University of California, Berkeley
{alanmi, jiejiang, satrajit, brayton}@eecs.berkeley.edu

Abstract

AND-INV graphs (AIGs) are Boolean networks composed
of two-input AND-gates and inverters. They can be used to
represent and manipulate large Boolean functions in
several applications such as equivalence checking and
technology mapping. For many practical circuits, AIGs are
smaller and easier to construct than BDDs. However, the
applicability of traditional AIGs is limited because they are
not canonical.

The paper presents a new way to compute functionally
reduced AIGs (FRAIGs), a variation of AIGs, which are
“semi-canonical” in the sense that each AIG node has
unique functionality among the nodes of the AIG. Previous
methods perform functional reduction of traditional AIGs
as a post-processing step. The new method performs
functional reduction on-the-fly, as part of the AIG
construction. This leads to significant savings in runtime by
avoiding potentially large intermediate results. Preliminary
experiments indicate an order-of-magnitude speed-up for
typical applications.

1 Introduction

AND-INV graphs (AIGs) are used to represent Boolean
functions in combinational equivalence checking (CEC)
[9][11], bounded model checking (BMC) [12][16], and
technology mapping [13]. As a functional representation,
AIGs enjoy several important properties:
• The construction time and the number of AIG nodes

are proportional to the size of the original circuit
(unlike BDDs, whose size is exponential for some
important practical circuits, such as multipliers.)

• AIGs are composed of only two-input ANDs and
inverters, represented as bubbled pointers (flipped
bits) on the edges. This uniformity of representation
gives some implementation advantages.

• AIGs coupled with Boolean satisfiability provide a
powerful reasoning engine. The uniform structure of
AIGs can be exploited by a circuit-based SAT solver,

or translated into a CNF representation to be
processed by a SAT solver.

However, AIGs [11] are not canonical; as a result, the
same Boolean function can have many AIG
representations. For example, function F = abc can be
represented as follows: ((ab)c), (a(bc)), ((ac)(bc)), etc.
Figure 1 shows two different AIGs of a four-variable
function, which cannot be derived from each other by
applying algebraic transformations. These AIGs are
different Pareto points on the area/delay curve: one has
fewer ANDs, while another has fewer levels of ANDs.

Because AIGs are not canonical, graphs constructed
using traditional methods may have internal nodes with the
same functionality. This may increase the number of AIG
nodes and make reasoning on the AIG structure time
consuming. Indeed, merging two functionally-equivalent
nodes removes one variable from the SAT problem.

An AIG constructed by the traditional approach can be
reduced using specialized algorithms [11][12]. However,
proving functional equivalence of two AIG nodes may be a
formidable task. Typically, it is solved with a SAT solver,
which tries to prove that the outputs of the two AIGs never
produce different values. In the published work, e.g. [15],
detection of functional equivalence of AIG node-pairs
(called functional reduction in this paper) is applied as a
post-processing step.

The contribution of this paper is in integrating functional
reduction into the traditional AIG construction. This leads
to a semi-canonical data structure to represent Boolean
functions, called functionally reduced AIGs (FRAIGs). The
new construction algorithm is more robust in overcoming
drawbacks of the traditional AIGs: large intermediate
results and runtime overhead for the post-processing.

The algorithm proposed in this paper is similar to the
efficient reduction-by-construction method [1] for Reduced
Ordered Binary Decision Diagrams (ROBDDs),
implemented in all the current ROBDD packages.
Originally, the ROBDDs were introduced in [4] where the
reduction process was applied as a post-processing step.

Experimental results confirm that the proposed method
for constructing FRAIGs allows practical applications to
run faster and to be applied to larger problem instances.

The paper is organized as follows. Section 2 surveys the
traditional AIGs. Section 3 reviews previous work. Section
4 discusses the new algorithm to construct FRAIGs.
Section 5 discusses some implementation details. Section 6
outlines some applications of FRAIGs. Section 7 reports
experimental results. Section 8 concludes and outlines
future work.

2 Background

This paper assumes familiarity with the basics of Boolean
functions, Boolean networks, and Binary Decision
Diagrams [2].

2.1 Definitions
Definition. AND-INV graph (AIG) is a Boolean network

composed of two types of nodes: two-input AND-gates and
inverters.

Definition. A representation of a Boolean function is
canonical if, for any function, there exists only one
representation of this type.

AIGs are not canonical, that is, the same function can be
represented by two functionally equivalent AIGs, which
have different structure. An example of such function is
shown in Figure 1.

 00 01 11 10
00 0 0 1 0
01 0 0 1 1
11 0 1 1 0
10 0 0 1 0

 00 01 11 10
00 0 0 1 0
01 0 0 1 1
11 0 1 1 0
10 0 0 1 0

(, , ,) ()F a b c d ac d ac bc= + +

(, , ,)F a b c d acbd bcad= +

6 nodes
4 levels

7 nodes
3 levels

a b d

a c b c

b c a d a c b d

ab

ab
cd

cd

Figure 1. Two different AIGs for the same function.

Note that both graphs in Figure 1 are FRAIGs, since in

each of them, no pair of nodes represent the same function.
Definition. The size of an AIG is the number of AND

nodes in it. The number of logic levels is the number of
AND-gates on the longest path from a primary input to a
primary output.

The inverters are ignored when counting nodes and logic
levels. In the software implementation, inverters are
represented by flipping the least significant bit on the node
pointers [11]. This implementation is similar to that of
BDDs with complemented edges [1].

Definition. The function of an AIG node n, denoted fn(x),
is a Boolean function of the logic cone rooted in node n and
expressed in terms of the PI variables x assigned to the leaf
nodes of the AIG.

Definition. A functionally reduced AIG (FRAIG) is an
AIG, in which, for any pair of nodes, n1 and n2,

1 2
() ()n nf x f x≠ and

1 2
() ()n nf x f x≠ .

2.2 AIG construction
AIGs for Boolean functions can be constructed starting

from different functional descriptions:
SOP: Given an SOP representation of a function, AIGs

of the products are constructed using the AIGs for
elementary variables and cascades of two-input AND-
gates. The AIG for the SOP output is constructed using the
AIGs for the outputs of the product terms and a cascade of
two-input OR-gates. Each two-input OR-gate is converted
into a two-input AND-gate using the DeMorgan rule.

BDD: Given a (multi-output) BDD representation of a
Boolean function, the (multi-output) AIG is constructed by
converting the BDD into a circuit composed of MUXes and
applying the transformation from the circuit representation.

Circuit: Given a circuit representation of a (multi-output)
Boolean function, the (multi-output) AIG is constructed in
a bottom-up fashion, by calling a recursive construction
procedure for each PO of the circuit. The procedure checks
if it is called for a PI node. If so, it returns the
corresponding elementary AIG variable. Otherwise, it first
calls itself for the fanins of a node and then builds the AIG
for the node using the factored form or the BDD
representation of the logic function of the node. In both
cases, the elementary ANDs, ORs, and MUXes are
converted into two-input ANDs and inverters.

Boolean formulas: Given an arbitrary expression
representing a Boolean function using Boolean operators,
including quantification and co-factoring, the AIG of the
output of the formula is constructed as follows:

- Start with AIGs representing elementary variables.
- Express Boolean operations using two-input ANDs

and inverters over the elementary variables.
- Perform co-factoring of a function by constructing

the AIG of the function, followed by propagating
corresponding constants through it.

- Perform existential (universal) quantification of a
function by iteratively ORing (ANDing) the
cofactors of the function w. r. t. the variables to be
quantified.

When an AIG is constructed from a circuit, the number of
AIG nodes does not exceed the number of literals in the
factored forms of the nodes. When the AIG is constructed
from a BDD, the number of AIG nodes does not exceed
three times the number of nodes in the BDD. It follows that
the size of the constructed AIG is proportional to the size of

the circuit or BDD. Quantifications performed on AIGs
have the complexity exponential in the number of variables
quantified. This is because quantifying each variable can
potentially duplicate the graph size.

Boolean operations, except quantification, performed on
AIGs lead to the resulting graphs, which, in the worst case,
are not larger than the sum of the sizes of their arguments.
Meanwhile, in the case of BDDs, the worst case complexity
of the result is equal to the product of the sizes of the
arguments. This difference explains why AIGs are more
robust than BDDs for representing and manipulating
complex circuitry, such as multipliers.

2.3 Structural hashing
Structural hashing (strashing) of AIGs introduces partial

canonicity into the AIG structure. When a new AND-gate
is added to the graph, several logic levels of the fanin
AND-gates are mapped into a canonical form. Although the
resulting AIG is not canonical, it contains sub-graphs,
which are canonical as long as they have less than the given
number of logic levels.

No strashing: When an AIG is constructed without
strashing, AND-gates are added one at a time without
checking whether an AND-gate with the same fanins
already exists in the graph.

One-level strashing: When a new AND-gate is added,
this type of strashing checks for a node with the same
fanins (up to permutation).

Two-level strashing: This type has two phases. In the
pre-computation phase, all two-level AND-INV
combinations are enumerated and, for each Boolean
function realizable by a two-level AIG, one representation
is arbitrarily selected as the representative one. In the
construction phase, when adding a new AND-gate, its two-
level AIG is checked. If its canonical representative does
not exist, the AND-gate is added. Otherwise, the canonical
representation is constructed, even if it requires building
new AND-gates for some of the fanins.

A detailed discussion of two-level structural hashing can
be found in [8]. This reference uses an efficient
implementation, which runs in time linear in the number of
constructed AIG nodes. Its runtime is only marginally
larger than that of one-level strashing, but the resulting
graphs may have 5-20% fewer nodes.

A drawback of two-level strashing is when multiple AIGs
are constructed repeatedly, sometimes it leads to an
increase in the number of unused nodes in the AIG
manager. This may slow down some AIG-based
applications, such as image computation.

3 Previous work

AIGs have been applied as a circuit representation in
combinational equivalence checking (CEC) [11] and an
object graph representation in technology mapping [13]. In
both cases, AIGs are built initially using strashing, and later
optionally post-processed to enforce functional reduction.

In [15] AIGs are used for unbounded model checking in
which both the circuits and interpolants computed from the
unsatisfiability proofs are represented by AIGs. This work
recognizes the need for functional reduction ([15], Section
3.2, paragraph 1) noting that AIGs tend to have many
redundancies not captured by strashing.

Two procedures have been proposed to perform
functional reduction. One, bdd_sweep [11], constructs
BDDs of the AIG nodes in terms of the PI variables and
intermediate “cut-point” variables. BDD construction is
controlled by resource limits, such as a restriction on the
BDD size. Any pair of AIG nodes with the same BDD is
merged, and the fanout cones are rehashed to propagate the
change. As long as all BDDs can be built within the
resource limits, the result is a FRAIG.

A second procedure, sat_sweep [14][12], is more efficient
and achieves the same merging and propagation by solving
a sequence of incremental topologically-ordered SAT
problems designed to prove or disprove the equivalence of
cut-point pairs. Candidate pairs are detected by random
simulation. Experimentally we will show that our on-the-
fly FRAIGing method is an order of magnitude faster than
this.

In both approaches, the initial graph is constructed in a
redundant form, followed by functional reduction applied
as a post-processing step.

Another approach to CEC was developed using NAND
graphs [6] but the authors do not mention what methods are
used to perform functional reduction or to prove the
equivalence of the output functions.

4 Algorithm

This section presents the main contribution of the paper, a
new and efficient algorithm to build AIGs on-the-fly while
ensuring that they are functionally reduced by construction.

Figure 2 shows the pseudo-code of the traditional AIG
construction with one-level strashing. The first part checks
various trivial cases, such as when the nodes are equal up
to complementation, or when one node is a constant. Next,
the arguments are ordered to ensure that swapping of fanins
does not create a new node.

One-level strashing is performed by looking up in a hash
table, which maps the pair of fanins into the AND gate with
these fanins. If a node with this pair of fanins exists, it is
returned. If such node does not exist, a new node is created,
added to the hash table, and returned.

AAiigg__NNooddee ** OOppeerraattiioonnAAnndd((AAiigg__MMaann ** pp,, AAiigg__NNooddee ** nn11,, AAiigg__NNooddeeee ** nn22))
{{
 AAiigg__NNooddee ** rreess,, ** ccaanndd,, ** tteemmpp;; AAiigg__NNooddeeAArrrraayy ** ccllaassss;;

 //****** ttrriivviiaall ccaasseess ******//
 iiff ((nn11 ==== nn22)) rreettuurrnn nn11;;
 iiff ((nn11 ==== NNOOTT((nn22)))) rreettuurrnn 00;;
 iiff ((nn11 ==== ccoonnsstt)) rreettuurrnn 00 oorr nn22;;
 iiff ((nn22 ==== ccoonnsstt)) rreettuurrnn 00 oorr nn11;;
 iiff ((nn11 << nn22)) {{ //****** sswwaapp tthhee aarrgguummeennttss ******//
 tteemmpp == nn11;; nn11 == nn22;; nn22 == tteemmpp;;
 }}
 //****** oonnee lleevveell ssttrruuccttuurraall hhaasshhiinngg ******//
 rreess == HHaasshhTTaabblleeLLooookkuupp((pp-->>ppTTaabblleeSSttrruuccttuurree,, nn11,, nn22));;
 iiff ((rreess)) rreettuurrnn rreess;;
 rreess == CCrreeaatteeNNooddee((pp,, nn11,, nn22));;
 HHaasshhTTaabblleeAAdddd((pp-->>ppTTaabblleeSSttrruuccttuurree,, rreess));; rreettuurrnn rreess;;
}}

Figure 2. Algorithm for constructing AIGs with one-level
strashing.

Figure 3 contains the pseudo-code of the FRAIG

construction algorithm. Both one-level strashing and
functional reduction are performed by the same procedure.
An additional hash table is used, which maps each
simulation vector into a set of functionally different AIG
nodes that have this simulation vector (its simulation class).

AAiigg__NNooddee ** OOppeerraattiioonnAAnndd((AAiigg__MMaann ** pp,, AAiigg__NNooddee ** nn11,, AAiigg__NNooddeeee ** nn22))
{{
 AAiigg__NNooddee ** rreess,, ** ccaanndd,, ** tteemmpp;; AAiigg__NNooddeeAArrrraayy ** ccllaassss;;
 //****** ttrriivviiaall ccaasseess ******//
 iiff ((nn11 ==== nn22)) rreettuurrnn nn11;;
 iiff ((nn11 ==== NNOOTT((nn22)))) rreettuurrnn 00;;
 iiff ((nn11 ==== ccoonnsstt)) rreettuurrnn 00 oorr nn22;;
 iiff ((nn22 ==== ccoonnsstt)) rreettuurrnn 00 oorr nn11;;
 iiff ((nn11 << nn22)) {{ //****** sswwaapp tthhee aarrgguummeennttss ******//
 tteemmpp == nn11;; nn11 == nn22;; nn22 == tteemmpp;;
 }}
 //****** oonnee lleevveell ssttrruuccttuurraall hhaasshhiinngg ******//
 rreess == HHaasshhTTaabblleeLLooookkuupp((pp-->>ppTTaabblleeSSttrruuccttuurree,, nn11,, nn22));;
 iiff ((rreess)) rreettuurrnn rreess;;
 rreess == CCrreeaatteeNNooddee((pp,, nn11,, nn22));;
 HHaasshhTTaabblleeAAdddd((pp-->>ppTTaabblleeSSttrruuccttuurree,, rreess));;
 iiff ((pp-->>FFllaaggUUsseeOOnneeLLeevveellHHaasshhiinngg)) rreettuurrnn rreess;;

 //****** ffuunnccttiioonnaall rreedduuccttiioonn ******//
 ccllaassss == HHaasshhTTaabblleeLLooookkuupp((pp-->>ppTTaabblleeSSiimmuullaattiioonn,, nn11,, nn22));;
 iiff ((ccllaassss ==== NNUULLLL)) {{
 ccllaassss == CCrreeaatteeNNeewwSSiimmuullaattiioonnCCllaassss((rreess));;
 HHaasshhTTaabblleeAAdddd((pp-->> ppTTaabblleeSSiimmuullaattiioonn,, ccllaassss));; rreettuurrnn rreess;;
 }}
 ffoorr eeaacchh nnooddee ccaanndd iinn ccllaassss
 iiff ((FFuunnccttiioonnaallllyyEEqquuiivvaalleenntt((ccaanndd,, rreess)))) {{
 AAddddNNooddeeTTooEEqquuiivvaalleenncceeCCllaassss((ccllaassss,, rreess));; rreettuurrnn ccaanndd;;
 }}
 AAddddNNooddeeTTooSSiimmuullaattiioonnCCllaassss((ccllaassss,, rreess));; rreettuurrnn rreess;;
}}

Figure 3. Algorithm for constructing FRAIGs.

The simulation vector is derived using bit-parallel

simulation of the AIG starting from the PIs up to the node
under construction. The simulation is performed

incrementally whenever a new AND-gate is added. The
simulation vector is derived by the bit-wise AND applied to
(possibly complemented) simulation vectors of the fanins.

If the simulation class is empty, a new class is created and
initialized with the given node. In this case, there is no need
for the equivalence check because the new node is proved
to be functionally unique by random simulation only.

If the simulation class is not empty, then for each
representative, cand, of this class a SAT-based functional
equivalence test is performed. Depending on the result of
the test, two outcomes are possible. If the new node (res) is
equivalent to the representative node (cand), then the
representative node is returned to ensure functional
reduction. The new node can be dropped. However, in the
current implementation of FRAIGs, the new node is left in
the graph as a node without fanouts. It is added to the
equivalence class of the representative node as an
alternative AIG structure. Finally, if the new node is not
equivalent to any node in its simulation class, it is added to
the simulation class and returned.

5 Implementation Details

5.1 Random Simulation
The performance of the proposed algorithm critically

depends on the efficiency of random simulation. If the
simulation vectors are larger, their distinguishing power is
better, and fewer SAT-based functional equivalence tests
are needed. In the current implementation, the default of
127 machine words is used to store bit-patterns at each
node. Thus, roughly four thousand (127 * 32 = 4064)
random bit-patterns are propagated through the circuit. The
runtime of random simulation constitutes less than 5% of
the total runtime, which is dominated by the SAT solver.

The default memory requirements for storing simulation
information for one AIG node is 508 bytes (127 * 4 = 508),
or approximately 5Mb per 10K of nodes. The memory used
to store the simulation information is allocated
independently from the memory used for the AIG nodes.
Once the FRAIG construction is finished, the simulation
memory can be de-allocated and re-used by the application.

5.2 SAT Solving
For efficiency, the algorithm requires tight integration of

the circuit-based AIG data structure and a SAT solver. The
solver used in the project is a state-of-the-art CNF-based
solver MiniSat [7], with some minor modifications to
restrict incremental SAT solving to a subset of variables
and clauses.

The CNF for the AIG is loaded in the SAT solver
incrementally, by adding three CNF clauses each time a
new AIG node is created.

Checking functional equivalence for AIG nodes n1 and n2
is performed as follows: (1) collect the AIG nodes in the
union of the transitive fanin cones of n1 and n2; (2) set the
“branchable” variables to be those corresponding to the
above AIG nodes; (3) run the solver to prove or disprove
equivalence.

Incremental runs of the SAT solver create learned
clauses, which are stored in the global clause database.
Because the logic cones of different equivalence checking
problems often overlap, the learned clauses are shared and
reused, which improves the performance of the SAT solver.

6 Applications of FRAIGs

6.1 Formal Verification
In formal verification, FRAIGs can be used instead of the

traditional AIGs as a data structure for CEC and BMC
[9][11][12][16].

A straight-forward use of FRAIGs in CEC is similar to
that of BDDs. FRAIGs are constructed for the circuit
outputs. The circuits are equivalent if and only if the
corresponding pairs of outputs are represented by the same
FRAIG nodes.

A more sophisticated use of FRAIGs is to represent both
circuits and interpolants in a uniform way, similar to [15].
This may extend the applicability of the previously reported
model checking methods and lead to the development of
new methods for sequential equivalence checking.

6.2 Logic Synthesis
A straight-forward use of FRAIGs in logic synthesis is to

compact circuits by detecting and merging functionally
equivalent nodes. Global FRAIGs for all the network nodes
are constructed. Next, the network nodes are grouped into
the same class if they are represented by the same FRAIG
node. One representative of each class is selected and
substituted for other nodes of the same class.

Other potential applications of FRAIGs in synthesis
include: (a) a uniform representation of algebraic factored
forms and DAGs resulting from Boolean decomposition,
(b) a robust representation of node functions, manipulated
by a logic synthesis system when it performs operations,
such as elimination, collapsing, and node immunization,
(c) an alternative computation engine to solve Boolean
problems, such as don’t-care computation.

6.3 Technology Mapping
A known approach to technology mapping [13] uses

AIGs to represent the “object” graph. Of particular
importance in this approach is implicit enumeration of
mapping choices, achieved by collecting and storing
multiple AIGs structures for the logic functions found in

the original network to be mapped. If there are more
mapping choices in the graph, the quality of mapping is
better. In [13], mapping choices are derived by considering
various algebraic decompositions of the SOPs at the nodes.

FRAIG construction can be seen as a natural way to
prepare circuits for technology mapping. Each FRAIG
node is associated with its equivalence class, that is, a set of
functionally equivalent nodes with different AIG structures
(structurally identical nodes are collapsed by one-level
strashing performed as part of the FRAIG construction).
These functionally equivalent nodes constitute a set of
choices, which can be used for technology mapping.

An additional advantage is that FRAIGs can be
constructed for multiple versions of the same network,
derived by different optimizations. For example, a
sequence of networks derived by applying an optimization
script, one command at a time, can be “fraiged” into one
object graph. Technology mapping applied to this
cumulative graph selects the best mapping over all
available choices, which may originate from different
versions of the same network.

7 Experimental results

The proposed algorithm for constructing FRAIGs is
implemented in C as a stand-alone AIG package “FRAIG”
[17]. The package was tested in the MVSIS environment
[18] and used in several applications dealing with logic
synthesis and verification. Runtimes are reported on a
1.6GHz computer under Windows XP.

Several experiments were performed:
Experiment 1: Runtime comparison of synthesis
operations in MVSIS using:
o FRAIGs
o Two-level strashing (MVSIS command strash).
o Strashing followed by incremental simulation-

guided functional reduction applied to the AIG
nodes in the topological order (MVSIS command
sat_sweep).

Experiment 2: Runtime comparison during CEC in
MVSIS using:
o FRAIGs
o BDD-based CEC (MVSIS command verify).
o Strashing-based CEC with monolithic SAT.
o Strashing-based CEC with incremental simulation-

guided SAT (MVSIS command sat_verify).

7.1 Experiment 1
As a result of the first experiment it was found that, for

the majority of MCNC [20] and ITC ‘99 [10] benchmarks,
the runtime of FRAIG construction is only 2-3 times slower
than that of two-level strashing. For larger benchmarks
containing up to 20K gates, the runtime may be 10 times

slower. This difference is due to strashing complexity being
linear in the size of the graph while FRAIG construction
requires a linear number of SAT-based functional
equivalence checks, each of which has a worst-case
exponential complexity in the size of the graph. For larger
benchmarks, the exponential behavior slows down the
FRAIG construction.

The second part of this experiment compared the runtime
of FRAIG construction with that of strashing followed by a
post-processing step to enforce functional equivalence. For
all the benchmarks tried, FRAIG construction was up to 10
times faster, because it avoids large redundant graphs
appearing at the intermediate steps of construction.

A large combinational circuit pj1.blif extracted from the
PicoJava benchmark [19] was selected for a case study.
This circuit contains 17K gates and 35K literals after
sweeping in MVSIS. It takes 0.3 sec to run strash, 31.0 sec
to run sat_sweep and 2.7 sec to construct FRAIGs. The
FRAIG runtime is divided as follows: 0.14 sec is spent on
simulation, 0.24 sec for AIG traversal to detect the unions
of TFI logic cones, and 1.86 sec for SAT solving.

7.2 Experiment 2
This experiment compares the performance of several

CEC commands in MVSIS. CEC was used to prove
functional equivalence of the original circuits against
circuits derived using optimization scripts in MVSIS.

The original circuits are taken from the following
sources:
• MCNC benchmarks [20] (the first four circuits)
• ISCAS benchmarks [3] (s15850.blif)
• PicoJava benchmarks [19] (pj1.blif)
• ITC'99 benchmarks [10] (b14.blif, b17.blif)
Most of these benchmarks were included in the tests

because of their large sizes. Several smaller MCNC
benchmarks were added to have circuits, for which BDDs
could be constructed. The above selection of benchmarks
used in the experiment is available on the web [17].

Table 1. Runtime comparison for CEC algorithms.

Name Ins Outs Lits BDD SAT SWEEP FRAIG

des.blif 256 245 6084 0.3 1.0 2.8 0.5
c1355.blif 41 32 992 10.0 0.2 0.1 0.1
c6288.blif 32 32 4675 - - 1.0 0.5
i10.blif 257 224 4355 57.2 2.4 1.5 0.3
s15850.blif 611 684 7303 6.3 1.5 3.3 0.5
pj1.blif 1769 1063 34533 - - 31.9 10.5
b14.blif 32 54 17388 - - 15.3 2.0
b17.blif 37 97 57311 - - 385.6 13.2

The results are reported in Table 1. Column “Name” lists

the benchmark name. Columns “Ins” (“Outs”) show the
number of PIs (POs). Column “Lits” is the number of

literals in the factored forms after sweeping (removing
single-input nodes and nodes without fanouts). The
following four columns contain the runtimes in seconds, of
the four algorithms. Memory needed to represent the
circuits and solve the equivalence checking problem for the
largest benchmark of the set, b17.blif, was 75Mb. The dash
in Table 1 means that an algorithm could not complete after
a timeout set to 600 seconds.

The CEC algorithms include verification by global BDD
constriction (column “BDD”), verification by strashing
followed by solving the resulting monolithic SAT problem
(column “SAT”), verification by strashing followed by
solving a sequence of incremental simulation-guided SAT
problems (column “SWEEP”), and finally, verification
through FRAIG construction (column “FRAIG”) as
described in Section 6.1.

8 Conclusions

Traditional AND-INV graphs (AIGs) [11] constructed
with structural hashing [8] are not canonical because the
construction algorithm does not guarantee that each node
has a unique functionality. Practical applications rely on
specialized procedures, such as bdd_sweep [11] or
sat_sweep [14][12], to detect and eliminate functionally
equivalent AIG nodes, which is important to control the
AIG size and speed-up reasoning procedures.

This paper proposes an algorithm to build functionally
reduced AIGs (FRAIGs), in which each node has a unique
functionality by construction. The algorithm uses
traditional structural hashing [8] as a quick pre-processing
step, followed by random simulation [14][12] to detect a
significant number of functionally unique nodes. Finally,
when both methods fail, a local incremental SAT problem
is solved to prove or disprove functional equivalence of the
new node with the existing nodes.

Preliminary experiments include construction of FRAIGs
for large benchmarks, and FRAIG-based CEC. The
experiments confirm the usefulness of the proposed
algorithm, which leads to an order-of-magnitude speed-up
compared with known methods.

Future work will explore other potential applications of
FRAIGs in logic synthesis, technology mapping, and
equivalence checking, as outlined in Section 6.

References

[1] K. S. Brace, R. L. Rudell, R. E. Bryant, “Efficient implementation of
a BDD package”, Proc. DAC ‘90, pp. 40-45.

[2] R. K. Brayton and C. McMullen, “The decomposition and
factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[3] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” Proc. IEEE Int’l Symp. on Circuits
and Systems, 1989

[4] R. E. Bryant, "Graph-based algorithms for Boolean function
manipulation," IEEE Trans. Comp., Vol. C-35, No. 8 (August, 1986),
pp. 677-691.

[5] J. Cortadella, “Bi-decomposition and tree-height reduction for timing
optimization”. Proc. IWLS ’02, pp. 233-238.

[6] R. Drechsler, M. Thornton, “Fast and efficient equivalence checking
based on NAND-BDDs”, Proc. VLSI ’01.

[7] N. Eén, N. Sörensson, “An extensible SAT-solver”, Proc. SAT ‘03.
http://www.cs.chalmers.se/~een/Satzoo/

[8] M. K. Ganai, A. Kuehlmann, “On-the-fly compression of logical
circuits”. Proc. IWLS ‘00.

[9] E. Goldberg, M.Prasad, R.K.Brayton. “Using SAT for combinational
equivalence checking”. Proc. DATE ‘01, pp. 114 -121.

[10] ITC ’99 Benchmarks http://www.cad.polito.it/tools/itc99.html
[11] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust

boolean reasoning for equivalence checking and functional property
verification”, IEEE Trans. CAD, Vol. 21(12), Dec 2002, pp. 1377-
1394.

[12] A. Kuehlmann, “Dynamic Transition Relation Simplification for
Bounded Property Checking”. Proc. IWLS 2004.

[13] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD,
16(8), 1997, pp. 813-833.

[14] F. Lu, L. Wang, K. Cheng, R. Huang. “A circuit SAT solver with
signal correlation guided learning”. Proc. DATE ‘03, pp. 892-897.

[15] K.L. McMillan, “Interpolation and SAT-based model checking”.
Proc. CAV ‘03, pp. 1-13, LNCS 2725, Springer, 2003.

[16] K.L. McMillan, “Methods for exploiting SAT solvers in unbounded
model checking”, Proc. CAV 03.

[17] A. Mishchenko. FRAIG source code and benchmarks.
http://www.ee.pdx.edu/~alanmi/fraig

[18] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis System. UC
Berkeley. http://www-cad.eecs.berkeley.edu/mvsis/

[19] SUN Microelectronics. PicoJava Microprocessor Cores.
http://www.sun.com/microelectronics/picoJava/

[20] S. Yang. Logic synthesis and optimization benchmarks. Version 3.0.
Tech. Report. Microelectronics Center of North Carolina, 1991.

