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Abstract—MIS is both an interactive and a batch-oriented multilevel
logic synthesis and minimization system. MIS starts from the combi-
national logic extracted, typically, from a high-level description of a
macrocell. It produces a multilevel set of optimized logic equations pre-
serving the input-output behavior. The system includes both fast and
slower (but more optimal) versions of algorithms for minimizing the
area, and global timing optimization algorithms to meet system-level
timing constraints. This paper provides an overview of the system and
a description of the algorithms used. Included are some examples il-
lustrating an input language used for specifying logic and don’t-cares.
Parts on an industrial chip have been re-synthesized using MIS with
favorable results as compared to equivalent manual designs.

Keywords—Multiple-level logic, logic minimization, kernels, extrac-
tion, resubstitution, global phase assignment, factorization, decom-
position, simplification, don’t cares.

I. INTRODUCTION

VER THE past few years, placement and routing
techniques have been developed which perform rea-
sonably well for most block-oriented design styles. How-
ever, the synthesis of the circuit itself—deciding how to
partition the logic, in what form to implement specific
pieces of the logic, and what layout style to use for im-
plementation—is still largely a manual process. Often the
control logic portion of the chip is the most time consum-
ing to design, is generally on the critical path for timing,
and is implemented in an inefficient way. In addition,
control and dataflow logic are generally separated unnat-
urally, leading to inefliciencies in layout and timing. Au-
tomated synthesis of the logic, optimized for speed and
area, provides one of the next major challenges for CAD.
Research done over the past 30 years has led to efficient
methods for implementing combinational logic in optimal
two-level form using programmable logic arrays (PLA’s).
However, many logic blocks are inappropriate for this
kind of implementation. For example, there exist func-
tions whose minimum two-level representation has 2" —
1 product terms, where n is the number of primary inputs.
In addition, even if a two-level representation contains a
reasonable number of terms, there are many cases in
which a multilevel representation can be implemented in
less area and generally as a much faster circuit. Two-level
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logic representations can be viewed as special cases of
more general multilevel representations. Hence, a general
framework for logic design should offer multilevel syn-
thesis tools which can select between two-level or multi-
level implementations depending on the area and/or speed
that can be obtained. However, to be able to explore the
design tradeoffs, such a system should also offer a variety
of both electrical design styles (e.g., domino logic, static
CMOS) and layout design styles (e.g., Weinberger ar-
rays, gate matrix, standard cells, and gate arrays).

Optimal multilevel logic synthesis is a known difficult
problem which also has been studied since the 1950’s.
However, much work still remains to be done in order to
achieve the same level of advancement as for two-level
logic synthesis. In recent years, an increasing level of re-
search has been apparent in multilevel logic synthesis.
One of the first of the modern developments is the Logic
Synthesis System (LSS) [9], [10} at IBM, which has as
target technology a variety of gate arrays and standard
cells. The Yorktown Silicon Compiler [6], which auto-
matically synthesizes and lays out CMOS dynamic logic,
is based completely on multilevel logic and has domino
CMOS logic as its primary target technology. The
SOCRATES system [11] is a multilevel logic synthesis
system which uses gate arrays and standard cells, and is
one of the earliest to emphasize optimized timing perfor-
mance. The recently developed MIS system [7], which is
the subject of this paper, is targeted at both area and tim-
ing optimization and uses static CMOS complex gates or
macrocells, but, similar to the logic synthesis in the York-
town Silicon Compiler, its algorithms can easily support
a variety of target technologies.

A widely accepted optimization criterion for multilevel
logic synthesis is to minimize the area occupied by the
logic equations (which is measured as a function of the
number of gates, transistors, and nets in the final set of
equations) while simultaneously satisfying the timing
constraints derived from a system-level analysis of the
chip. Considerations such as testability should also be in-
cluded; however, in most current systems, testability is
only considered indirectly as a side effect of a less redun-
dant implementation.

For multilevel design, two basic methodologies have
evolved: 1) ‘“global’’ optimization, where the logic func-
tions are ‘‘factored’’ into an optimal multilevel form with
little consideration of the form of the original description
(e.g., the Yorktown Silicon Compiler, part of Angel [17],
SOCRATES, and FDS [13]); 2) ‘“‘peephole’’ optimiza-
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tion, where local transformations are applied to the user-
specified (or globally-optimized) logic function (e.g., a
part of Angel, LSS, MAMBO [16], and SOCRATES).

Factoring algorithms have been proposed in the past
(e.g., [1], [18]), but these techniques have required an
exhaustive search which is prohibitively expensive for the
complexity of the designs of interest today. Other pro-
posed algorithms have lacked understanding of the tech-
nology constraints associated with particular implemen-
tations. New algorithms have appeared which are effective
in partitioning complex logic functions [3] and can take
into consideration the technology constraints of a partic-
ular implementation. Rule-based systems, as evidenced
by LSS and SOCRATES, also have been effective in prac-
tice in the design of large systems.

The system presented in this paper, the Multilevel Logic
Interactive Synthesis System (MIS), follows the global
optimization paradigm and includes a variety of algo-
rithms for the decomposition, factorization, minimiza-
tion, and timing optimization of multilevel logic func-
tions. Some of the algorithms are based on the early results
of [3] and [4]; however, most algorithms are either new
or represent new formulations of the basic ideas and offer
better insight and clarify relations among the concepts. In
this paper, we present all the algorithms and include ap-
propriate background material.

MIS is an integral part of the current work at Berkeley
in the area of automatic synthesis of digital integrated cir-
cuits, but it is also a stand-alone system which can read
and write the semi-standard Logic Intermediate Format
(LIF). Thus, MIS can be easily incorporated as part of
other automatic digital design systems. A paradigm for
this is the system at Berkeley which starts with a high-
level description of the combinational logic written in the
language BDS [12]. The program BDSYN extracts a set
of logic equations, and stores the equations in the Oct
database [15] as a logic view of the macrocell. MIS starts
with the design in the Oct database and optimizes the logic
equations to produce an optimal logic network which pre-
serves the input-output behavior of the macrocell. This
network is then stored back into the Oct database. Module
generators then synthesize a symbolic layout for a macro-
cell directly from an optimized logic network. Floor-plan-
ning, placement and routing, and compaction tools are
used to complete the chip design. Timing constraints, de-
rived from a system-level timing analysis, in terms of in-
put arrival times and output required times, can be passed
to and from MIS. These can be used to guide the module
generator tools in the placement and routing of the gates
within a macrocell, and also by the floor-planning, place-
ment and routing tools to guide the placement and routing
of the macro-cells.

MIS is currently being used for complex-gate static
CMOS designs. Depending on the module generator used
to generate the final layout, either a fixed-library of prede-
signed gates, or a flexible library of procedurally designed
gates can be used. Most important, however, is that the
algorithms used are general and, hence, largely indepen-
dent of the implementation technology.
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MIS is organized as a set of operators which are applied
to the underlying Boolean network data structure. The se-
quence in which these are applied can be controlled in-
teractively or automatically by invoking a *‘script’’ (a se-
quence of MIS commands). Currently, several scripts
have been developed since the quality of results produced
by a single script depends on the type of logic being pro-
cessed. However, we are experimenting with a universal
self-adapting script which should make the results more
independent of the script.

MIS is also a continually evolving system; as better al-
gorithms are developed, they are added easily to MIS and
invoked at appropriate points of the scripts. The interac-
tive design of MIS is useful in two respects: first as an aid
to the developer and second as a tool for the sophisticated
user to help determine if a given script is producing sat-
isfactory results. This second mode of operation helps to
satisfy originally skeptical users and eases the acceptance
of MIS by designers.

An important part of logic minimization is specification
and extraction of don’t-cares. Since, for some types of
logic, the quality of the results depends on the initial mul-
tilevel network implied by the input description, in Sec-
tion I, we start with the input language translator BDSYN
used in the Berkeley system as an example of logic and
don’t-care specification and extraction.

We detail all the major algorithms of MIS. Necessary
background material for this is given in Section III. We
continue with the global optimization strategy for area
minimization, described in Section 1V, and the local op-
timization steps are refining the implementation, in Sec-
tion V.

MIS can be used first to minimize area without concern
for delay. Initial delays can then be estimated and used to
calculate the critical paths at the system level. With this
information, MIS can be used to restructure the logic
equations to tradeoff area for speed. This restructuring
consists of collapsing logic functions to fewer levels and
duplicating logic functions. More refined timing optimi-
zation can be done by sizing transistors, and by passing
constraints to the physical design tools to influence the
placement and routing of the critical paths. This part of
the system is presented in Section VI.

In Section VII, some experimental results are pre-
sented, and in Section VIII, some conclusions and future
directions in which MIS is evolving are discussed.

II. DESIGN SPECIFICATION AND Locgic EXTRACTION

In order to describe how MIS may be used as part of a
larger digital systems synthesis system, we describe its
use in the Berkeley system. The current version of the
Berkeley Synthesis System takes as input a collection of
combinational logic blocks and latches, which completely
describe the chip being synthesized. The decomposition
from a behavioral level into this functional/structure level
is presently a manual task performed by the designer. Of
ultimate interest are tools to assist and/or automate part
of all of the higher-level design process.

In order to facilitate the initial specification of the com-
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binational logic blocks, a hardware description translator
called BDSYN is used. BDSYN reads BDS language de-
scriptions [12]. (BDS is the behavioral language used by
the Digital Equipment Corporation in their DECSIM sim-
ulation system. DECSIM supports, among other things,
mixed-mode simulation including behavioral descriptions
down to timing-level descriptions.) BDS provides a high-
level description with a large variety of operators and con-
trol structures. It is similar in structure to other hardware
description languages such as the ISPS variant known as
N.2 [14].

BDS is best thought of as a programming language with
the built-in data type of a bit-vector and the basic opera-
tions on bit-vectors (i.e., bit selection, logical operations,
shift and rotate operations, and arithmetic operations). A
list of the operators available in BDS is given in Table I,
and a list of the statements in BDS is given in Table II.

The translator, BDSYN, reads a BDS description, and
generates a logic network equivalent to the BDS program.
This program has a well-defined set of inputs and outputs.
The semantics of BDSYN are that each output or inter-
mediate variable is computed as a combinational function
of the inputs, intermediate variables, and outputs. It is
important to note that the final logic network produced by
BDSYN reflects directly the multilevel nature of the input
description, thus removing any limitation on the type of
logic described, and providing the user with the ability to
specify the initial Boolean network for synthesis.

An arbitrary BDS description is allowed (including
functions, loops, global variables, and multiple-assign-
ment to variables). This includes premature exits from
loops using the LEAVE statement, and premature exits from
functions using the RETURN statement. Complex opera-
tions such as binary addition, binary comparison, vari-
able-bit shift, and variable-bit extract are handled by in-
serting a function call to a library routine which performs
the complex operation. These library routines are also
written in BDS (consisting of about 200 lines of code) and
in-line expanded during the BDSYN transiation process.
Simple optimization techniques such as constant folding
and constant propagation are performed during the trans-
lation. Iteration loops are required to be static, so that the
loop range is known at translation time.

An important feature of BDSYN is that it allows the
explicit specification by the designer of don’t-care con-
ditions. Specifying this information to the loic synthesis
system can dramatically improve the optimization of the
logic. Conceptually, the don’t-care set for a logic network
is a set of input patterns (specified for each output of the
logic network) providing the conditions for which an out-
put may assume either a 0 or 1 value. This don’t-care set,
like any other logic function, can be specified in canoni-
cal, two-level, sum-of-products form. However, for the
same reasons that it is more convenient to use a multiple-
level form for the logic network itself, it is also advan-
tageous to use a multiple-level form to specify the don’t-
care conditions for the network.

In order to simplify the specification of the don’t-care
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TABLE
BDSYN OPERATORS

NOT Boolean not

AND Boolean and

OR Boolean inclusive or
NAND  Boolean not-and

NOR Boolean not-or

EQV Boolean not exclusive-or
XOR Boolean exclusive-or

+ Arithmetic plus

- Arithmetic minus

* Arithmetic multiply

GTR Arithmetic greater-than

GEQ Arithmetic greater-than or equal
LSS Arithmetic less-than

LEQ Arithmetic less-than or equal
EQL Arithmetic equal

NEQ Arithmetic not-equal

SLO Shift left inserting 0 from the right
SL1 Shift left inserting 1 from the right
SRO Shift right inserting 0 from the left
SRi Shift right inserting 1 from the left

SLR Rotate left
SRR Rotate right

SXT Sign extend

OXT One-extend

ZXT Zero-extend

& Concatenation of bit-strings
<hilo>  Select substring of a bit-string

TABLE 11
BDSYN STATEMENTS

MODEL Delimit a model
ROUTINE Defines a routine
STATE Defines a variable
CONSTANT Define a constants

IF ... THEN ... ELSE
SELECT .. ENDSELECT

Conditional execution
Mult-way conditional execution
SELECTALL .. ENDSELECTALL  Multi-way conditional execution
RETURN Return from a routine

FOR Defines a for-loop

LEAVE Pre-mature exit from a for-loop

conditions, the designer is able to specify the logic net-
work and the don’t-care set for the logic network in the
same description file. This is achieved as follows. An ex-
tra input called DONT__CARE is added to the logic net-
work. During simulation DONT__CARE is assigned the
value ““X’’ (or undefined). This will help detect errors in
the model during simulation. During translation, if a vari-
able is assigned the value DONT__CARE, we assign the
semantics that, under the conditions leading to the assign-
ment, the assigned variable may assume either a O or 1
value, but it is undefined which.

Currently, MIS makes use of the don’t-care set by col-
lapsing the network to two-levels and then using a two-
level logic minimizer. Hence, MIS has the limitation, at
present, that the don’t-cares can only be used for those
networks which can be represented with reasonable effi-
ciency in two-levels of logic. We are currently exploring
modifications to the global and local optimization proce-
dures of MIS to remove this limitation.

To extract the two-level form of the don’t-care set from
the description, we first translate the network into multi-
ple-level form (including the extra input DONT _CARE).
We then compute the conditions for which input condi-
tions an output variable changes value when DONT-
_ CARE changes value. This provides the DONT CARE
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set for that output variable. This is computed as follows.
If f represents a function in the logic network, and d the
input variable DONT__CARE, then the don’t-care set for
fis

don’t-care set = f; & f;

where @ is the exclusive-or operation, and f; ( f3) is the
Shannon cofactor [5] of the function f with respect to
d(d).

To illustrate how logic may be specified for MIS using
BDSYN, we discuss two examples. Fig. 1 shows the BDS
description of the register file decoder from the SPUR mi-
croprocessor [20]. The register file decoder is compli-
cated by the use of the overlapping window scheme [19].
cwp is the current window pointer for the register file, and
reg is the index of the register within the window. A one-
hot signal addr selects one of the 138 registers in the reg-
ister file. The operator ‘&’ is bit concatenation, the op-
erator ZXT performs an extension of an operand with zero
fill, and the operator SLO performs a shift-left with zero
fill. Note the use of complex operations such as addition,
comparison, and variable shift-left (all of which are sup-
ported in BDSYN). Also note that the variable address is
multiply assigned.

The second example is a program which implements a
combinational logic circuit for the following specifica-
tion.

Problem (Count Zeros): The input is an N-bit binary
string expected to consist of a string of 1’s, a string of
0’s, and a string of 1’s. Any of these strings may be zero
length. For example, with N = 8, 11001111, 10000001,
and 11110000 are all valid strings, but 11001100 is not.
The problem is to design a circuit which, given the N bit
string, returns the count of number of consecutive zeros
in the string, or returns an error condition if the string is
invalid, in which case the output is undefined.

A BDS program for this example is shown in Fig. 2.
The constants N and LOGN parameterize the model to the
size of the input string. The routine ff is used to find the
index of the first bit in a string which matches a given
value (starting from the least significant bit). SR1 is a shift
operator which shifts the operand right inserting 1’s from
the left. The count of the number of zeros is assigned the
value DONT _CARE if an invalid string is given as input.

As seen from the examples, the BDSYN translator pro-
vides a convenient means for describing combinational
logic, including the don’t-care set for a piece of logic.

III. DEFINITIONS

In this section, we provide some basic definitions and
concepts which are helpful in describing the algorithms
used in MIS as well as in understanding how to use MIS
interactively.

A. Sum-of-Products Form

A variable is a symbol representing a single coordinate
of the Boolean space (e.g., a).
A literal is a variable or its negation (e.g., a or a).
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MODEL decoder
addr<137:0> ! output: 1-hot word select
cwp<2:0>, ! input: current window pointer
reg<4:0>; ! input: current register number
BEHAVIOR;

CONSTANT NUMREGS = 138, NUMGLOBALS = 10;

ROUTINE main;
STATE address<7:0>;

! Check for reference to global register
IF reg LSS NUMGLOBALS THEN

address = reg
ELSE BEGIN

! compute address, check overflow

address = (cwp & 0000#2) + reg;

IF address GTR (NUMREGS - 1) THEN

address = address - (NUMREGS - NUMGLOBALS),

END;

! Create the one-hot decode based on the address
addr = (ZXT {WIDTH=138} 1) SLO address;
ENDROUTINE rmain;

ENDBEHAVIOR;
ENDMODEL decoder,

Fig. 1. BDSYN program for the SPUR register file decoder.

MACRO N = 8 SENDMACRO;
MACRO LOGN = 3 SENDMACRO;

MODEL count_zeros
error <>,
count <LOGN-1:0>

! output: indicate error in string
! output: count of number of zeros

in<N-1:0>; ! input: bit string

BEHAVIOR;

! find first bit matching "val’ (return index of the bit)
ROUTINE ff <LOGN :0>(x <N ~1:0>, val<0>);

STATE i<

FOR i FROM 0 TO N DO

IF x<i> EQL val THEN
RETURN i;

RETURN N;

ENDROUTINE ff;

ROUTINE main ;

STATE x<N-1:0>;

x =in SR1 ff(x, O}

count = ff(x, 1)

x =x SRI count;

error = ff (x, 0) NEQ N;

IF error THEN

count = DONT_CARE;

ENDROUTINE main;

! strip off leading 1's

! count number of 0’s

! strip off the 0’s

1 error if any 0's are left

ENDBEHAVIOR;
ENDMODEL count_zeros

Fig. 2. BDSYN program for the count zeros problem.

A cube is a set C of literals such that x € C implies X
¢ C(e.g.,{a,b,¢}isacube, and {a,a} is not a cube).
A cube represents the conjunction of its literals. The triv-
ial cubes, written 0 and 1, represent the Boolean functions
0 and 1, respectively.

An expression is a set f of cubes. For example, { {a},
{b,c}} is an expression consisting of the two cubes {a }
and {b, T}. An expression represents the disjunction of
its cubes.

We use the conventional algebraic notation for cubes
and expressions. For example, the cube {a, b, ¢} can be
written as abc, and the expression {{a}, {b, ¢} } can be
written as @ + bc.

An expression is nonredundant if no cube in the expres-
sion properly contains another. For example, a + ab is
redundant because {a} C {a, b}.

A Boolean expression is a nonredundent expression.
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The support of an expression fis sup( f) = {a| =
cube C € fsuch that x € Corx € C}. Forexample, sup (ab
+ac) = {a, b, c}.

Two expressions fand g have disjoint support if sup ( f)
Nsup(g) = O.

An expression provides a natural representation of the
sum-of-products form of a function.

We caution that care should be taken while interpreting
the set operators U and N when applied to cubes written
in algebraic notation. For example, abc U d equals abcd
and not abc + d (because {a, b, c} U {d} = {a, b, c,
d} = abcd and abc + d = {{a, b, ¢}, {d}}). Thus,
U when applied to two cubes corresponds to the intersec-
tion of the corresponding Boolean spaces (and not the
union as might be expected).

B. Factored Forms

The usual representation of a logic function is the sum-
of-products form. We define another (more useful for
multilevel logic) representation, the factored form. The
factored form is defined recursively: 1) a literal is a fac-
tored form; 2) a sum of factored forms is a factored form;
3) a product of factored forms is a factored form.

In other words, a factored form is a sum of products of
sums of products, ..., of arbitrary depth. For example,
the expression

abeg + abfg + abeg + aceg + acfg + aceg
+ deg + dfg + deg + bh + bi + ch + ci
can be written in factored form as
(a(b +c) +d)(eg + g(f+2) + (b+c)h+i)

The factored form, in general, is not unique. For exam-
ple, the expression abc + abd + cd is itself a factored
form, but can also be written as ab(c + d) + cd or abc
+ (ab + ¢)d, both factored forms. Typically we are in-
terested in the minimum factored form, which is the fac-
tored form containing the least number of literals.

C. Algebraic and Boolean Division

The product of two expressions fand g, fg, is a set {¢;
U dj|c¢; € fand d; € g} made nonredundant using the
standard Boolean operation of containment (e.g., ab + a
= a).

When f and g have disjoint support, fg is an algebraic
product (no Boolean operations are needed to obtain the
product); otherwise fg is a Boolean product. For example,
(a + b)(c +d) =ac + ad + bc + bd is an algebraic
product, and both (a + b)(a + ¢) = aa + ab + ac +
bc =a + bcand (a + b)(b + ¢) = ab + ac + bb +
bc = ab + bc are Boolean products.

The quotient of an expression f by another expression
g, f/ g, is the largest set g of cubes such that f = gg + r
where g is the quotient and r is the remainder.

If gg is restricted to an algebraic product, f/g is the
(unique) algebraic quotient, otherwise f/g is a (non-
unique) Boolean quotient.
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Similarly, if f/g = g # &, and g can be obtained using
algebraic division, then g is an algebraic divisor of f (so
is g), otherwise, g is a Boolean divisor of f (so is gq).

For example, let

f=ad + bcd + e
a + bc

8
h=a+b
using algebraic division:
f/g = d (g is an algebraic divisor of f)

using Boolean division:
f/h = (a + ¢)d (h is an Boolean divisor of f)

D. Kernels and Co-kernels

The notion of a kernel of a logic expression was intro-
duced in [3] to provide a means for finding subexpressions
common to two or more expressions. Kernels are our
bridge between expressions and algebraic factored forms.
In this section, we use only algebraic operations (i.e., al-
gebraic product, algebraic division, etc.), but omit the
word algebraic for brevity.

We say an expression is cube-free if no cube divides
the expression evenly (e.g., ab + ¢ is cube-free; ab +
ac and abc are not cube-free). Notice that a cube-free
expression must have more than one cube.

The primary divisors of an expression f are the set of
expressions

D(f) = {f/C|Cisacube}.
The kernels of an expression f are the set of expressions
K(f) = {glg e D(f)and g is cube-free}.

In other words, the kernels of an expression fare the cube-
free primary divisors of f. The cube C used to obtain the
kernel k = f/C is called the co-kernel of k, and we use
C( f) to denote the set of co-kernels of f. For example,
define a function x as

x = adf + aef + bdf + bef + cdf + cef + g
=(a+b+c)d+e)ft+g

(For brevity, we often use the factored form to represent
an expression.) @ + b + c is a kernel corresponding to
co-kernels df and ef because it is a cube-free primary di-
visor obtained by x /df or x / ef. Similarly, d + e is a ker-
nel corresponding to co-kemels af, bf, or ¢f. (d + e) fis
a primary divisor corresponding to x/a, x/b, or x/c.
However, (d + ¢) fis not a kernel because it is not cube-
free. Finally, x itself is a kernel because it it cube-free
and a primary divisor corresponding to a trivial cube 1.
Clearly, K(x) € D(x).

The following theorem shows an important and useful
properties of kernels.

Theorem 1 [3]: fand g have a common multiple-cube
divisor d if and only if = =k, e K( f), k, € K(g) such
that d = k, N k,.
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This theorem, proven in [3], states that two functions f
and g have a multiple-cube common divisor if and only if
the intersection of a kernel from fand a kernel from g has
more than one cube. Thus, it provides a method for de-
tecting if two or more expressions have any common al-
gebraic divisors other than single cubes. This can be done
by computing the set of kernels for each logic expression,
and forming nontrivial (more than one term) intersections
among kernels from different functions. We do not need
to compute the set of all algebraic divisors for each
expression to determine if there are common multiple-
cube divisors. This leads to great run time efficiency since
the set of kernels is much smaller than the set of all al-
gebraic divisors. In addition, if the intersection set of all
kernels consists of single cubes or is empty, then we need
only look for common divisors consisting of single cubes.

For certain operations described in the following sec-
tions, it is nearly as effective and frequently more efficient
to compute a certain subset of K( f) rather than the full
set. This leads to the following recursive definition for the
level of a kernel. Let

K(f) = {ke K(f)|K(k) = {k}}
K"(f) = {k e K(f)| =k € K(k)
such that k; € K"~'(f)}
then
if k € K°(f), then k is a level-0 kernel of f
ifke K"(f)and k ¢ K"~ '(f), then k
is a level n kernel of f.

According to the definition, a kernel is said to be of
level-0 if it has no kemels except itself. Similarly, a ker-
nel is of level n if it has at least one level n — 1 kernel
but no kernels (except itself) of level n or greater. This
gives us a natural partition of the kernels:

K(f) c K'(f) Cc KX(f)C -+ CK'(f) CK(f)
For example,
x=(a(b+c)+d)(eg+g(f+ e))
+(b+c)h+1i)

has, among others, the kemels b + cand a(b + ¢) + d
which are level-0 and level-1, respectively, while x itself
is a kernel of level 2 since it has level 1 kernels but no
level 2 kernels other than itself. Note that if

x=j(a(b+¢c)+d)(eg + g(f+2)
+ (b +c)(h +i)

then x is a kernel of level 3 since it contains the level 2
kernel

(a(b +c) +d)(eg +g(f+ 2)).

There are algorithms to find K‘( f) without generating
the full set K( f).
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E. Boolean Network

A Boolean network is a technology-independent struc-
ture for representing a multilevel logic function. It is a
directed acyclic graph (DAG) where each node i is asso-
ciated with 1) a variable y; and 2) a representation f; of a
logic function (sum-of-products form and/or factored
form).

In the graph, an arc connects node i to node j if y; €
sup ( f). The primary inputs x;, X, ..., x, and primary
outputs z,, Z;, - . . , 2, of a Boolean network corresponds
to special nodes in the graph, the source nodes and sink
nodes of the DAG. There is no logic function associated
with the source or sink nodes.

The fan-in of a node i is the set of all nodes pointing to
i. The fan-out of a node i is the set of all nodes which
node i points to. The transitive fan-in of a node i is de-
fined recursively as the union of the fan-in nodes of i with
the transitive fan-in of its fan-in nodes.

There is one-to-one correspondence between a function
in the multilevel logic network and a node in the DAG.
Throughout this paper, functions and nodes are used in-
terchangeably.

F. Costs and Values

Each node in the Boolean network is a completely spec-
ified Boolean function represented by a sum-of-products
form and a factored form. During the synthesis process,
we need for guidance a measure of the complexity of the
Boolean network. We define the area complexity of a
Boolean network as the sum over all of the nodes of the
area complexity of each node; the area complexity of a
node is the minimum number of literals required to rep-
resent the function in a factored form. For example, the
function

fi = abeg + abfg + abeg + aceg + acfg + aceg
+ deg + dfg + deg

with 33 literals can be written in factored form using nine
literals:

fi = (a(b +c)+d)(eg +g(f+ 2)).

so its area complexity is 9 or less.

There are several algorithms (described in Section
V-A) which can be used to factor a single logic equation,
each with a different performance and quality tradeoff.
Because the cost function must be estimated frequently
during the synthesis, we desire a fast factoring algorithm
for computing the current cost of the network.

To justify the use of the total number of literals in the
factored form as an area complexity measure, consider the
implementation of f; as a CMOS complex gate. It can be
implemented as shown in Fig. 3 using nine pairs of n-type
and p-type MOS transistors (assuming all signals and their
complements are available). Thus, the number of literals
in the factored form corresponds to the number of tran-
sistors needed to implement the function as a complex
gate.
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In many cases, it is necessary to further decompose the
function into smaller gates. In general, this increases the
total number of transistors needed to build f;. However,
if f; is decomposed in a manner corresponding to its fac-
tored form, then the transistor count increases, but only
slightly. For example, the implementation of f; as

£ = hi
h=a(b+c)+d

i=eg +j

i=g(f+e

has a total literal count of 12 (instead of 9). The total
literal count has increased by the decomposition, but it
remains a good predictor of the area complexity of the
function.

Now assume that f; is identified as a common factor to
several other functions, and is created to reduce the total
complexity of the network. Regardless of how f; is im-
plemented (either as a single gate, or requiring further de-
composition), it has reduced the number of transistors in
the network roughly by an amount corresponding to the
total number of transistors that have saved in the functions
which it feeds minus the number of transistors in f;. This
leads to the following definition for the area-value of a
node.

To estimate the area value of a factor y, let FAN-
OUT( y) be the set of functions which can be written using
¥ as an algebraic factor, let N( f, y) be the number of
times either y or y appears in the factored form for f, and
let L( y) be the number of literals in the factored form for
y. The area value of y is defined as

area__value(y) = <<fem§my) N(f, y)> — 1>
“(L(y) - 1) - 1

The area value estimates how many literals are saved by
introducing the function y into the network, and rewriting
each function which can be written in terms of y. To jus-
tify this estimate, consider that we can replace each oc-
currence of y by making a copy of the factored form for
y and placing it directly into the factored form for f. Sim-
ilarly, y can be replaced by the dual of the factored form
for y. Since the dual of a factored form has the same num-
ber of literals as the factored form, we treat the occur-
rences of y and ¥ equally. The —1’s in the formula ac-
count for the number of literals needed to implement y,
the literals needed to use y and ¥ in the other functions.

IV. GLoBAL AREA OPTIMIZATION

The goal of global area optimization is to minimize the
complexity of a set of logic equations thereby minimizing
the area needed to implement them. Global techniques al-
low significant restructuring of the network based on con-
sideration of all of the nodes in the network (as opposed
to the local techniques discussed in Section V which con-
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sider only a small subset of the nodes at a time). An im-
portant consideration for global area optimization algo-
rithms is that they be independent of the particular design
style or technology.

The logic equations are represented by a Boolean net-
work. Each node in the network has an associated com-
pletely-specified Boolean function represented in both a
sum-of-products form and a factored form. The sum-of-
products form is useful for manipulating the logic func-
tion at the node, while the factored form provides a better
area estimate for the node. As mentioned earlier, the count
of the number of literals in the factored form of each node
is used to estimate the total complexity of the network.

In this section, methods for generating common factors
from a set of logic equations are presented (extraction).
In addition, methods for checking whether an existing
function is a factor of another function in the network are
also presented (resubstitution). Finally, algorithms for re-
ducing the total number of inverters without increasing
the size of other functions is presented (global phase as-
signment).

A. Extraction

The most important (and most difficult) step in global
area minimization is to identify divisors common to two
or more functions which can be used to reduce the total
number of literals in the network. Because the size of the
set of all algebraic and Boolean divisors is very large, and
because an algorithm for efficiently generating only useful
Boolean divisors does not exist, we restrict our attention
to algebraic divisors in the extraction step.

Our approach is to first identify and extract useful mul-
tiple-cube divisors from the functions in the network. This
terminates when there are no more multiple-cube divisors
of any pair of functions. Then, single-cube divisors (also
called common subcubes) are extracted until no further
single-cube divisors exist.

The basic algorithm for detecting multiple-cube divi-
sors using kernels was given by Brayton and McMullen
[3]. We present modifications to the basic algorithm for
generating subsets of kernels (in particular, the level-0
kernels and any single level-0 kernel). An interesting ob-
servation presented here is that the problems of detecting
intersections in a set of kernels, and detecting common
subcubes in a set of functions, are computationally equiv-
alent to finding the kernels of an expression.

1) Kernels and Kernel Intersections: The following is
an algorithm for computing all the kernels of a function
Jf. Several other methods have been proposed, but this al-
gorithm seems to have withstood all competition so far.
The literals in the support of f are numbered from 1 to n,
g is a cube-free expression and all literals less than j have
been divided.

KERNELS (J, 2):
R=y
fori=j;i<n;i++){
if ({; appears in more than one cube) {
¢ = largest cube dividing g/{/;} evenly
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if (ygcforallk < i){
R = R U KERNELS(i +1, g/({1;} U ©))
h

}

}
R=RU {g}
return R

To use the algorithm for generating all the kernels of f,
first factor out the largest cube dividing fevenly, then call
KERNELS(1, g). The algorithm works as follows. The
argument j in KERNELS is a pointer to the literals already
factored out, (all literals less then j have been processed ).
KERNELS is designed to find all kernels associated with
any co-kernel not containing any of the literals /; for i <
Jj. The recursive call to KERNELS restricts the terms to
those containing literal i. These are then kernels which
have as co-kernel a cube whose literals include /; and the
literals of ¢, the largest cube factor of g //;. The recursion
is done only if the cube ¢ has no literals k < i, since all
co-kernels associated with this recursion will involve the
literals of ¢, and if one of these has been factored already,
we would just reproduce a kernel and co-kernel already
found. This makes the algorithm such that we only pro-
cess unique co-kernels and gives the algorithm an effec-
tive tree-trimming strategy for searching for kernels. The
algorithm can also be used to generate all the co-kernels
by returning the co-kernels rather than kernels.

The number of kernels of an expression can grow ex-
ponentially in the number of literals in the support of the
expression. This is particularly evident when the function
has symmetric variables, because each permutation of the
symmetric variables in a kernel produces another kernel.
However, in practice, we find that the set of all kernels is
reasonably small. In particular, during the synthesis pro-
cess, most of the functions in the network are small
enough such that all of the kernels can be efficiently gen-
erated. However, there are times when we want to find
quickly a good kernel of a function (and not necessarily
the best kernel). Therefore, we also present an algorithm
for generating all of the level-O kernels (a subset of the
set of all kernels), and an algorithm for finding any one
level-0 kernel.

The algorithm below for generating level-0 kernels is a
simple modification of KERNELS. This is based on the
observation that if no kernels of g are found in the for
loop, then g is a level-0 kernel.

L_O_K(j, 8):
R=@
for(i=j,isni++){
if (; appears in more than one cube) {
¢ = largest cube dividing g/{/;} evenly
if (I, & ¢ forall k < i) {
R=RUL _O_K(@+1,g/({l;} U<y

}
}

}
if(R= )R ={g}
return R
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In Section V-A, we describe the algorithms quick fac-
toring and quick decomposition which need to find just
one level-O0 kernel. The algorithm above can be further
modified to find any single level-0 kernel quickly:

ONE_L O_K(j, g):
for(i=j,i<n;i++){
if (I, appears in more than one cube) {
¢ = largest cube dividing g/{/;} evenly
if(gcforall k < i) {
return ONE_ L_O_K(i +1, g/({l} U ©))
3

}
}

return g

Once the kernels (or level-0 kernels) of all the functions
have been computed, we still have the problem of finding
intersections among the kernels from different functions.
This can be done efficiently in a manner similar to the
generation of the kernels according to the following prop-
osition. Recall that an expression is a set of cubes, and a
cube is a set of literals.

Proposition 1: Let f be an expression, let g C fbe a
subexpression of f, and let C = M g; be the intersection
over all of the cubes of g. Define A( f) as the set of all
such cubes C as g ranges over all subsets of f with two or
more cubes. Then the set A( f) is the set of all co-kernels
of f.

Corollary 1: The subset of A( f), consisting of the
cubes generated by the subsets g C f of cardinality 2,
contains the set of level-0 co-kernels of f.

This proposition gives a new alternate view of the op-
eration of computing the kernels (or co-kernels) of an
expression. A co-kernel corresponds to a nonempty inter-
section of two or more cubes of the expression; the kernel
is the result of dividing the expression by this co-kernel.
However, the approach to generating the kernels of an
expression presented in this proposition can be extremely
inefficient—most of the possible 2!/! intersections of sub-
sets of f are empty. The beauty of the kernel algorithm
presented above is that it avoids explicitly enumerating
any empty intersections.

This proposition is at the heart of developing an algo-
rithm for finding intersections between the kernels from
multiple functions. This problem is stated as follows.
Given a set of kernels

K = {kl, kz,..., kn} with ki = {Cl, Crynvns Cm,‘}

find the set of all kernel intersections (K).

We first form a new expression IF(K) which corre-
sponds to the set K of the kernels. We associate each dis-
tinct cube in U k; with a new literal, and each kernel with
a new cube which contains all the literals corresponding
to the cubes of the kernel. This set of cubes forms a new
function which we call IF(K).

Proposition 2: Every element in the set of co-kernels
of IF(K) (that is, C(IF(K))) corresponds to a unique
kernel intersection in /(K ).
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The following example demonstrates the approach.
Given

K = {ky, ky, ks}

k, = abc + de + fg
k, = abc + de + fh
k; = abc + fh + gh

we are to find the intersections of kernels &, k,, and k;.
In this case, the nonempty intersections of the kernels are
easily seen to be

abc = kl N k2 N k3
abc +de =k Nk,
abc +fh = k2 N k3.

We now demonstrate how to use the Proposition 2 to gen-
erate these intersections. The distinct cubes are

t, = abc
t, = de
13 = fg
t, = fh
ts = gh.

From this, we form the single function IF (K ) where each
cube of IF (K ) corresponds to a kernel of K

IF(K) = t1t2t3 + t‘tzt4 + t1t4f5.

For example, the kernels k| corresponds to the term t,2,2,.
The kernels and co-kernels of IF(K) are

K(IF(K)) = {tats + ity + tfs, 13 + 14, 1, + 15}
C(IF(K)) = {1, tita, 1,14}.

Working backwards, we can interpret each co-kernel of
IF (K ) as a subset of the cubes from the kernels

HK) = {10 + .0 + 1)
= {abc, abc + de, abc + fh}.

Hence, to compute the intersections among the kernels
of many functions, we first form the function /F (K ) and
then generate the kernels of this function. Note that we
can choose to generate only the level-0 kernels of this
function, rather than all of the kernels, again for the sake
of efficiency.

2) Multiple-Cube Extraction: Theorem 1 is used to de-
termine whether several functions have any common mul-
tiple-cube divisors. Instead of generating all possible di-
visors of each function, we can compute the kernels of
each function and generate the intersections of the ker-
nels. We can rate an intersection by its area value (i.e.,
the number of literals which can be saved if we were to
extract that intersection). The formula for computing the
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area value of a node can be simplified in this case because
the term N( f, y) is always 1 when y corresponds to a
kernel of function f. The simplified formula for comput-
ing the area value of a kernel intersection is

area__value(k) = (NF(k) — 1)(L(k) — 1) — 1

where k is a kernel intersection, NF (k) is the number of
functions of which k is a divisor, and L (k) is the number
of literals of £ in its factored form.

The following greedy extraction algorithm is imple-
mented in MIS. Two parameters are used to control the
tradeoff between the quality and run-time efficiency of the
results. Parameter k is the level of kernels generated at
each step. Parameter n is the number of kernel intersec-
tions to use before the set of kernels and their intersec-
tions is recomputed. FROM (x) is the set of functions for
which x may be a divisor. SUBSTITUTE( f, x) returns
the function f after x is substituted into f.

KERNEL__EXTRACT (F, k, n):

repeat {
K = U;r K" f)
I =I%K)

fori = 1ton {
x = argmax,¢; { area__value(y) }
if area_ value(x) < O exit;
for all fe FROM(x) }
f = SUBSTITUTE( £, x)
}

F=FU {x}
}
}

The algorithm takes as an input a Boolean network F.
First, it generates all of the level-k kernels of all the func-
tions in F. Then, it generates all the kernel intersections
corresponding to the level-0 kernels of JF(K). It picks
the intersection with the best area value (one at a time, up
to the specified parameter n) and substitutes it into all
functions where the intersection is from. After # intersec-
tions are chosen, the algorithm repeats; if the best inter-
section at any step has a negative value, then the algo-
rithm terminates. (A kernel intersection which comes from
only a single function has a negative value; at this point,
there are no multiple-cube divisors common to two or
more functions.)

The reason for using the parameter k is to control the
size of K so that the intersections can be generated within
a reasonable amount of time. The tradeoff is that we may
lose some good high-level kernels. Likewise, we generate
only level-0 kernels of IF (K ) in order to reduce the size
of the intersection set. Again, the tradeoff is that we may
lose some good high-level intersections. (However, note
that level-0 intersections are ones that maximally fan-out
after substitution). The parameter n is used to control the
number of times we need to regenerate all of the kernels
and their intersections. Clearly, regenerating the kernels
and their intersections after a single substitution is waste-
ful; only a few functions in the network have changed.
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However, the reason for recomputing the kernels and their
intersections is the following: after an intersection is sub-
stituted into the network, the values of some other inter-
sections may change. So, we can only use the same set of
kernel intersections up to a certain point where the values
of the intersections become inaccurate. Table III shows
how the choice of k and n effect the final results for one
example. It also indicates that using low level kernels and
more intersections in each iteration is nearly as effective
and much more efficient. We have not experimented with
using higher level intersections.

3) Single-Cube Extraction: Based on Proposition 1, the
algorithm for generating kernels can also be used to gen-
erate the common subcubes among several functions.
Given a set of functions

F={fi.f ' fi}
we can build another function G such that
sup(G) = sup(f;) U sup(f) U -+ U sup(f,)
G = {c| = i such that c € £;}.

Proposition 3: The set of common subcubes in F is ex-
actly C(G), the co-kernels of the function G.
The generic algorithm for single-cube extraction is:

CUBE__ EXTRACT(F):

repeat {
¢ = FIND_A_COMMON__ CUBE(F).
g = {c}

for all fe FROM(c) {
f = SUBSTITUTE( f, &)
}
F=FU {g}.
} until no common cube can be found.

The routine FIND__A__COMMON __CUBE returns a
common cube in F according to some criteria. Three pos-
sibilities come to mind.

1) Generate the set of all co-kernels of the function G,
determine the literal savings for each co-kemel, re-
turn the co-kernel with the best literal savings.

2) Generate the level-0 co-kernels of G, rank them ac-
cording to their literal savings, and choose the best
one.

3) Generate any single level-O co-kernel.

1) and 3) were implemented in MIS and comparable
results were obtained on most examples even though 1)
took, in general, much more time.

Table IV shows how the kernel extraction and cube ex-
traction can be used. By combining them with the resub,
which is described in the next section, we have a powerful
optimization loop.

B. Resubstitution

Because of the heuristics used in the extraction process,
we may have missed some common factors. Resubstitu-
tion is used to check whether an existing function itself is
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TABLE III
TRADEOFF'S IN KERNEL EXTRACTION

| P . time no. of literals no. of kemels no. of intersections J
L in factored form | in first iteration in first iteration |
[ 1] 1810 760 (
2] 931 767
24
O[5 459 759 09 » |
10 | 268 773 i
1| 302.8 754 i
211720 754
‘ 99— T eg0 68 597 196
' 101 723 773

The example is example 3 from Section 7. Time is measured on VAX
8650 running Ultrix 1.2. k is the level of kernels used. n is the number of
kernel intersection used before regenerating kernels.

TABLE IV
TypICAL GLOBAL AREA OPTIMIZATION Loop

‘i MIS command | explanation time | of literals no. of literals

‘L |_in SOP form | in factored form
| d ex3 i read in a network { 0.7 | 1804 ! 1139
[ex | extract common cubes 1138 | 949 i 882
"ash | algebraic substitution | 66 1 666 650
el 0 | eliminate nodes with 0 or less value 1.1 816 587
kx50 | kemel extract (k=0, n=5) 18.5 636 624
asb ] algebraic substitution 3.1 ] 625 613
el 0 | eliminate nodes with 0 or less V“]Lr 08 | 705 559

| ex extract common cubes 49 | 654 608

[asb _algebraic_substituion 31 ] 652 607
[el 0 ! elimi nodes with 0 or less value ' 0.8 | 661 558

asb " algebraic_substitution 17| 656 556
Lel 0 eliminate nodes with 0 or less value 03 656 555

The example is example 3 from Section 7. Time is measured on VAX
8650 running Ultrix 1.2.

a divisor of other functions. For example, suppose the
network is

x=ac +ad + bc + bd + e

y=a+b.

Function y itself is a divisor of x. Therefore, it can be
used to simplify x. Function x can then be rewritten as:

x=y(c+d) +e

This operation is called resubstitution. In particular, it is
an algebraic resubstitution since a + b is an algebraic
divisor of ac + ad + bc + bd + ¢ = (a + b)(c + d)
+ e.

However, algebraic techniques alone do not exploit all
of the Boolean properties of the logic equations. To im-
prove the results, we also perform Boolean resubstitution,
which uses Boolean division when trying to substitute one
function into another. Boolean resubstitution is capable of
providing better results, but in general takes much longer
than algebraic resubstitution. As an example, algebraic
resubstitution does not simplify the following network:

(ab + cd)ef + (ab + ef Yed + (cd + ef )ab
ab + cd + ef.

X

y

However, using Boolean resubstitution, x can be rewritten
as

x=y(ab +cd +ef )

for a savings of 11 literals.
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In general, the substitution of y into x is carried out by
dividing x by y and checking if the resulting x is simpler
(in factored form). In the Sections II-B-1 and 1V-B-2, we
present the algorithms for the algebraic and Boolean di-
vision which are implemented in MIS.

1) Algebraic Division: The following is a sketch of the
algorithm for carrying out algebraic division with com-
plexity of O(n log n), where n is the total number of
terms in fand g.

ALG_DIV(/, g):
U = restriction of f to the literals in g
V = restriction of f to the literals not in g
/* note that u;v; is the jth term of f */
Vi={Uj€V|uj=gi}

h=NYV,
r=f—gh
return (h, r)

For example, if
f=ac+ ad + bc + bd + e
g=a+b

then
U=a+a+b+b+1

V=c+d+c+d+e

V,=vjeV|uj=g1=c+d

V2=vjeV|uj=g2=c+d.

So, ALG_ DIV ( f, g) returns
h=c+d
r=e.

Care is taken to make the algebraic division algorithm
as fast as possible since it is used repeatedly in MIS. One
way to accomplish this is to numerically encode the cubes
of U, V, and g. Then, sorting these numbers, we can ef-
ficiently obtain the comparisons required to compute V;
and h, and by keeping track of the indices during the sort-
ing process, we can also determine the remainder r easily.

The following observations are trivial but important in
circumventing most of the divisions required for algebraic
resubstitution.

The function f; is not an algebraic divisor of f; (i.e.,

fi/f; = 0)if

1. f; contains a literal not in f;:

2. f; has more terms than f;:

3. for any literal, the number of appearances in f; ex-
ceeds that in f;

4. y; is the transitive fan-in of f.

In some cases, we are not interested in the result of divi-
sion if the quotient ( f;/f;) is only a single cube. This can
be detected sometimes by another useful filter:

5) If for any literal, the number of appearances for f;
equals that for f;, then ( f;/f;) is at most a single
cube.
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2) Boolean Division: Recall that division is defined in
terms of multiplication and Boolean multiplication differs
from algebraic multiplication in that the functions need
not have disjoint support. Thus, given logic functions f,
g, h, e, we said that g is a Boolean divisor of fif

f=gh+e and h #0

i.e., the Boolean function formed by intersecting g and &
and forming the union with e is a cover of f. Extending
this to an incompletely specified function ff = { f, d, r},
consisting of an ON-set, an oFF-set and a DC-set (don’t-
care set), division is stated as

f=gh+e (modd)

meaning that the equivalence is not required on the don’t-
care set d (in other words, gh + e need only be a cover
of ff). We require either that g, h, and e be completely
specified functions or are functions which all have d as
the don’t-care set. Note that if fis any cover of ff, then
any factorization of f is also a cover of ff.

In applying Boolean division to multilevel logic min-
imization or factoring, there are two distinct problems to
be solved. The first (and easiest) is, given a logic function
g and an incompletely specified function ff, compute logic
functions % and e (minimal in some sense) such that gh +
e is a cover of ff. The second problem is, given ff, find a
function g such that gh + e is a cover of ffand g, h, and
e are minimal in some sense. The reason for minimal con-
ditions on g, h, e is that the point of factoring or substi-
tution is to find a minimal representation for ff. It is not
hard to find divisors of ff, but it is hard to find divisors
which lead to simple representations.

Theorem 2: Let f{ = hx + e be a cover of an incom-
pletely specified function ff = { f, d, r}. Suppose Xg +
xg € d, where g is any function. Then, f, = hg + e is
also a cover of ff.

The theorem can be proved by checking that the ex-
clusive-or of f; and f, is entirely contained in the don’t
care set.

Theorem 2 provides a solution to the first problem. To
Boolean divide g into a completely specified function f,
we can first form a don’t-care g¥ + gx, where x is a new
variable representing g. Next, we find a cover hx + e
(minimal in some sense) of the incompletely specified
function { f, xg + Xg, (f U (Xg + xg))’}. From Theo-
rem 2, hg + e is also a cover. The basic steps of the
method for the division are as follows.

1) Use a new variable x to represent g.

2) Form the don’t-care set Xg + xg.

3) Minimize f using this new don’t-care set.

4) Return ( f/x, e) where e is the remainder, the terms
of f not containing x.

As mentioned earlier, in minimizing multilevel logic,
we can have several objectives. We have focused on min-
imal factored representations. We have seen that a mini-
mal cofactor A and remainder e can be obtained by ex-
tending the don’t-care set and using a two-level
minimizer. However, this may not lead to a minimal fac-
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tored representation. We next take one more step to re-
duce the support of the final representation which heu-
ristically leads to better factorizations.

The procedure BOOL__ DIV, shown below, is an im-
plementation of Boolean division using two heuristics.
The first is to restrict the function to its minimum literal
support similar to that discussed in [4]. This is done by a
call to procedure MINLIT passing as arguments the care
onset f of ffand the care offset r of ff. MINLIT solves the
relevant row covering problem and returns a slightly ex-
panded cover, where the literals not in the minimum sup-
port have been eliminated. The second heuristic attempts
to make the operation more efficient by first factoring out
the algebraic cofactor h = f/g, thus reducing the problem
to a Boolean division of the algebraic remainder e by the
divisor g. Note that the expression fx ( where x stands for
a new variable) is added to the don’t-care set in perform-
ing the Boolean division of the remainder e by g.

BOOL_ DIV(f, g):
(h, &) = ALG_ DIV(f, g)

f=e

DC = xg +xg + hx.
r = fUDC.
f=rUDC

f = MINLIT(, r).
f = EXPAND({, ).
f = IRREDUNDANT( f, DC).

h=nhVU fx
e = f—f/x.
return(#, e)

In general, Boolean division takes more time than the
algebraic division since a Boolean minimization step with
a proper don’t-care set is involved. Hence, even more than
for algebraic resubstitution, we need good filters to decide
if Boolean resubstitution should be tried.

C. Phase Assignment

Each function in the Boolean network is represented as
a positive logic expression. Also, each intermediate vari-
able is assumed present in both its true and comple-
mented form. In practice, there are many situations where
implementing a function or its complement costs the same
(e.g., static CMOS), and not all intermediate variables
are needed in both phases. Hence, there is an optimization
problem of choosing the phase of each intermediate func-
tion (i.e., to implement the function or its complement)
in order to minimize the total number of inverters needed
to implement the network. This is the Global Phase As-
signment problem.

The following is a simple greedy algorithm for solving
the global phase assignment problem. Since the algorithm
runs very fast as compared with other algorithms, we call
it QUICK__PHASE. F'is the set of functions in the Bool-
ean network.

QUICK_ PHASE(F):
repeat {
x = argmax{INVERTERS _SAVED( f)}
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if INVERTERS SAVED(x)0) < exit
invert x

}

INVERTERS__SAVED ( f) computes the change in the
number of inverters needed in the network if the function
f were invented (i.e., complemented). For example, the
network

S, =ab
£ =hfe
fi=fid

requires a total of three inverters in this form (1 each for
a, d, and f;). However, if f; is inverted, only two invert-
ers are required:

fi=a+b
f = fic
f3=f1‘—i-

In static CMOS, each logic function is naturally invert-
ing. This can be taken into account during the computa-
tion of INVERTERS__ SAVED. However, for simplicity,
we continue dealing with positive logic functions in this
discussion.

QUICK __ PHASE first computes the inverter savings for
each function, and then chooses to invert the function
which removes the most inverters from the network. If no
inverters can be saved by inverting any function, then the
algorithm has reached a local minimum and terminates.

One must be careful to compute properly the inverter
savings of a function f. We now present the algorithm for
INVERTERS__SAVED. The procedure USED (x, F)

-tests whether literal x is used in some function of F and

FANQUT (x) and FANIN (x) are defined as
FANOUT(x) = {y|xey orxey}
FANIN (x) = {y|y €x oriex}.

INVERTERS_SAVED(x):
if USED(x, FANOUT(x)) and not USED(X,
FANOUT(x)) saving = —1
else if USED(x, FANOUT(x)) and not USED(x,
FANOUT(x)) saving = 1
else /* both x and X are used in FANOUT(x) */
saving = 0
for each y € FANIN(x) {
if not USED(y, FANOUT(y)) {
saving = saving — 1
} else if not USED(y, FANOUT( y)-{x}) {
saving = saving + 1
3
}

return saqving

The algorithm has two parts. It first computes the in-
verter savings at the output of x. If x is only used in its
positive phase, inverting x results in one more inverter. If
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x is only used in its negative phase X, inverting x saves
one inverter. If both phases of x are used, inverting x does
not change the number of inverters. Computing inverter
savings at the inputs of x is more complicated. For each
input y of x, if y is only used in its positive phase, then
one more inverter is needed. The only case when an in-
verter between y and x can be saved is when y is used only
in its positive phase in all the functions y fans out to ex-
cept x. In all remaining cases, the number of inverters
does not change.

Although QUICK _PHASE is very fast, it often falls
into a local minimum far removed from the global mini-
mum. The final result largely depends on the initial state
of the Boolean network. To allow for partial hill climb-
ing, we present another algorithm which gives better re-
sults at the expense of more CPU time. This algorithm is
called GOOD__PHASE (GP).

GOOD_PHASE(F):

unmark all fe F

repeat {
best = F
QUICK__PHASE(F)
if NUM__INVERTERS(F) < NUM__

INVERTERS((best) { best = F

}

repeat {
if all f € F are marked §
return best
} else {

X = argmax
feFand funmarked

invert x
mark x

{INVERTERS _SAVED( f)}

}
} until NUM__ INVERTERS(F) < NUM__
INVERTERS (best)
}

GOOD__PHASE always keeps the best network found
up to the current point (i.e., the network needing the least
inverters). The call to QUICK__PHASE initially reaches
a local minimum. Then, GOOD__ PHASE enters the hill-
climbing stage by inverting nodes even though the num-
ber of inverters in the network may increase. If, at any
point, a solution better than the current best is found, we
accept this solution and repeat. The algorithm terminates
when all of the functions have been inverted once and no
better solution has been found. This is a partial hill-climb-
ing scheme because each function is inverted only once
in a greedy order (minimum inverter increase).

Table V shows the difference between GOOD__PHASE
and QUICK__PHASE for one example. GOOD__PHASE
results in 25 percent fewer inverters, but takes more than
10 times as long to compute a result.

V. LocAL OPTIMIZATION

Local optimizations refer to operations performed on a
single node in the Boolean network, or locally in the sur-
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TABLE V
TRADEOFF'S BETWEEN DIFFERENT PHASE ASSIGNMENT ALGORITHMS

i no.of e |
. i time
inverters |

uick phase | 31 78
goodphase | 23 | 89.4
The example is example 3 from Section 7. Time is measured on VAX

8650 running Ultrix 1.2. There are total of 56 functions in the network
excluding inverters.

rounding neighborhood of the node. MIS uses the local
transformations of decomposing large gates into smaller
ones (decomposition), deriving better implementations of
the gates ( factorization), and simplifying each gate using
knowledge of its local environment (simplification).

A. Factoring a Gate

In most design styles, an example of which is the com-
plex-gate CMOS design, the implementation of a gate
corresponds directly to a factored form of the logic func-
tion. Hence, a local optimization is to factor the logic
equation of a single gate in order to produce an optimal
pull-down (and pull-up network) for the gate. Our opti-
mization criteria is the factored form with the least liter-
als.

Different factoring algorithms have been explored. Each
has its own use and and run-time cost. QUICK FAC-
TOR, the fastest factoring algorithm, is useful to estimate
the cost of the implementation. Two other factoring al-
gorithms, GOOD_FACTOR and BOOLEAN__FAC-
TOR, are also implemented in MIS. Even though they are
more expensive operations, they occasionally yield better
factorizations, and are used to derive the final implemen-
tation of each gate.

Algorithms have been presented for exactly solving the
problem of determining a factored form with a minimum
number of literals [18]. However, the complexity of these
exact techniques would appear to make them impractical
for all but the smallest functions. Instead, we rely on fast,
heuristic algorithms based on kernels to find optimal fac-
tored forms.

The generic factoring method is described by the fol-
lowing recursive procedure.

GENERIC__FACTOR(f):
if (| f| = 1) return f
k = CHOOSE _DIVISOR( f)
(h, r) = DIVIDE(f, k)
return GENERIC__ FACTOR(k) GENERIC__
FACTOR(#) + GENERIC__FACTOR(r)

The method first chooses a divisor of fand performs the
division to obtain f = kh + r. At this level in the recur-
sion, k, h, and r are expressions which must be recur-
sively factored. Hence, in the last line, GENERIC-
__FACTOR is called for each of these expressions. The
factored product plus the factored remainder is then
formed and returmed. Internally, the factored forms can
be represented by either series-parallel trees or parenthe-
sized expressions.
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With very little overhead, we can modify the generic
factoring algorithm to achieve a better result. The idea is
in the following variation of the generic factoring schema.

GENERIC__ FACTOR2( f):
if (| f| = 1) return f
k = CHOOSE__DIVISOR( f)
(h, ) = DIVIDE(f, k)
if (| > 1) {
k = CUBE__FREE(h)
} else {
k = ONE_ LITERAL_ OF(h)
}
(h, ) = DIVIDE(f, k)
return GENERIC _FACTOR2(k) GENERIC _
FACTOR2(h) + GENERIC_ FACTOR2(r)

The heuristic used here is that having chosen the divisor
k, we obtain h and are in the process of writing f = kh +
r. Given that we are going to use factors k and s, we
might as well collect everything that can be multiplied by
h. Before this is done, we eliminate any literal factors of
h (CUBE_ FREE) in order to obtain the largest k possi-
ble. Then we perform the second DIVIDE to obtain this
new k, which must include at least the old k. This can be
quite effective if we did not choose the best divisor & ini-
tially (perhaps because of run-time considerations).

We can build several variations of factoring by choos-
ing different algorithms for CHOOSE_ DIVISOR and DI-
VIDE. There are two variations of CHOOSE__DIVISOR:

CHOOSE_LEVEL 0_KERNEL - pick any level-0
kernel (fast)

CHOOSE_ BEST_ KERNEL - compute all kernels
and choose best one (slow)

and two variations of DIVIDE:

ALG__DIV - algebraic (weak) division (fast) (refer to
Section IV-B1)

BOOL_ DIV - Boolean (strong) division (slow) (refer
to Section IV-B2).

These provide a spectrum of speed and quality tradeoff’s
for factoring. We have implemented the following three
versions of factoring algorithms.

QUICK _FACTOR uses:

1. CHOOSE_LEVEL 0 KERNEL -
level-0 kernel
2. ALG_ DIV — perform algebraic division.

QUICK__FACTOR uses the GENERIC__FACTOR?2
algorithm. The extra division step in GENERIC__
FACTOR?2 attempts to improve the quickly chosen divi-
sor. Typically, we find that this improvement step greatly
improves the quality of the factored result.

GOOD__FACTOR uses:

1. CHOOSE_BEST_KERNEL - compute all ker-
nels and choose best
2. ALG_ DIV — perform algebraic division.

pick any
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BOOLEAN__ FACTOR uses:

1. CHOOSE__BEST_KERNEL - compute all ker-
nels and choose best
2. BOOL_ DIV — perform Boolean division.

To illustrate the different results that can be obtained by
these various factoring algorithms, consider the function

f=ac + ad + ae + ag + bc + bd + be
+ bf + ce + ¢f + dg.

Quick factoring (QF) and good factoring (GF) give dif-
ferent but similar quality factorings:

GF(f)=(c+d+e)(a+b)+f(b+c+d)
+gla+d) + ce

QF(f)=gla+d) + (a+b)(c+d+e)
+cle+f)+f(b+d)

but QF is much faster because it needs only to determine
one level-0 kernel for each factor. However, the next ex-
ample shows the difference in quality by QF, GF, and BF.
For

f=bd + cd + be + ce + afd + afe
+ abg + acg + afg

the factored results are
OF(f)=(b+c)d+e)+((d+e+g)f
+(b+c)g)a
GF(f)=(b+c)(d+e+ag) +{(d+e+ g)af
BF(f)=(af+ b + c)(ag + d + ¢).

Table VI shows the results of QUICK_ FACTOR (QF),
GOOD_ FACTOR (GF), and BOOLEAN__FACTOR
(BF) on a large set of functions. Good factoring is almost
three times slower than quick factoring due to the extra
time spent computing all of the kernels of the function
before choosing a divisor. Boolean factoring is almost four
times slower than good factoring due to the extra time
spent performing a Boolean division (as opposed to an
algebraic division).

B. Local Decomposition of a Gate

The operation decomposition is similar to factoring ex-
cept that each divisor is formed as a new node in the Bool-
ean network and the associated variable is substituted into
the function being decomposed. Decomposition is one of
the transformations used to break down large functions
into smaller pieces, usually at a cost of a few more literals
in the network.

For each method of factoring, we have the associated
method for decomposition. For example, QUICK _DE-
COMPOSITION is similar to QUICK__FACTOR in that
a single level-0 kernel of the fucntion is generated as the
divisor. This kernel is implemented as a separate node,
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TABLE VI1
TRADEOFF'S BETWEEN DIFFERENT FACTORING ALGORITHMS
no. of literals | . ;
 in factored form | °™¢ |
quick factoring 1139 238 |
good factoring | 1133 i 69
Boolean factoring | 1108 | 289

The example is example 3 from Section 7. Time is measured on VAX
8650 running Ultrix 1.2. There are total of 56 functions factored.

and then the kernel, the quotient, and the remainder are
all recursively decomposed.

GOOD_  DECOMPOSITION generates all of the ker-
nels before identifying the best kernel (i.e, the kernel sav-
ing the largest number of literals) to be extracted. Finally,
BOOLEAN_ DECOMPOSITION generates all of the
kernels to choose the best kernel, and then uses Boolean
division to divide the function by the kernel.

Decomposition can be combined with algebraic resub-
stitution to provide a means of finding common sub-
expressions. The method is

1. Apply quick decomposition to each node of the net-
work.

2. Perform algebraic resubstitution of each node into
every other node where possible.

3. Eliminate all single literal functions and all func-
tions with small value (usually 0 or —1)

At the end of decomposition, each of the network can-
not be further decomposed; each literal appears only once
in each function. Resubstitution identifies, as a special
case, nodes in the network which are identical. (The logic
function at the node becomes just a single literal.) These
trivial functions are eliminated along with the nodes with
small value by an elimination step.

The motivation behind this technique for common sub-
expression elimination is that QUICK_DECOMPOSI-
TION is very fast but still identifies good kernels for fac-
toring each single function well. The kernels used for this
become nodes of the Boolean network and resubstitution
identifies common ones. Thus, the common divisors iden-
tified in this way are ones that are also near best for fac-
toring. Of course, this is not always the best choice, and
not all common divisors are found, but the method is very
fast and the results are surprisingly good. A typical com-
bination of decomposition, resubstitution, and elimina-
tion is shown in Table VII.

C. Simplification

Two-level minimization is a much more developed sci-
ence than multilevel minimization, and very efficient al-
gorithms exist for finding minimal two-level representa-
tions of Boolean functions. Two-level logic minimization
plays an important role in multiple-level logic synthesis.
Recall that each node in the Boolean network is repre-
sented in both a sum-of-products form and a factored
form. Before processing the network, we can replace each
sum-of-products expression with a minimal, equivalent
representation. Two-level minimization can be made more
powerful in this context (and slightly less of a procedure)
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TABLE Vi
TyricaL LocaL AREA OPTIMIZATION Loop

. P | no. of literals no. of literals
MIS command | explanation | time i in SOP form | in factored form
il ex3 | read in a network 07 | 1804 1139
qd * | quick decompase each node | 15 | 1373 1373
asb | algebraic substitution 1136 947 947 |
el 0 | eliminate nodes with 0 or less value | 1.4 1463 i 807 i
"ash algebraic_substitution 12 1361 ! 902 |
decomp * good decompose each node 4.7 89s i 895 ‘
, ash algebraic substitution 37 866 ] 866
[ el -1 eliminate nodes with -1 or less value i 15 | 1519 826
[asb algebraic substitution 11 1495 828
! decomp * | good decompose each node 7.0 ! 923 923
[ asb | algebraic_substitution 42 896 896 |
[el-1 _eliminate nodes with -1 or less value | 1.2 1368 797 ]
lash | _algebraic substitution i 1.4 1343 ; 790 |

The example is example 3 from Section 7. Time is measured on VAX
8650 running Ultrix 1.2.

by providing the minimizer with various don’t-care sets
derived from the immediate environment of a node.

We use simplification at several steps in the optimiza-
tion procedure. First, to reduce our dependence on the
initial multiple-level network, we perform a selective
elimination on the network in order to produce fewer but
larger functions. After this, each node in the network is
replaced with a simpler form using SIMPLIFY1 as de-
scribed below. Later, after common divisors have been
identified and extracted, we use SIMPLIFY2 or
SIMPLIFY3 to remove redundancy in the network. These
algorithms identify redundancy which is local in the sense
that it manifests itself over just a few levels of the net-
work.

Our interest is in a minimal form which has the least
literals in its factored form. Ideally, we would replace
each node with an equivalent (it does not change the in-
put-output behavior of the network) minimal representa-
tion. (A network which is minimal in this sense is called
a prime and irredundant network [2].) Performing either
of these two steps is usually not feasible and certainly not
always necessary during each phase of the logic synthesis
process. For the most part, we use the minimization meth-
ods of ESPRESSO [5} with diftferent don’t care sets gen-
erated according to how thorough and fast we want to be.
Further, we minimize the function for the total number of
literals in the sum-of-products form as an approximation
to the number of literals in the factored form (since we
have no way as yet for minimizing with this later objec-
tive in mind).

Several simplification procedures can be built from ES-
PRESSO. These vary only in the don’t-care sets con-
structed.

SIMPLIFY1( f):
DC =0
¢ = ESPRESSO( £, DC)
if NUM__LIT(QF(g)) < NUM__LIT

QF(fN{f=3

return f

NUM _LIT counts the number of literals in a given fac-
tored form. A node is replaced with the result if it is sim-
pler than the existing representation as measured by the
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resulting factored form which is computed using QUICK-
__FACTOR (QF). We must check the resulting factored
form after minimization in order to guarantee that the
function has become simpler. It is possible for the number
of literals in the sum-of-products form to decrease while
increasing the number of literals in a
SIMPLIFY1 is the most direct application
to a single node f of the network. No don’t-care sets (DC)
is generated or used in the minimization.

x = pn*

SIMPLIFY2(f):
DC = U xv, + xv X)
xeFANIN(f)

g = ESPRESSO( f, DC)
if NUM__LIT(QF(g)) < NUM__LIT
QF(fN{f=¢

return f

In SIMPLIFY?2, v, is the variable representing node x
in function f. The immediate fan-in don’t-care set (that is,
don’t cares which result from the functions which directly
fanin to f) is generated and used by the logic minimizer.

The final method uses even more of the don’t-care set,
including the immediate fan-out don’t-care set (that is,
don’t-cares which result from the functions which directly
depend on f).

SIMPLIFY3(f):
DC,= U (o, +x0)
x€FANIN(f) _ -
DC, = U (/HE/FY+ &/ FHa/f)
xeFANOUT(f)

g = ESPRESSO( f, DC; U DC,)
if NUM__LIT(QF(g)) < NUM__LIT
} QF(fN{f=2¢

return f
VI. TIMING PRE-OPTIMIZATION

Our approach in multiple-level logic optimization is to
minimize first the area without concern for the delay. Then
at the beginning of a timing optimization iteration, we
have a network whose area is minimized (i.e., all the
global factors have been extracted out). Given the system
timing requirement for a network, the goal of timing op-
timization is to reduce the delay through the network with
minimum area increase.

The timing optimization process iterates over several
major operations. First, given the signal arrival time of
all primary inputs, the delay of each signal (intermediate
variable or primary output) is computed. Then, based on
the required time of all the primary outputs, the slack
value of each signal (intermediate variable or primary in-
put) is computed. Now, the critical part of the network
(which is defined precisely later on) can be identified. In
the DAG representation of the network, the critical path
of the network can be viewed as a set of directed path
from primary inputs to primary outputs. To reduce delay
through all the critical path, we find a set of nodes which
form the minimum weighted cut-set of all the critical path
(to be defined later), and reduce the delay through each
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node in the set. The whole process repeats until the timing
constraints are satisfied, or until it is apparent that they
cannot be satisfied.

There are several crucial steps in the timing optimiza-
tion loop. The first problem is to estimate the delay of the
network. Since any timing estimates without actual layout
information are necessarily inaccurate, we aim at a delay
model which is fast to evaluate and gives good relative
measure as well as reasonably accurate absolute measure
of the speed of the circuit. The next problem is to derive
a weight function for the nodes which can reflect the
tradeoff between area and delay. Finally, using the delay
estimate and the weight function, the critical path of the
network (which is defined precisely later on) can be iden-
tified and then restructured.

In the following sections, we describe the algorithms
and approaches as applied to static CMOS. With few
modifications, these techniques can be applied to other
technologies as well. In static CMOS technology, a crit-
ical path from a primary input to a primary output consists
of alternating falling and rising signals. To get a better
delay estimate, the worst-case fall and rise propagation
delay of a gate with respect to each input are computed
separately. The delay, the required time, and the slacks
of all the signals are also computed separately with re-
spect to the falling and rising transitions.

A. Delay Estimate

Given a static CMOS gate (logic function in its factored
form) and its local environment (e.g., number of gates it
drives), we estimate for each input the worst-case delay
through the gate. The delay is due to the charging or dis-
charging of the load capacitance through the pull-up or
pull-down network of transistors. As an example of esti-
mating the fall delay from a particular input to the output
of a gate, the worst case corresponds to discharging the
load capacitance on the longest path through the pull-down
network from the output to the ground through a transistor
controlling that input. We take the following approach to
estimate the delay through each gate.

First, for each input of a gate, we translate the series-
parallel transistor network (i.e., the pull-down or pull-up
network depending on whether we are estimating the fall
or rise delay) into an equivalent chain of series-connected
transistors corresponding to the longest path with respect
to that input. Then, we parameterize the longest chain by
a) the number of transistors in series, b) the transistor
width, c) the load capacitance, and d) the average number
of transistors in parallel with each of the series-connected
transistors. We define

number of series-connected transistors,

transistor width,

load capacitance,

average number of transistors parallel with each
transistor on the path,

T e oS

using a simple RC model, where
R o n/w
C « (npw, w, ¢).
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Thus
delay o« RC o pn?, n, nc/w

and with

y=n
z=nc/w

the delay is then modeled with a polynomial function of
variables x, y, and z,

delay = P(x,y, ).

The coefficients of the delay equation are determined by
a least-square fit of the delay data taken from a large set
of simulations as the parameters n, w, p, and ¢ are varied.
Experiments have shown that this model gives reasonable
estimates of delay for our purposes.

B. Node Weights

The objective of the timing optimization step is to re-
duce the delay through the network with minimum area
increase. Recall that the area value of a node is an esti-
mate of the total area increase if the node were eliminated
from the network. In reducing the delay through a net-
work, we often need to eliminate some nodes in order to
reduce the number of levels of the network. We therefore
want to pick such nodes whose elimination results in the
least area increase. Furthermore, we do not have to elim-
inate a node completely from the network in order to re-
duce the number of levels. We only need to eliminate the
node from the *‘critical’’ part of the network. So, the area
value of a node needs to be modified to reflect the area
increase correctly when the node is to be partially elimi-
nated. This is the weight of a node.

To be precise, let

CRITICAL_ FANOUT( f)
= {g € FANOUT( f)| fis to be eliminated from g}.
The weight of a node fis defined as
area__value( f)
weight(f) = <

g€ CRITICAL_FANOUT( f)

where N(g, f) is again the number of times either f or
f appears in the factored form for g, and L(f) is the
number of literals in the factored form for f.

C. Optimization Loop

To reduce the delay through the network, we need to
identify the critical part of the network. First, associate
some timing information with each signal (the output of
a function). Let

R, (f)

time at which signal f must be switched from
low to high,
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R/ (f) time at which signal f must be switched from
high to low,

A (f) time at which signal factually switches from
low to high,

Ar () time at which signal f actually switches from
low to high,

S, (f) slack of the rising signal f (is equal to R, (f)
- Ar (f ),

S (f) slack of the falling signal f (is equal to
Ri(f) — A (),

D, (f, x) low to high propagation delay of f with re-
spect to input x,

Dy (f, x) high to low propagation delay of f with re-
spect to 1nput x,

R(f)  R(HR(S)

AP A A ()

S(F) S S

D(f,X) Dr(f’x)Df(fyx)~

Initially, R( f), f € F, are known for all the primary out-
puts and A( f), f € F, are known for all the primary in-
puts. (These can be determined by a timing analysis of
the system in which the logic must function.) The follow-
ing formula can be used to compute R(f), A(f), and
S( f) for all signals fin the network efficiently:

A (f) = max {4;(x) + D, (£ %)}
XEFANIN(f)

A (f) = max {4,(x) + D;(fix)}

R.(f) = min {Rf(x) _Df(x’f)}
xeFANOUT( f)

Re(f)=  min {R(x)- D, (x,f)}

Sr(f) = Rr(f) - Ar(f)
S (f) =R (f) — 4 (f).

Since the slack is the difference between the required
and actual time of a signal, the signals with zero or neg-

if CRITICAL__FANOUT( f) = FANOUT( f)

)y N(g, f)>*L( f)  if CRITICAL_FANOUT( f) # FANOUT(f)

ative slacks are critical. Now, we are ready to identify the
critical part of the network. Let F be the network and
CRITICAL (F ) be the critical part of the network,

CRITICAL(F) = { fe F|S,(f) = 0,
orS;(f) = 0}.
In addition, we define a path in the network F to be
PATH(F) = {(xl, X5, ***, X,)|x; €F,

x; € FANIN(x;.\), x, € PI, x, € PO}
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where PI is the set of primary inputs and PO is the set of
primary outputs. The idea behind all these definitions is
that we want to find a minimum weighted set of nodes
which cut all the critical paths in the network. The fol-
lowing is a definition for the minimum weighted cut-set:

MIN _WEIGHTED _CUTSET(F)

= argmin { 2 weight(x)}.
SSF and PATH(F-S)= ( x€S

The delay of the network F can be reduced if the

delay through every node x in MIN _WEIGHTED __CUT-

SET(F) is reduced. The following timing optimization

loop summarizes our approach.

TIMING_ OPT(F):

while (actual delay > required delay) {
compute A(f), R(f), and S(f) forall fe F
G = CRITICAL(F).
compute weight(g) forall ge G
X = MIN_WEIGHTED CUTSET(G).
REDUCE _DELAY(x) forall x € X

}

The REDUCE DELAY(x) tries to reduce the delay
through a gate x by either resizing the transistors in x,
refactoring x, decomposing x into smaller gates, or com-
bining several small gates around x into a larger gate.

Because our timing estimates are necessarily inaccu-
rate, we view the result of the optimization not as a pre-
cise delay calculation, but rather as a reasonable guide for
restructuring the architecture of the network to meet the
timing constraints. Also, the timing estimates are reason-
able specifications for the module generators to use when
synthesizing and placing the gates. More accurate timing
estimates and verifications may be employed later in the
design cycle when the details of the gate designs and
placements are known more precisely.

VII. REsuULTS

The algorithms described here have been implemented
in a computer program mis. mis is written in C and has
been run on Unix-based workstations (SUN/3, DEC GPX/
II, IBM PC/RT) and DEC and IBM mainframes. In the
Berkeley synthesis system, mis reads a network descrip-
tion from the Oct database, and writes the optimized logic
network back into the database. To interface to systems
and environments where Oct is not used, mis also reads
and writes the standardized logic intermediate format
(LIF) files. In the interactive mode, mis provides a large
set of commands for manipulating a logic network, in-
cluding the powerful optimizations presented in this pa-
per. A partial list of the commands available in mis is
given in Fig. 4. mis also supports a batch mode, where
the optimization is controlled by a *‘script’” of MIS com-
mands. The script can be hand-designed by the user for a
particular problem, or one of several standard scripts
which have been developed can be used. A sample script
is given in Fig. 5
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vdd

— GND

f1 = (a(b+c)+d)(eg’+g(e’+1))

Fig. 3. Implementation of the factored form as a complex gate.

GLOBAL OPTIMIZATION
* kextract identify common divisors using KERNEL_EXTRACT
cextract extract single cube factors using CUBE_EXTRACT
eliminate eliminate nodes below threshold
collapse collapse the network to two-level
goodphase minimize number of inverters using GOOD_PHASE
quickphase  Minimize number of inverters using QUICK_PHASE
aresub resubstitute node to all other nodes (Algebraic)
bresub tesubstitute node to all other nodes (Boolean)
sweep eliminate O-fanout or 1-fanin nodes
LOCAL OPTIMIZATION
bdecomp Decompose nodes using BOOLEAN_DECOMPOSITION
gdecomp Decompose nodes using GOOD_DECOMPOSITION
qdecomp Decompose nodes using QUICK_DECOMPOSITION
bfactor factor nodes using BOOLEAN_FACTOR
gfactor factor nodes using GOOD_FACTOR
qfactor factor nodes using QUICK_FACTOR
simplify0 simplify using fast minimization algorithm
simplify1l simplify using ESPRESSO
simplify2 simplify using ESPRESSO with don’t care set
strongd Boolean (strong) divide one node by another
invert invert nodes
addinv add inverters as needed
: TIMING OPTIMIZATION
printdelay print gate delays
printrtime pririt requirecd time of a signal
; printatime print the actual time of a signal
printweight  print node weights
printcutset print minimum weighted cutset
printcp print critical pathes
printcs print critical pathes with slacks
| setatime set actual time of primary inputs.
" setrtime set required time of primary outputs.
delay calculate delays
reduce reduce the delay through a critical node
setslack set the output slacks
speedup speed up the network by percentage
MISCELLANECQUS
backup backup the current copy of network
Iclose close the current log file
lopen open a log file
restore restore the backup copy of the network
source execute MIS commands in a file
undo undo last command that changed network
i verify verify the Boolean equivalence of two networks

Fig. 4. Partial list of MIS commands.

A test of the algorithms described in MIS was per-
formed at Advanced Micro Devices on some industrial
circuits. The function of each of these circuits was taken
from actual chip designs, and had previously been de-
signed and optimized manually. In each case, the logic
network was designed starting from a BDSYN description
of the behavior of the network.

The target technology was a fixed library of NAND and
NOR gates with up to four inputs per gate—no complex
gates were used in the design. The cost functions used in
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Command Description
sweep general 'clean-up’ - constant propogation,
eliminate dead gates, double-inverter elimination
simplifyl * Two-level minimization of each node (using Espresso)
aresub Algebraic resubstitution -- make maximal use
; of divisors currently in the network
kextract 10 9 | Kemel extract to find common divisors
' cextract Cube extract to find common cubes
" aresub Algebraic resubstitution to find any other common factors
| eliminate 0 Selective collapse (eliminate nodes with value less than 0)
| kextract 59 | Repeat basic extraction steps
i cextract
| aresub
! eliminate 0 Selective collapse
| gdecomp * Break apart any remaining large nodes
! aresub Check for common factors
. eliminate 0 Repeat basic extraction step
simplifyl * Minimize each node
; kextract 5 9
. cextract
1 gdecomp * Final decomposition of any large nodes
| aresub

Fig. 5. A typical MIS script.

TABLE VII
MIS REsULTS COMPARED TO MANUAL DESIGN

no. of | no.of | Manual Design MIS Design Ratio

Example | inputs | outputs | Gate  Device | Gate  Device of
Count _ Count | Count  Count | Devices

exl 8 7 54 245 46 206 0.84
ex2 25 18 95 406 69 306 0.75
ex3 14 14 162 814 445 1965 2.50
ex3b 14 14 162 814 - 1250 1.53
ex3c 14 14 162 814 - 900 1.10

the optimizations performed by MIS are currently ori-
ented towards CMOS complex gate design. In particular,
the final output from MIS is in the form of a Boolean
network consisting of an arbitrary CMOS complex gate at
each node. Hence, a manual translation was performed on
the output of MIS to this technology. No optimization or
merging of gates was done during the translation, even
though it would be highly desirable to do so. The results
of this experiment are given in Table VIII.

The results from the first two examples are very en-
couraging. The difference in the third example is ex-
plained, in part, from the fact that MIS is currently unable
to use the don’t-care information inherent in the multiple-
level description of the network. In a second experiment,
listed as ‘‘ex3b,”’ the network was minimized as a two-
level PLA with the same don’t-care set used by the de-
signer for his implementation. This minimized PLA was
then re-extracted into a multiple-level network using MIS.
The resulting network was not mapped into the target
technology for a direct comparison; however, it appears
to be about two-thirds of the size of the original network
produced by MIS. In a third experiment, listed as ‘‘ex3c,”’
we used MIS interactively, trying some of the more pow-
erful operators, especially Boolean resubstitution, and ob-
tained a further reduction to an estimated 10-percent in-
crease over the manual design.

Given that the technology mapping was performed in a
straightforward manner, we expect this result to be a lower
bound on what can be achieved with MIS and, hence, this
result is encouraging. We are currently looking at algo-
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rithms for optimizing the translation from an optimized
Boolean network into a fixed-cell library (e.g., a standard
cell library).

VIII. CoNcLUSIONS AND FUTURE DIRECTIONS

We have presented a software system (MIS) for multi-
level logic optimization and a set of algorithms on which
this system is based. Currently, the system is being dis-
tributed to a limited number of users. The algorithms ma-
nipulate a Boolean network structure yielding good mul-
tilevel implementations, minimizing area while taking into
account timing constraints. The set of algorithms included
in MIS are characterized by different versions trading off
speed and quality of results. Operated in the fast mode,
MIS can be used to give quick estimates of area and tim-
ing for combinational logic groups.

MIS is an evolving system and many directions are
being explored to improve the quality of the final net-
work, and the performance of the algorithms. Among oth-
ers, we are exploring:

1) The use of Rectangle Covering [8] to improve the
quality and performance of both the kernel extrac-
tion algorithm and the cube extraction algorithm.

2) Algorithms for the optimal mapping of a Boolean
network (after technology independent optimization
by MIS) into a fixed-library of gates (for example,
a standard-cell gate library). As mentioned in the
previous section, we believe that the inclusion of a
powerful global algorithm for the technology map-
ping problem will improve the quality of the results
produced by MIS.

3) Improving the timing analysis and timing optimi-
zation parts of MIS to find the correct set of trans-
formations to be performed on the network in order
to best satisfy the timing constraints.

4) The use of a self adapting script with back-trapping
capability to be able to have a single universal script.

5) The use of better filters for Boolean resubstitution.

6) Methods for restricting the don’t-care set during
simplification to only a ‘‘useful’’ subset, especially
when the complements used during simplification
are estimated to be too large.

7) The incorporation and use of don’t-cares in MIS de-
rived from the input specification.
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