CHAPTER 3. ALGEBRAIC DECOMPOSITION 54

The minimum cover problem for the matrix M is to find a {0,1} row vector z such
that M-zT > (1,...,1)7 and the sum ¥°; z;w; is minimum. The minimum solution to this
covering problem provides the minimum solution to the rectangle covering problem. The
branch and bound technique for the minimum cover problem proposed in Chapter 2 can be
used to find a minimum-cost rectangle cover.

Unfortunately, the weight of a rectangle in algebraic decomposition does not obey
this assumption on the cost of a rectangle; as is shown in the next section, larger rectangles
cost more than the rectangles they contain. Therefore, the minimum solution typically
involves nonprime rectangles. To solve the probiem exactly in this case requires enumeration
of all rectangles, and not just the prime rectangles, for inclusion in the covering problem.
Because of the tremendous number of rectangles present in even small problems, this is not
a viable exact algorithm.

One approximate approach for rectangle covering is to find the minimum cover
using prime rectangles and then apply a reduction step to reduce the size of the rectangles
to improve the total cover cost. This reduction step, similar to the REDUCE operation in

heuristic two-level minimization programs, is presented in Section 3.7.5.

3.5 Application of Rectangle Covering

In this section, the problems of distillation (kernel-intersection eztraction) and
condensation (common-cube eztraction) are shown to be variations of the rectangle covering
problem. The main result from this section is the derivation of a weight function and a value
function for a rectangle for each of these two problems. These functions uie definea for the

optimization problem of minimizing the total number of literals in the network.

3.5.1 Common-Cube Extraction

Common-cube extraction is the process of finding cubes common to two or more
expressions and extracting the common cube to simplify each of the expressions. The
optimization problem is to find the particular cnbes to introduce into the network to provide
an optimal decomposition. For example, the optimal decomposition can be defined as
minimizing the total number of literals summed over all expressions, or minimizing the

total number of literals given a bound on the number of levels of logic in the final circuit.

CHAPTER 3. ALGEBRAIC DECCMPOSITION 55

Technology-dependent costs, such as the relative cost and delay of n-input NAND-gates can
also be used to define the optima.l decomposition.

Common-cube extraction has a relationship with rectangles and the rectangle cov-
ering problem as follows. First, the cube-literal matrix for the Boolean network is created.
As before, each row corresponds to a cube of some expression, and each column corresponds
to a literal present in some cube. The position B;; is set to a 1 if cube i contains literal
J. A rectangle in the cube-literal matrix identifies a cube which can be extracted from the
network. The columns of the rectangle identify the literals in the common-cube, and the
rows identify the cubes (and expressions) fed by the cube.

For example, given the equations:

F = abe+abd+eg

G = abfg
H = bd+ef,
the cube-literal matrix is:
a b c de f gl]
1 2 3 4 8 B 74
a4k 11 .
o2l1 3 1)
P 3 " I : i
g 411 1 . A |
7 R A
i aliby o o o« 1 %

The columns are annotated with the literal represented by the column, and the
rows are annotated with the cube of the function which the row represents. For example

Fy is the cube abe.
The rectangle ({1, 2,4}, {1,2}) corresponds to the common cube ab. If this com-

mon cube is extracted as the new function X, the equations would be rewritten as:

F = Xe+Xd+eg

G = Xfg
X = ab

The process of extracting a cube modifies the Boolean network. A new node is

added to the Boolean network with a logic function which is the common cube divisor. All

CHAPTER 3. ALGEBRAIC DECOMPOSITION 56

functions which the cube divides are replaced with the algebraic division of the function by
the single cube. In order to extract cubes efficiently in an iterative algorithm, it is desirable
to modify the cube-literal matrix incrementally to reflect the extraction of the cube. The
advantage is that the cube-literal matrix does not have to be re-created as each cube is
extracted.

The modification of the cube-literal matrix is straightforward. A new rowis added
to the cube-literal matrix to reflect the new single-cube expression added to the network,
and a new colume is added to represent the new literal in the network. The entries covered
by the rectangle are marked with # to reflect that the position has been covered, but other
rectangles are also allowed to cover the same position. The effect of rectangles which overlap
in a position is considered in Section 3.6.

Continuing with the previous example, the cube-literal matrix, after extraction of
the rectangle ({1,2,4}, {1.2}) is:

gob e i e RuagiE
1 2 3 4 5 8 7 8
Fy Lk g F 3
F, 2% = 1 | 1
F5 3 T d oy =
Gy 4% % £ A &
m s5|. 1.1 .
My 8w & 173
X, 701 1

Rectangle Weight and Value

The choice of the weight function for a rectangle measures the optimization goal
for cube extraction. To minimize the total number of literals in the network, the weight of a,
rectangle is chosen so that the weight of a rectangle-cover of the cube-litera] mabrix equals
the total number of literals in the network after the new single-cube functions are added to
the network. Hence, the minimum-weighted cover corresponds to the optimal simyltaneous
extraction of a collection of cubes.

For cube extraction, the weight of a rectangle is defined as:
IC| if |[Rl=1
IR+ 0] if |R>1

y { i

w(R,C) = {

I a rectangle (R, C) has only a single row, ihis corresponds to leaving the cube unchanged

in the network; hence, the weight of this rectangle counts the number of literals in the cube.

CHAPTER 3. ALGEBRAIC DECOMPOSITION 57

If the rectangle has more than one row, this corresponds to creating a new single-cube
function (with |C| literals), and substituting this new function into |R| other cubes at a
cost of | 2] literals; hence the weight of a multiple-row rectangle is | B| + IC].

When searching for a, rectangle to extract, it is useful to define a second function

called the value of a rectangle. Tor caha extraction, the value of a rectangle is defined as:
v(R, C)= I{(zsj)fBU = l}l i ’HJ(R,C).

The rectangle value reflects the desirability of choosing the rectangle, and is defined as the
number of literals which would be saved in the network if this rectangle is chosen. This is
simply the number of 1 points covered by the rectangle minus the weight of the rectangle.
No additional literals are saved for covering a point marked as an asterisk in the matrix;
hence, these are not counted in the value function. If a rectangle contains only points which
ate 1, then the value of a rectangle for cube extraction is the area minus the perimeter.

It is" useful to define the weight function and value function in terms of three
auxiliary functions - the row and column weight vectors w" and w° and the element value
matrix V. Each row ¢ has weight wf = 1, and each column J has -veight w§ = 1. Each
position of the matrix V has Vij = L. As each element B;; which is 1 is covered, the value
of V;; is set to 0. The weight of a rectangle (R, C) is then defined as

i < if |R|l=1
?.D(,R,C)= { ElECwJ ?] I
2ierW] + Tiecw? if |R|>1
and the value of a rectangle (R,C) is defined as
W(B,C)= 3 Vij-w(RC).
iERjEC
The rectangle algorithms presented in Section 3.7 make use of w], w3, and Vj; to

compute v().

3.5.2 Kernei-Intersection Extraction

As described in Theorem 3.3.1, intersections among the kernels of a collection
of expressions are useful for finding common multiple-cube divisors between two or more

expressions. If two functions share a common multiple-cube divisor, then the common

divisor can be found as the intersection of a kernel from each of the functions.

CHAPTER 3, ALGEBRAIC DECOMPOSITION 58

To turn this into an optimization algorithm, the first step is to enumerate all
kernels of each logic expression. If desired, the set of kernels is restricted to a subset of all
kernels to reduce the processing time at the possible expense of a decrease in the solution
quality. For example, a convenient subset is the set of all level-0 kernels, The probiem is
then to examine the intersections over the subsets of the set of kernels to find intersections
to extract and substitute into a netwark. This problem is naturally mapped intoa rectangle

covering problem.

The Co-kernel Cube Matrix

Finding useful intersections of kernels is facilitated with the co-kernel cube matrix.
A row in this matrix corresponds to a kernel (and its associated co-kernel), and a column
corresponds to the cubes which are present in some kernel. The entry B;; is set to 1 if the
kernel ¢ contains the cube 7-

For example, given the equations:

F of +bf + ag + cg + ade + bde + cde
G af +bf + ace + bee
H ade + cde,

the kernels (and co-kernels) of ' are de 4- f+9(a), de-+ f(b), a+b+e(de), a+b(f), de+g(c)and
a+¢(g). The kernels (and co-kernels) of G are ce + f(a,b),a+ b(f, ce), and the only kernel

of H is a + ¢(de). For ease of presentation, the functions F and G, which themselves are

kernels, are not listed in the set of kernels, The co-kernel cube madtrix is easily constructed
from this data. The unique cubes from all of the kernels are a, b, c, ce, de, f, and g; these
cubes are used to label the columns of the matrix. There are thirteen kernels, and the

corresponding co-kernels are used to label the rows of the matrix.

The product of a co-kernel for a row and the kernel-cube for a column vields a
cube of some expression, For reference, the cubes of the original expressions are numbered
from 1 to 13. The number of the cube resulting from the product of the co-kernel for row
¢ and the kernel-cibe for column J Is placed at position Bj; in the co-kernel cube matrix.
For example, the co-kernel ¢ when multiplied by the kernel de + f + g yields the cubes
numbered 5, 1, and 3, which are ade, af, and ag. Note that there is often more than

CHAPTER 3. ALGEBRAIC DECOMPOSITION 59

one way to form each cube in an expression. For example, cube 1 (af) is created by the
co-kernei a multiplying the kernel de + f + ¢, and by the co-kernel f multiplying the kernel
a+b.

The co-kernel cube matrix for the previous example is:

a b ¢ ce de f g
1 2 & 4 5 8 7|
Foa 1 . :) . 5 1 3
F b 2 : 6 2
F de 3 5 6 7 5 %
F f 411 2 2
F' " 5 7 4
F g 613 4
G a 7 10 8
G b 8 i i R i | 9
G ce 9110 11 .
G f 1w|8 g .
G de 11112 . 13

A rectangle of the co-kernel cube matrix identifies an intersection of kernels; this
kernel-intersection is a common subexpression in the network. The columns of the rectangle
identify the cubes in the subexpression, and the rows of the rectangle identify the particular
functions that the subexpression divides. The entries covered by the matrix correspond to
cubes from the original network.

From the previous example, the prime rectangle ({3,4,9,10}, {1,2}) identifies the
subexpression a + & which divides the functions F and G. Cubes numbered 1, 2, 5, 6, 8, 9,
10, and 11 from the original set of functions are covered by this rectangle. This corresponds

to the factorization of the equations into the form:

= deX+ fX+ag+cg
= ceX + fX
ade + cde

Mo QM
I

= a+b

When a new subexpression is identified, it is inserted into the Boolean network.

This consists of adding a new node to the network and dividing the node into each of the

expressions which this node divides. The expressions which the subexpression divide are

CHAPTER 3. ALGEBRAIC DECOMPOSITION 60

apparent from the rows in the rectangle for the subexpression. The new co-kernel cube
matrix is then created for the modified Beclean network.

To reduce the complexity of extracting each factor from the network, it is desirable
to modify the co-kernel cube matrix incrementally as each subexpression is identified. This
is done as follows., New rows are added to the co-kernel cube matrix for each kernel of
the new subexpression. The cubes which are formed by the insertion of this new factor
into the network are marked as covered in the rectangle. This includes the points directly
contained by the rectangle, and other points which are labeled with the same number, The
cubes which have been covered by the new subexpression are labeled with *. The effect of
rectangles which overlap in a position is considered in Section 2.6.

Continuing the previous example, after the rectangle ({3,4,9,10},{1,2}) is ex-

tracted, the modified co-kernel cube matrix is:

a b ¢ ce de f ¢
1 2 3 4 /5T
R g g TR
E.b 2 : Lo
F ode 3|*% % 7
Ff 4% =% |
g -5 7 4
F g 613 - ¢
G a 7 * *
G b 8|, v o *
G ce 9 |* =*
Gl W e T :
H e 31142 .. 33 . s
X 1t 14t14 15

Note that no new columns were added in this case when the co-kernel cube matrix

was modified.

Rectangle Weight and Value

The weight of a rectang!- of the co-kernel cube matrix is chosen to reflect the
number of literals in the network if the corresponding common subexpression is inserted
into the network. A minimum-weighted rectangle-cover of the co-kernel cube matrix then

corresponds to a simultaneous selection of a set of subexpressions to add to the network in

order to minimize the total number of literals in the network.

CHAPTER 3. ALGEBRAIC DECOMPOSITION ¢ 61

In a manner similar to common-cube extraction, weights wl and w; are defined
for the rows and columns of the matrix and the weight of a rectangle is defined in terms of
these weights. Also, values V;; are defined for the elements of the matrix, and the value of
a rectangle is defined in terms of the values of the elements covered by the rectangle, and
the weight of the rectangle.

Let w; be the number of literals in the kernel-cube for column j. If a rectangle
(R, C) is used to identify a subexpression, then a new function is formed from the columns
of C. This new function has ¥ ;.o w§ literals. Let w] be the number of literals in the co-
kernel for row ¢ plus one. A subexpression divides the expressions indicated from the rows
R of the rectangle. After algebraic division by the subexpression, each of these expressions
consist of a sum of the corresponding co-kernel cubes multiplying the literal for the new
expression. Therefore, the number of literals in the affected functions after extraction of
the rectangle is 3 pwl.

Therefore, the weight of a rectangle (R,-C) of the co-kernel cube matrix is defined

as:

w(R,C) =Y wi+ Z w3

i€R Jjec

The value of a rectangle measures the difference in the number of literals in the
network if the particular rectangle is selected. The number of literals after the rectangle is
selected is the weight of the rectangle as defined above. Let V;; be the number of literals
in the cube which is covered by poesition (4, j) of the co-kernel cube matrix. Then, the
number of literals before extraction of the rectangle is simply Yierjec Vij- As elements
of the co-kernel cube matrix are covered, elements of V are set to zero. This includes the
elements Vj; covered by the matrix and all other elements which represent the same cube
in the network,

The value of a rectangle (R, C) of the co-kernel cube matrix is thus defined as:
v(R,C)= Y V- w(RC)
ieRjeC
Note that the weight function and value function are the same form as for commeon-

cube extraction; only the definitions for w;, wj, and V have changed.

CHAPTER 3. ALGEBRAIC DECOMPOSITION 62

3.6 Effect of Overlapping Rectangles

The formulation of algebraic decomposition as a rectangle covering problem where
the rectangles are allowed to overlap allows for valid decompositions which are nonalgebraic.
Further, by introducing don’t-care points in the matiix, other nonalgebraic decompositions
are possible., This effect is described in this sectjon for both cube-extraction and kernel-

extraction.

3.6.1 Cube-Extraction

Consider two rectangles which overlap in the cube-literal matrix. Recall that each
point of the cube-literal matrix corresponds to a literal of some cube in the network. For
ease of presentation, assume the rectangles overlap in a single point in the matrix and call
the cube which contains this point the overlap cube. The simultaneous extraction of both
rectangles corresponds to duplicating the literal which is contained by both rectangles. The
literals of the overlap cube which are covered by both rectangles are replaced with the
product of the two extracted cubes. However, the two new cubes do not have disjoint
support; hence, this corresponds to a nonalgebraic factoring of the original eguation. This
operation is valid because the Boolean identity aa = a has been used. The duplication
of literals, while seeming to introduce extra literals in the network, can lead to better
decompositions,

Consider the cube-extraction example from the previous section. The common
cube @b (prime rectangle ({1,2,4}, {1,2})) has been extracted and the cube-literal matrix
has the form:

a b ecd e f g X
1 2 3 4 5 6 7 8
By YRR 1
B 2% x* 1 . 1
Fy 3 . 1 1
Gy 4% * oyl
Hy 51: 2 o L. owi
Hy €. . . . 1'% 5%
K, Prd ¥ o o o tal b

Assume the rectangle ({2, 5}, {2,4}) is selected as the next cube to extract. This
rectangle overlaps the first rectangle in the point (2,2) which duplicates the literal b in cube

CHAPTER 3. ALGEBRAIC DECOMPOSITION 63

F,. This corresponds to rewriting the equations as:

= Xe+ XY +eg
= Xfg

Y+ef

= ab

= bd.

N M R QN
I

This is a nonalgebraic decomposition because the product XY is used in F, but
X and Y do not have disjoint support.

Recall that the weight of each rectangle reflects the number of literals after extrac-
tion of each rectangle; the weight of the coveris the final number of literals in the network.
'The minimum-weighted rectangle-cover selects precisely the literals to duplicate to optimize

the decomposition.

3.6.2 ¥Xernel Extraction

Likewise, rectangles are allowed to overlap in the co-kernel cube matrix. The
points of the overlap correspond to duplication of the cubes which are contained by both
rectangles. The Boolean identity @ + a = a is being used which makes this technique valid.

Consider the previous kernel-extraction example. After the subexpression a + b
(corresponding to the prime rectangle ({3,4,9,10}, {1,2})) has been extracted, the co-kernel

cube matrix is:

a b ¢ ce de f g
1 2 3 4 5 &6 7
B Ta i %
F bt 2 : K
F de 3 |* * 7
F f 4|* x 4
F ¢ 5 : 7 4
F g 613 4 .
G gy * *
G b 81}. * *
G ce 9| * *
G f 10|* *
H de 11|12 . 13
X 1 14)i14 15

CHAPTER 3. ALGEBRAIC DECOMPOSITION 64

I the rectangle ({3,6,11},{1,3}) is extracted next, then the overlap in the point
(3,1) corresponds to the duplication of the term ade for the decomposition of function F.

The rectangle ({3,6, 11}, {1,3}) corresponds to the subkernel a + ¢, which after extraction,
yields the equations:

F = deX+ fX +deY + gY
G = ceX+fX

H = deYy

X = ae+b

Y = a+ec

Sharad Malik has made the observation that it is possible to add don’t-care points
to the co-kernel cube matrix before finding the rectangle cover, as follows. Assume Bi;=0.
If the co-kernel ¢; contains literal ! (1) and kernel cube k; contains literal 7 (D), then set
B;; = *; that is, allow the position Bij to be optionally covered if it leads to a better
factorization. Given that cik; = §, the decomposition remains valid even if a rectangle
covers this position,

Len Berman has suggested inserting don’t-cares at other positions where it can be
proved that the addition of the implied cube to the corresponding function does not change
the input-output behavior of the logic network. Berman has suggested a technique based
on global-flow to detect efficiently when this condition is satisfied.

3.7 Rectangle Algorithms

Two algorithms for applying rectangle covering to algebraic decomposition are
proposed. The first, greedy_extract, selects one rectangle at a time and modifies the
matrix to reflect the extraction of the rectangle. The advantage of this technique is that it

immediately takes into account common factors between the newly extracted function and
the rest of the logic network. The disadvantage of this approach is that it selects only one
rectangle at a time and does not easily account for the simultaneous extraction of multiple
rectangles. Therefore, covering_extract is also presented. This algorithm finds the best
collection of factors to extract at each step by solving the minimum-weighted rectangle-

covering problem heuristically. These rectangles are then extracted, and the entire process

CHAPTER 3. ALGEBRAIC DECOMPOSITION 65

is repeated to find factors between the new expressions and the remainder of the logic
network.

Several other algorithms are alse described in this section. gen_rectangles is an
algorithm for enumerating all prime rectangles in a matrix. This is used to generate the
kernels of a logic expression, and is used by best_rectangle to find the best-valued prime
rectangle in a matrix. ping_pong provides a heuristic alternative to best_rectangle to
find a good-valued, but not necessarily the best-valued, rectangle in a matrix.

gen.rectangles is an adaptation of the algorithm originally described in [17] as
a technigue for kernel generation. The computer implementation described there was done
in APL using full matrix techniques. Even though IBM APL uses a bit-matrix representation
for {0, 1}-matrices, using full matrices proved to be a limiting factor on the size of networks
which could be optimized in YLE [13]. Other full-matrix implementations of this algorithm
have been described, including a version by Karen Bartlett [8] and Albert Wang [77).

However, almost all examples of rectangle generation forlogic synthesis involve ma-
trices with very few nonzero entries. For example, in the case of common-cube extraction,
a network with 1,000 single-cube expressions each with 10 literals creates a cube-literal ma-
trix with 1,000,000 possible entries of which only 10,000 are nonzero. This matrix provides
an example a dense matrix for logic optimization, but is only one percent full. Therefore,
sparse matrices appear to be a natural representation for implementing and describing the
rectangle covering algorithms.

To assist the implementation of algorithms for rectangle covering, a generic package
for sparse matrices has been implemented. This package has proven useful for a variety of
other applications, including algorithms for unate covering (as described in Chapter 2 of
this thesis) and inverter-phase assignment [76]. A sparse matrix stores enly the nonzero
elements of a matrix. Stored with each sparse matrix element is the row and column number.
Space is reserved at each sparse matrix element for applicatic;n-speciﬁc information. The
sparse matrix elements are doubly-linked to the next and previous elements in the row,
and are doubly-linked to the next and previous elements in the column. Headers for each
row and column provide random access to the first element in a row or column, given the
row or column number. A doubly-linked list of the nonempty row and column headers
are also maintained to provide fast access to the currently occupied rows and columns.
As submatrices of the sparse matrix are extracted, the row and column numbers are not

changed; this provides convenient correlation between a row in the sparse matrix, and a

CHAPTER 3. ALGEBRAIC DECOMPOSITION 66

row in any submatrix of the matrix.

Pseudo-code for the algorithms in this section are given in an informal pseudo-C
notation. The sparse matrix package provides a number of primitive operations which are
used in the description. A sparse matrix element has fields rownum and colnum which give
the row and column number of the element. A sparse matsix row or column has a field
lengih which gives the number of nonzero elements in that row or column. Note that in
practice the sparse matrix element contains arbitrary user information at the given row and
column; however, many algorithms are oniy interested in the topology of the sparse matrix
{i.e., where the nonzero xlements are) and not their contents. A rectangle has two fields, the
set of rows in the rectangle (rows), which can be represented with a sparse matrix column
vector, and the set of columns in the rectangle (cols), which can be represented with a

sparse matrix row vector.

3.7.1 genrectangles: Finding All Prime Rectangles

gen_rectangles finds all prime rectangles in a matrix. As mentioned earlier, the
worst-case complexity of this algorithm is exponential in the size of the matrix. However,
when the matrix is sparse, it is often feasible to enumerate all prime rectangles.

The pseudo-code for the gen_rectangles is given in Figure 3.3. gen_rectangles
calls gen_rectangles recur with appropriate initial arguments. The final step is to process
and record the trivial prime rectangles. A single row (column) is a prime rectangle if it is
not contained in any other row {column). Also, if the matrix does not contain any columns
(rows) with all 1’s, then the rectangle consisting of all of the rows (columns) and no columas
(rows) is also prime,

The arguments to gen_rectangles_recur are the current submatrix which is being
searched for prime rectangles (M), the current column index (indez), and the rectangle found
up to this poini (reci;. Also passed to this routine are a function to be called when a prime
rectangle is discovered (func), and a generic piece of state information to be passed to this
function (state).

The recursive assumption oa this routine is that all of the rows of rect contain a
1 (ox *) for all columns of rect. The routine will search the submatrix M to find all of the
prime rectangles with fewer rows but more columns.

Each column ¢ with an index greater than the starting index is examined as a

CHAPTER 3. ALGEBRAIC DECOMPOSITION 67

column to include in the rectangle. I the column has only a single element, then it cannot
create a nontrivial rectangle, so only columns with 2 or mere elements are of interest. The
submatrix M1 of the original matrix is created by selecting only the rows where the column
¢ has a nonzero value, and a new rectangle is formed from the columns of the old rectangle
and the rows for which ¢ has a nonzero value.

Any column of the submatrix M1 (including ¢) which is now 2} 1’s can also be
added to the rectangle. A pruning operation is also performed at this step. If a column of
1’s occurs for a column index less than the starting index, then all rectangles in the current
submatrix M7 have already been examined when that column index was processed. Hence,
if this condition is detected, it is not necessary to recur.

At this point, rect! represents a new prime rectangle of the matrix, and M7 is a new
submatrix to be searched for more prime rectangles. The caller’s function is called to process
the prime rectangle. This function returns a status indicating whether the submatrix M1

should be searched further. If the return value is 0, gen_rectangles is called recursively.

3.7.2 best_rectangle: Finding a Maximum-Value Prime Rectangle

Given a technique to generate all prime rectangles, it is now trivial to find the
best-valued prime rectangle. gen_rectangles is used to find all prime rectangles, and the
best-valued prime rect;ngie is recorded.

Note that for the value function defined in terms of V', w7, and w®, the best-valued
rectangle is not necessarily prime. The value of the prime rectangle can be improved by
deleting rows and columns which do not increase the value. If a row (column) of the prime
rectangle does not contain any elements of positive value (i.e., V;; = 0 for all { € R), then

that row (column) can be deleted from the rectangle.

Bounding Techniques

For common-cube extraction in a matrix with no don’t-care entries, the value
function tzkes the siwpie form of the area of the rectangle minus the semi-perimeter; i.e.,
v»(R,C) = |R||C| - (|R] + |C]). In this special case, a bound is easily placed on the size
of the largest value rectangle in a matrix. This can be used to speed-up the search for the

best-valued prime rectangle.
This is done by converting gen_rectangles into a branch and bound algorithm.

CHAPTER 3. ALGEBRAIC DECOMPOSITION

gen_rectangles recur(M, index, zsct, func, state) {

foreach column ¢ of M {
if (c->length >= 2 && c->colnum >= index) {

Mi = new matrix;
foreach element p in columm ¢ {
copy row p—>rownum of M to Ki;

rectl = new rectangle;
rectl->rows = duplicate colummn ¢ of M;
rectl->cols = duplicate rect->cols;

prung = Q;
foreach column ci of M1 {
if (ci->length == c->length) {
if (c1->colnum < c->colnum) {
prune = 1;
break;
} else {
add ci->colnum to racti->cols;
delete column ci from Mi;

}
}

if (not prume) {
bound = (*func)(Mi, rectl, state);
if (not bound) {
gen_rectangles recur(M!i, c¢c->colnum,
rectl, func, state);

Figure 3.2: Algorithm gen.rectangles_recur,

CHAPTER 3. ALGEBRAIC DECOMPOSITION 69

gen_rectangles{M, func, state) {
foreach trivial rectangle rect {
if the rectangle is prime {
(*func){rect, state);
}
}

rect = new rectangle;
gen_rectangles_recur(M, 0, rect, func, state);

Figure 3.3: Algorithm gen_rectangles.

At each step of gen_rectangles recur, assume a rectangle racti= (R, C) is identified and
M1 = M is the remaining submatrix. Assume row i of I contains the most nonzero entries;
likewise, assume column j of M contains the most nonzero entries. Let n, = |kji; = 1
and n, = |k|M;; = 1]. Then the largest rectangle contained in i adds at most n, columns
to the current rectangle and has at most n, rows. Therefore, a simple bound on the value
of the best rectangle for the remaining subproblem is (|C| + n¢)n, ~ (|IC| + ne + n,). If
this is less than or equal to the value of the best rectangle seen, then the search through
the rectangles of M can be avoided. For this reason, the function func which is passed to
gen_rectangles is allowed to return a status indicating whether the remaining submatrix
should be examined.

The branching of gen_rectangles_recur can also be modified to attempt to find a
large rectangle as soon as possible to allow the bounding to be more effective. Rather than
iterating for the columns of Af in arbitrary order, the columans are ordered by decreasing
count of the number of nonzere elements in each column.

A better bounding scheme uses the observation that for the matrix M1 to havea
rectangle of size ! rows by & columns, then at least ! of the rows must have more than k
elements. Let r;, 4= 1,...,n be the number of nonzero elements in each row in descending
order (i.e., vy > 3+« > r,), and let ¢j, 7 = 1,...,m be the number of nonzero elements in

each column also in descending order. Then, a tighter bound on the size of the value of the

CHAPTER 3. ALGEBRAIC DECOMPOSITION 70

best rectangle in A1 (and rectl = (R,C)) is
max {(|C] + ra)ei = (IC] + 1 +)i = 1,...,m)

That is, for each value of 7, the row cardinality of rank ¢; is the bound on tke number of
rows that can form a rectangle with ¢; columns,

Experimental results comparing these bounding schemes is presented in Sestion 2.7.2.
The simple bounding technique is effective because it is inexpensive and it reduces the num-
ber of rectangles visited. The tighter bound is expensive in practice to implement; sorting
the row and column cardinalities at each step is expensive, and the reduction in the number

of rectangles examined does not appear to justify the second bounding technique.

3.7.3 ping pong: Finding a Maximal-Value Rectangle

ping_pong is a heuristic algorithm to find a good-valued rectangle without gener-
ating all prime rectangles of the matrix. The inputs to the algorithm are the matrix B and
the value function v() which computes the value of a rectangle of B. v() is itself defined in
terms of the row and column weights (w” and w°) and the value matrix (V).

ping._pong is given in Figure 3.4. ping_pong row is used to find a rectangle
starting from the best row in the matrix. To make ping_pong less dependent on the
starting row, ping.pong.col is used to find a rectangle starting from the best columu in
the matrix. The best rectangle between these two passes is the final rectangle returned.

In the description of ping_pong, the row-oriented algorithms ping pong_row
and greedy.row are described. The analogous routines ping_pong_col and greedy_col
are the same algorithms applied to the transpose of the matrix B with the weight function
adjusted accordingly; hence, these algorithms are not described in detail.

ping.pong.row is given in Figure 3.5. The row ¢ which maximizes the value
of the single row rectangle is chosen as the starting seed. This becomes the seed row for
greedy.row which is used to find a high-value rectangle intersecting row i. This rectangle
becomes the current best rectangle (R, Cy). The iteration loop of ping_pong_row tries
to improve the value of this rectangle. This is done first using greedy_col, but restricting
the initial column seed to one of the columns in the current best rectangle. The rectangle
returned will either be the rectangle (Rj, Cp), or will be a rectangle of higher value. If the

rectangle vaive has improved, the new rectangle is recorded 2s the best rectangle, and the

CHAPTER 3. ALGEBRAIC DECOMPOSITION 7

ping pong(B,v) {
/* Find a good rectangle starting from the "best” row * 74

(R1,C1) = ping_pong_row(B,v);

/* Find a good rectangle starting from the "best” column *f
(B2,Cs) = ping pong_col(B, v);
if (v(Rl,CH) > 'U(Rz,Cg)) {
(B, C) = (R, C1);
} else {
(B, C) = (B2, Co);

return (R, C);

Figure 3.4: Algorithm ping_pong.

prorus .s repeated starting from a row chosen from the set of columns in the best rectangle,
This process is repeated until no better rectangle is found.

All that remains is the description for greedy_row, which is siown in Figure 3.6.
greedy row finds a good-valued rectangle which intersects row i. Row § becomes the seed
rectangle (R,, C;) and the best rectangle seen (Rj, C) is initialized to the seed rectangle.
During each pass of the loop, all rows not currently in the seed rectangle are examined, and
the row &k which, if added to the seed rectangle, maximizes the value of the seed rectangle
is chosen. This row is then added to the seed rectangle, and columns not in both the seed
coluran set and row k are deleted from the seed rectangle. This is repeated until the seed
rectangle consists of only a single column. A sequence of rectangles with increasing row
sets and decreasing column sets is generated in this manner; the best value rectangle seen
in this process is returned.

In ping._pong.row, if the initial row i leads to a rectangle (R}, Cp) which is trivial
(i.e., a rectangle with only a single row or column), then the next best initial row should

be chosen instead, continuing until all rows have been tried as an initial row. If this is done

and ping_pong returns a trivial rectangle, then there is the assurance that no nontrivial

CHAPTER 3. ALGEBRAIC DECOMPOSITION

ping.pong._row(B,v) {

/* Find the seed row of maximum value */
i = arg max; {»({i}, {j|By; = 1})};
(85, Cy) = greedy_row(B,v,3);

/* Try to improve the rectangle */

do {

/* start from best-valued column of (R, Cp) */
J = argmax; {v({i|Bi; = 1}, {5})|j € Co};
(R1,C1) = greedy.col(B,v, §);
if (v(Ry, Cy) > v(Ry, Cy)) {

(Rb: Cb) = (er Cl);
} else {

break;
}

/* start from the best-valued row of (R, Co) *f
i = argmax; {{i}, o({j|By; = 1))fi € Ry):
(B2, Cz) = greedy_row(B,v,i);
if (v(Re, C2) > v(Rp, Ch)) {
(R5, Cy) = (R3,Ca);
} else {
break;

&
} while (1);
return (Rp, Cp);

Figure 3.5: Algorithm ping_pong_row.

CHAPTER 3. ALGEBRAIC DECOMPOSITION 73

greedy row (B, w”,w°,V,i) {
(Rs; Ca) = ({t},{le,J L 1}3
(Rb; Cb) = (R4, Ca);
while (|C,|>1) {
k = argmax; {v(R, U {k},C, N {j|Bx; = 1})|k & R,};
(Ra: Ca) = (Ra u {k}, c,n {jIBkj = 1});
if v(R,Cs) > 'U(Rb’ Ce) {
(R, Cb) o (R,,C,);
} }

return (R, Cp);

Figure 3.6: Algorithm greedy_row.

rectangle exists in the matrix.
ping_pong can be implemented efficiently for a sparse-matrix becaunse ail of the

operations have a complexity related to the sparsity of the matrix. For example, finding the
next row to add to the seed rectangle requires examining only the rows which are connected
to a column in the seed row; because the matrix is stored with row and column pointers, this
requires examining only a subset of the rows in the matrix. Also, incremental computation
of the value and cost for each rectangle as rows and columns are added to the rectangle can

be used to reduce the complexity of finding the cost for a rectangle.

3.7.4 greedy_extract: Greedy Selection of Rectangles

greedy_extract is given in Figure 3.7. The inputs are the matrix B and the value
function v(). The value function is represented by the row and column weights w" and w*,
and the value matrix V. A rect»ngle is chosen in choose_rectangle by either generating all
prime rectangles and choosing the best-valued rectangle (best_rectangle), or by finding a
good-valued rectangle heuristically (ping_pong). The matrices are then modified to reflect

the extraction of the common factor as described in Seciion 3.5,

CHAPTER 3. ALGEBRAIC DECOMPOSITION 74 |

greedy_extract (B,v) { []\
do { |
(R,C) = choose_rectangie(B,v); :
if (o(R,C)>0) { : ' I
modify B to reflect extraction of (R,C); ‘

}

} while (»(R,C)>0); l“l

Figure 3.7: Algorithm greedy_extract. ‘

| ||
r
For common-cube extraction, an additional row, representing the new common |

cube factor, is added to the matrix B. A new column, representing the fanout of the cube

factor, is also added to the matrix B. The value for any entry covered by the rectangle is

‘ ’ : . \
set to zero. On subsequent iterations, no value is recorded for covering one of these already

covered points,

For kernel-intersection extraction, the kernels of the new expression are generated

and included in the co-kernel cube-matrix. The value for all eniries corresponding to a. cube i
w which is covered by the rectangle is set to zero, : f
1 The process of selecting a good rectangle and extracting the rectangle is itetated |
while the value of the rectangle returned by choose_rectangle is positive, Recall that the
i rectangle value for both cube extraction and kernel extraction is defined to be the number
| of literals saved in the network by extracting the rectangle; hence, the algorithm terminates

| ZI‘
when no factors further reduce the number of lterals in the network. I’

| 3.7.5 covering extract: Simultaneous Selection of Rectangles

An alternate approach to the greedy nature of greedy_extract is to find a minimum- .‘
; i |
‘ weight rectangle-cover and thea simultaneously extract all of the rectangles from the matrix.
. This algorithm is called covering_extract and is shown in Figure 3.8. i

’\ First, an optimal prime rectangle cover is found using the rect_prime_cover. |
The rectangles are then incrementally modified to obtain a cover with a smaller total cost, H

[The incremental modifications delete redundant rectangles (rect_irredundant) and reduce |

CHAPTER 3. ALGEBRAIC DECOMPOSITION 75

covering extract(B) {

P = rect_prime_cover(B);
P = rect_irredundant(P, B);
P = rect_roducs(P, B};
extract the rectangles of F;

Figure 3.8: Algorithm covering_extract.

rect_prime_cover(B) {
P =0;
while (there are uncovered points in B) {
(R, €) = choose_ractangle(B);
add (R, C) to the rectangle cover P;
set V(i,j) = O for all i in R and j in C;
}

return P;

Figure 3.9: Algorithm rect_prime_cover.

the total cost by trimming the rectangles without leaving 1’s in the matrix uncovered
(rect_reduce). With the assumption that rectangle weight is positive and increases with
increasing size of the rectangle, both of these operations reduce the total cost of the cover.
rect_prime_cover chooses prime rectangles using either best _rectangle or
ping_pong. After a rectangle is added to the cover, the points in the reciangle are marked
as covered. Subsequent rectangles take into account that no benefit is realized from covering
these same points again. This is iterated until every 1 in B is covered by some rectangle.
rect_irredundant is a modification of the rect_reduce algorithm and hence

rect.reduce is presented first. Both of these algorithms attempt to improve the cost

CHAPTER 3. ALGEBRAIC DECOMPOSITION 76

of the rectangles selected for the cover.

rect_reduce first counts the number of times each point in the matrix B is covered.
Then the essential points for each rectangle are determined. For a given rectangle, if a point
is covered only by that rectangle (i.e., the count on the number of times the point is covered
is 1), then the row and column for that point are essential for the rectangle. After checking
all points in the rectangle, the rectangle is replaced with its essential parts, and the counts
are modified to reflect replacement by the new rectangle,

If a rectangle is completely covered by other rectangles, the essential parts of
the rectangle will be empty, and rect_reduce will delete the rectangle. However, the order
in which the rectangles are processed in rect.reduce is significant. The reduction of one
rectangle maj' block the réduction or removal of a rectangle which is processed later. Hence
a simple heuristic is used to order the rectangles before processing by sorting them in
decreasing order by size,

Oxne problem with rect.reduce is that if the rectangles are processed in the wrong
order, a redundant rectangle may not be detected. ’I‘:herefore, a simple modification of
rect_reduce, called rect_irredundent, is used first to detect and temove all redundant rectan-
gles. rect_irredundant determines the essential row and column sets for each rectangle, but
only modifies a rectangle if its essential sets are empty —i.e., the rectangle is deleted. If the
rectangle is not redundant, it is skipped and Processing continues with the next rectangle.
Although rect.irredundant is itself order-dependent, it at least guarantees that some of
the redundant rectangles will be removed. More sophisticated heuristics for irredundant,
such as those used in ESPRESSO, can also be applied to the rectangle covering problem.

The procedure rect_cover is analogous to a single pass of the ezpand, irredundant,
reduce sequence of Espresso [19]. This operation can be iterated, as done in Espresso, by
defining an ezpand procedure to expand each rectangle from axn initial covering into a prime
rectangle. This is then made irredundant and reduced with the reduced rectangles becoming
the input to the first part for reexpansion, Iteration would continue until no decrease in
weight is obtained. As in Espresso, this style of heuristic algorithm depends on finding good
heuristics for choosing the direction for expansion, and the sequence in which the rectangles

are reduced.

One advantage of using covering extraction rather than greedy extraction is that

the collection of rectangles in the cover are providing information on the best set of simul-

CHAPTER 3. ALGEBRAIC DECOMPOSITION 77

rect_reduce(P) {

/¥ Count how many times sach point in B is covered */
K =0;
foreach rectangle (R, €} in P {
foreach row in R {
foreach column in € {
H[row] [column] = K[row][column] + 1;
}

}

/* Check each rectangle for monessential parts #/
foreach rectangle (R, C) in P {
assential R = 0
essential _C = 0;
foreach row in R {
foraach column in ¢ {
if (Mlrow][column] == 1) {
add row to essential_R;
add column to essential_C;

}

/% modify counts #/
foreach row in (R - essential R) {
foreach column in (C - essential _C} {
H[row] [column] = M[rowl[column] - 1;
}

}

Replace (R,C) with (essential R, essential _C);

Figure 3.10: Algorithm rect_reduce.

CHAPTER 3. ALGEBRAIC DECOMPOSITION 78

taneous factors to remove from the matrix. Note that each pass of the covering extraction
algorithm adds only a controlled number of levels of logic to the network. By solving the
minimum weight rectan gle-covering problem, it is possible to find a low cost solution which

minimizes the increase in circuit depth,

3.8 Selective Collapse

The initial Boolean network has an initial set of common factors already identified.
However, there is no guarantee that all of these factors are high-quality. Therefore selective-
collapsing is performed on the initial Boolean network to provide a better starting point
for decomposition. The goal of selective collapse is to remove those factors which provide
little valueuto the current network, while retaining those factors which appear to be of high
value,

In the limit, selective collapsing can reduce a network to-two-level form. However,
for many circuits, this is not a reasonable synthesis technique. Many functions cannot
be represented efficiently in two-level form. For example, even a simple function such as
comparison of two 32-bit values for equality (TT2p @ @ b;) requires 232 product terms in
sum-of-products form. Arithmetic structures, such as »-bit adders, also have au exponential
number of product terms (as a function of n) in their minimum two-level form. As ancther
example, consider what happens when a multiplexor is laced in front of a function Ffand
the composite function is collapsed to two-levels. Assume f has p product terms in its
minimum two-level form. If n values are multiplexed into a single value, 27 » product terms
are needed for the minimum representation of the multiplexed function. This is a simple
example where the initial network contains some factors which are valuable for representing
the function. Therefore, blindly collapsing a network to two-level form often does not make
sense,

Selective-collapsing is implemented by defining a value function for each node in
the network. A node of low value is coliapsed into all of its fanout. Collapsing one mode
intc another is merely the process of representing the second node without using the first

node; ie., given f(zy,...,7,) and B Ty vos Wi Uiy o i -y¥m), determine G such that

G(.’El,., 3 %n Yy.. - :ym) = g(f(ml,-- "san Yigeeey ym)-

G is uniquely defined, but its representation as a Boolean function is not; hence, a two-Ievel

