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Abstract—The automation of the synthesis and optimization of com-
binational logic can result in savings in design time, significant im-
provements of the circuitry, and guarantee functional correctness.
Synthesis quality is often measured in terms of the area of the circuit
on the chip, which fails to take into account the timing constraints that
might be imposed on the logic. This paper describes SOCRATES, a
synthesis system capable of generating combinational logic in a given
technology under user-defined timing constraints. We believe this sys-
tem is the first to perform optimized, delay-constrained, multilevel
synthesis into standard cell libraries. Applied to a large number of
examples, the system has successfully traded off area versus delay and
performs optimized, delay-constrained, multilevel synthesis into stan-
dard cell libraries.

1. INTRODUCTION

HE AUTOMATION OF the synthesis and optimiza-

tion of combinational logic can result in savings in
design time, significant improvements of the circuitry, and
guarantee functional correctness. Synthesis quality is often
measured in terms of the area of the circuit on the chip,
which fails to take into account the timing constraints that
might be imposed on the logic.

This paper describes SOCRATES, a synthesis system
capable of generating combinational logic in a given tech-
nology under user-defined timing constraints. The user-
defined timing constraints are used at two places in our
system: during the multilevel function synthesis which
yields the structure of the circuit and during the gate level
optimization of the circuit which yields the technology-
dependent implementation of the logic.

The synthesis of combinational logic can be performed
either at the transistor level or using a predefined set of
logic gates. PLA’s fall in the first category and their au-
tomatic generation and area optimization have been stud-
ied extensively [4], [11]-[13]. The PLA is a two-level
structure with limited potential for timing optimization.
Recently, methodologies for multilevel implementation at
the transistor level have been proposed based on the use
of CMOS domino logic. One of these transistor-level im-
plementations is employed by the ““YLE’’ synthesis sys-
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tem [5] and uses a standard cell-like *‘pluricell’” meth-
odology. The other uses a ‘‘PLA-like’’ layout scheme
[14], but both of these transistor-level systems require
specialized layout generation programs.

Significant previous work has been done on optimized
synthesis into gate array libraries, e.g., MACDAS [16]
and LSS [9]. The YLE system [6] performs optimal mul-
tilevel synthesis using ““WEAK DIVISION’" into domino
pluricells, but is not library based. DeGeus et al. [8], [10]
have reported on an expert systems approach which uses
an optimized sequence of local transformations on a mul-
tilevel system produced by WEAK DIVISION. However,
in all of these previous investigations, little work has been
done to automatically generate optimized, multilevel li-
brary-based combinational circuitry while simultaneously
meeting timing constraints.

The approach presented in this paper builds on all the
referenced approaches. It is an extension and elaboration
of the work described in [1] and [2]. The synthesis is per-
formed in two main phases: 1) algorithmic creation of the
“‘logic structure’’ of the circuit, which is then ‘‘mapped”’
into a given logic gate library, and 2) a set of local trans-
formations translating and optimizing the circuit in the
target technology, which underlies the given library. In
the first phase, a multilevel circuit is built using a variant
of WEAK DIVISION. The timing constraints influence
the WEAK DIVISION process through the use of approx-
imate delay models and thus shape the ‘‘architecture’” of
the circuit in terms of its delay-area tradeoff. In the sec-
ond phase, optimization is performed by a rule-based sub-
system, called OPTIMIZE, in which the implementation
technology is fully known and an exact delay computation
is available. A set of timing-specific rules transforms the
circuit trading off area versus delay when necessary to
meet the timing constraints imposed by the designer.

We make and utilize throughout this paper the follow-
ing ‘‘cooperation assumption’’:

WEAK DIVISION and OPTIMIZE are separate and
distinct circuit optimization processes, in which the
output of the WEAK DIVISION process is the input
to OPTIMIZE. We assume that the quality of the
OPTIMIZE output improves with the quality of the
WEAK DIVISION output. In most cases, with rare
exceptions noted in Section V, this assumption ap-
pears to be justified. In an important sense, as dis-
cussed in Section V below, if either of these two
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modules were perfect, there would be no need for
the other.

The sequel begins in Section II with an overview which
provides a brief description of each of the system com-
ponents and how they interrelate. Section III describes
WEAK DIVISION and MULTILEVEL MINIMIZA-
TION, the techniques used to obtain an efficient multi-
level representation of the function. Section III also de-
scribes the cost and delay models used in multilevel syn-
thesis. Section 1V describes the module performing local
transformations, which is a rule-based expert system. Re-
sults and conclusions are covered in Section V and VL.

II. OVERVIEW

Fig. 1 shows the architecture of the SOCRATES logic
synthesis system. The application-specific input to the
system is a functional specification which can take one of
three different forms:

1) a set of Boolean equations, possibly multilevel;

2) a set of ‘‘linked”” PLA’s (single output) in ES-
PRESSO format;

3) a “‘net list’” of library gates.

Each of these forms can be represented graphically by
a so-called ‘‘Boolean network,’’ as illustrated in Fig. 2.
Each node in a Boolean network is a two-level function
in one of the three forms listed above. The Boolean net-
work is a directed acyclic graph, whose edges represent
the logic dependencies implied by any of the three input
forms. Note that nodes without ‘‘fan-in’’ are primary in-
puts (pentagons in Fig. 2).

As shown at the bottom of Fig. 1, the output of the
system is a net list of technology and application-specific
library gates: This output is dependent on additional input
such as the gate library, the rules library, and the speci-
fication of timing and fan-in constraints, which are unre-
lated to the application. Further, design guidelines, such
as the type of delay models to use, can also be considered
as system inputs.

The problem of synthesis under timing constraints is
viewed as a set of translation and optimization problems,
where each optimization is carried out at a different level
of abstraction. The first level of abstraction is the sum-of-
products level. The process of simplifying the two-level
Boolean equations at each node of the given Boolean net-
work is called minimization and is carried out by the ES-
PRESSO IIC logic minimizer [4], [15]. Synthesis at the
second level of abstraction involves the creation of an op-
timum multilevel Boolean network, which is the output of
the SYNTHESIS module (dashed box in Figure 1). This
module is comprised of the WEAK DIVISION, MUL-
TILEVEL MINIMIZATION, and LIBRARY MAPPING
submodules.

The technique of weak division [3], [6] is used to de-
compose the given Boolean network, which may or may
not have more than two levels, into an alternative optim-
ized multilevel Boolean network. This *‘structurally op-
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Fig. 1. SOCRATES system overview.
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Fig. 2. Multilevel Boolean network.

timized’’ Boolean network begins to reflect the structure
of the final circuit; it is apparent at this stage what logic
will be re-used, and approximately how many levels of
logic will be used to implement the function. Synthesis of
this multilevel Boolean network is heavily influenced by
timing considerations. The timing delay models used are
discussed in Section III.

After a decomposition is found that is satisfactory from
a performance and area standpoint, multilevel minimiza-
tion [6] is used to simplify this decomposition. This tech-
nique is based on the ‘‘don’t care’’ conditions associated
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with the intermediate variables introduced by the decom-
position into a multilevel function. Transformations sug-
gested by this process are rejected if they do not signifi-
cantly reduce area or if they increase the estimated delay.

The function(s) is then translated into a logic circuit by
replacing the two-level logic functions associated with
each node of the Boolean network into library specific
logic gates. This mapping into the library may use generic
“dummy’’ gates, like AND’s and oR’s, which are, ulti-
mately, replaced by the OPTIMIZE module with actual
gates from a user-supplied library.

Finally, the circuit implementation is optimized in the
target technology. A rule-based system, OPTIMIZE, per-
forms local transformations formulated as rules on the cir-
cuit. The optimality of the final circuit thus produced de-
pends on the rules in the library and the order in which
these rules are applied. Our approach uses a state space
look-ahead algorithm to optimize the application order, as
discussed in Section V (logic level synthesis and optimi-
zation).

The optimization criterion is based on both circuit area
and circuit delay. The system will try to meet the timing
constraints and subsequently perform area optimization.
The timing constraints will guide the specifics of the im-
plementation leading to a locally optimal choice of gates
in the given technology.

If the end product does not satisfy the user, or if the
user wishes to consider a number of different possible de-
signs, then the timing constraints can be changed and the
procedure iterated.

It is appropriate to think of the SYNTHESIS and OP-
TIMIZE modules of Fig. 1 as interdependent, interact-
ing, heuristic optimization processes.

III. MULTILEVEL SYNTHESIS AND
MINIMIZATION

In this section, we will describe the WEAK DIVISION
and MULTILEVEL MINIMIZATION portions of the
SYNTHESIS module. Together, these two algorithms can
be regarded as a program for finding an optimum archi-
tectural restructuring of the given, initial, often two-level,
Boolean network. In particular, we will describe how this
program acts to minimize the cost function of Figure 3,
which, roughly speaking, serves to minimize the gate ar-
ray (or standard cell) area subject to user-specified delay
guidelines.

The plan of the section will be as follows. First, we
describe, in Section HI-A, the computation of network
“‘cost’” as required by WEAK DIVISION and MULTI-
LEVEL MINIMIZATION. Because the cost constraints
of Figure 3 depend on critical path delay, we will also
discuss the two basic delay models employed in the SYN-
THESIS module:

1) the *‘unit delay’’ model (which is technology- and
fan-out-independent);

2) the “‘library element gate delay’’ model which em-
ploys the basic delay equation of Figure 4.
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b(pa = Given Boolean Function
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7(m) = Critical Path Delay
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Fig. 3. Delay constrained area optimization via decomposition.
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Fig. 4. SYNTHESIS delay models.

Once the cost and constraint computations are defined, we
can state the problem to be solved by the SYNTHESIS
module as follows:

Create, in terms of library elements, an optimally
structured circuit which, when subsequently pro-
cessed by the OPTIMIZE module, produces the best
final implementable Boolean network.

The basic ‘‘cooperation a§sumption’” is that the better the
SYNTHESIS module does in solving its optimization
problem, the better the OPTIMIZE module will do in
solving its problem (a similar optimization with a similar
cost function). (The validity of this assumption is tested
in Section V below.)

In Section III-B, we describe the WEAK DIVISION
optimization process and in Section III-C, we discuss
overall program control of this process. In Section III-D,
we conclude by describing, very briefly, the MULTI-
LEVEL MINIMIZATION process and presenting some
limited experimental results.

A. Cost and Delay Estimation

Decisions about what synthesis and optimization steps
to take requires the ability to obtain cost and delay esti-
mates for all subfunctions which comprise the multilevel
multiple output function.

Cost and delay estimates are obtained by doing a
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straightforward mapping on each subfunction in order to
generate a gate level representation in terms of the prim-
itives in the user-specified gate library.

The gate library contains two types of elements: imple-
mentation primitives and generic elements. The following
information is required for each element in the library:

a) the Boolean function defining the cell;

b) the cell area (the number of ‘‘transistor pair’’ units);
¢) the terminal count of the cell;

d) delay information for the cell;

¢) the equivalent output (load) resistance of the gate;
f) the pin capacitance of each gate input.

Implementation primitives correspond to primitives in the
gate library such as NAND2, NAND3, and A0133. From this
library, actual area and delay attributes can be obtained
for each element. Generic primitives are ANDs, ORs, and
sums of product expressions satisfying fan-in constraints
of the implementation primitives. The generic primitives
are interim, ‘‘dummy’’ gates which will always be de-
leted by the OPTIMIZE module discussed in Section IV.

Given a gate level representation, the ‘“‘AREA’’ and
“WIRES’’ terms of the cost function in Figure 3 are com-
puted by summing the gate area and terminal count for all
gates in the Boolean network. The terminal count serves
to estimate the amount of routing that will be needed be-
tween gates.

The delay constraint term 7(%) is obtained by perform-
ing critical path analysis on the current Boolean network.
The delay information needed depends on the level of de-
lay modeling used. When operating in ‘‘unit delay”
mode, only the set delay through each gate is used. If the
““library element gate delay’’ mode, which incorporates
fan-out, is used, it is also necessary to provide the output
pin resistances and input pin capacitances.

During straightforward mapping, if the representation
of a function or candidate subexpression is in one-to-one
correspondence with a primitive in the library, the library-
specified area, interconnect, and delay numbers associ-
ated with the primitive are used. If there is not a direct
mapping, the function is broken down and constructed
from a set of generic primitives. Each product or sum is
implemented in a few gates as possible without violating
fan-in or fan-out constraints. Delay through the configu-
ration is kept down by ordering inputs to each AND or OR
representation by their propagation delay. The inputs with
the longest delay are assigned to the inputs in the repre-
sentation with the most ‘‘slack’” (cf., discussion of (1)
below).

The library elements used to implement an intermediate
function may implement either the function or its comple-
ment. Determining which form of the function is best to
implement is known as phase assignment. The best phase
for a function depends on the phases available for its in-
puts and the phases needed by its fan-outs. The overall
optimum phase assignment problem is NP-complete. Be-
cause of this, neither the mapping nor the cost and delay
routines are concerned with determining the best phase
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for a function. Both phases of all primary inputs and in-
termediate variables are assumed to be available. We have
been investigating optimal phase assignment by simulated
annealing, and plan tp report our results in a subsequent
paper.

The SOCRATES system considers Boolean networks
with multiple primary outputs with specified target delays
for each output. For simplicity in discussing delays, we
shall assume that each Boolean network has a single pri-
mary output. The propagation delay through any given
function (node of the Boolean network) is the time it takes
for a signal to propagate from the primary inputs to the
output of the given function. This delay depends on the
local propagation time through the gate(s) implementing
the function and the propagation delay of the function’s
inputs. If the implementation of the given function rep-
resentation requires multiple library gates, their configu-
ration will be based on the arrival time of the functions
inputs in order to reduce the total propagation delay. The
delay at the output of a given node fis

7s = TSET; + MAX (7; — local__slack(f, i)). (1)

i e FANIN(f)
TSET; refers to the delay through the gates which imple-
ment this function. When operating in unit delay mode,
this would be one unit for each level of logic implement-
ing the gate. In library element gate delay mode, the gate
delay equation shown below is used:

7, = TSET, + RLOAD} 2 C, )
peFANOUT(g)

where C, is the input capacitance associated with the pin
to which g fans out. When the mapping requires multiple
gates, the set delay is the sum of the gate delays and load
resistance components of the longest path through the
configuration. The load resistance is the load resistance
of the final gate, i.e., the gate whose output is the value
of f. “local__slack’’(g, i)) refers to the time after start of
computation for f that i can arrive before it is considered
critical, and is a function of the configuration. It is com-
puted by ordering the inputs by their delays (O(n lg n),
heapsort); those with the most delay are assigned to the
input pins with the most local__slack. Also, the total in-
put capacitance of function f fanning out to a function
which is realized with multiple gates depends on the num-
ber of gates to which f fans out.

The user may specify propagation delays for primary
inputs reflecting their relative arrival times. If delays are
not specified, they are assumed to be 0.

Prior to computing the delay through each function, the
graph is levelized based on function dependencies. A
function which depends only on primary inputs is a level
1 function. A function depending on a level i function is
alevel i + 1 function. The delays for the primary inputs
are read in or assigned default values of 0. The remaining
delays are then computed by levels, starting with level 1.

When the delay of a function changes, it may affect the
delay of those functions in its (transitive) fan-out. Changes
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are propagated one level at a time until either a primary
output has been reached or the delay of a function does
not change. The local slack for each function needs to be
recomputed as different delays or inputs may result in a
different assignment of inputs to pins.

If the library gate delay mode is used, then a ‘‘latent’’
critical path delay calculation is performed to propagate a
local delay change, as calculated by (2) through to the
primary output. Here we simplify the calculation with the
following assumption:

Assumption: Only the (transitive) fan-out of a gate g in

a given Boolean network is affected by a change in the
delay of a transformed gate.
This assumption actually constitutes an approximation in
the library element gate delay mode because the substi-
tutions made by WEAK DIVISION affect the fan-out of
gates not in the (transitive) fan-out of the given gate g.
Hence, by the calculation of Fig. 4 the delay through these
other gates also could, in principle, change. These
changes are ignored when computing the cost of candidate
substitutions in order to reduce the overall running time
of WEAK DIVISION. Of course, once the best candidate
has been selected and substituted, an exact critical path
delay calculation is made. This latter calculation is still
latent, however, in the sense that it startes only at nodes
which fan-in to nodes whose delay has actually changed
since the last transformation (i.e., substitution).

B. Library-Based WEAK DIVISION

As discussed above, algebraic decomposition or WEAK
DIVISION is a method of recognizing the subexpressions
which are either common to two or more different func-
tions or factorize, and thus simplify, one individual func-
tion.

Example (Weak Division on Two-Level Function):

Initial representation Modified representation

F\: aef + bef + cef F|: Bef
F,: aeg + beg + deg Fy: Ceg
Ara+b
B:A+¢
C:A+d
IfA=F,B=F, C=F;and (a, b, ---, g = (xy,

Xy, *** , X7), the Boolean network which corresponds to
the modified representation is that of Fig. 2. In the sequel,
we shall refer to product terms such as aef as cubes.
Hence, each Boolean function is regarded as a set of
cubes. The true or complement form of a Boolean vari-
able (a, a, b, b - - ) is called a literal. In the above
example, the primary output functions F, and F, were
reexpressed by detecting and creating intermediate vari-
ables for common subexpression 4 and factors B and C,
and substituting these into the original representations.
The functions in the initial two-level Boolean network de-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-5, NO. 4, OCTOBER 1986

Procedure WEAK_DIVISION
Begin
/* DECOMPOSITION */
While (common subexpressions exist)
Generate candidate subexpressions for
current functions
Determine eligible subexpressions
Select "best" disjoint subexpressions
Associate new intermediate variables with
subexpressions and substitute
Endwhile
Collapse subexpressions referenced by
only one function

For cach function (FACTORIZATION)
repcat above loop for single function
Endfor
End WEAK_DIVISION

Fig. 5. WEAK DIVISION algorithm.

pend only on primary inputs. The functions in the multil-
evel ‘‘modified”’ Boolean network (four-level in this case)
are expressed in terms of both primary inputs and inter-
mediate variables. The SYNTHESIS module permits the
initial representation to be either two-level or multilevel.
As suggested by the above example, the WEAK DI-
VISION process regards the two-level functions associ-
ated with the nodes of the Boolean network as algebraic
expressions. The process consists of a set of decomposi-
tion steps, each one involving the following substeps:

a) determination and examination of candidate sub-
expressions;

b) selection of the ‘‘best’’ candidate subexpressions;

¢) substitution of best candidate subexpression (which
transforms the current Boolean network into an al-
tered one).

This process serves two purposes. First, it enables shar-
ing of logic between the multiple functions. Second, it is
the basis for decomposition of the original representation
into primitives which are more readily implementable in
the desired target technology.

The algorithm for WEAK DIVISION, outlined in Fig.
5 shows that the WEAK DIVISION process is an iterative
one. Each iteration has four phases: the generation of can-
didate subexpressions, the pruning of subexpressions
which do not satisfy user constraints, the selection of the
best disjoint subexpressions, and the substitution of these
subexpressions into one or more of the functions which
they divide. The substitution of a subexpression into one
or more functions may create new divisors which are ex-
pressed in terms of this new intermediate variable. This
process continues until there are no subexpressions of suf-
ficient merit to warrant further substitution. WEAK DI-
VISION is separated into two steps: decomposition, the
recognition of subexpressions common to multiple func-
tions, and the factorization of individual functions. Any
intermediate variables which are only referenced by a sin-
gle function are collapsed back into the function between
these steps. If there are still functions which are not read-
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Procedure KERNEL_GEN (F,start_{it)
If CUBE_FREE(F) Then
RECORD_KERNEL(F,.LEVEL(F))
If (LEVEL(F) == 0) Then
Return
Endif
Endif
For lit-start_{it last_{it
If (Lt in 1)
subf«F[lit
subfsubf /COMMON_CUBE(subf)
KERNEL_GEN(subf lit + 1)
Endif
Endfor
Return
End KERNEL_GEN

Fig. 6. The Kernel construction algorithm.

ily represented in the primitives of the target technology,
these are broken down in a straightforward manner.

Algorithms based on those presented in [3] are used to
generate to candidate subexpressions and to substitute the
selected subexpressions. The algebraic cofactor 4 of f with
respect to g(h = f/g) is a new function defined to be the
largest set of cubes (product terms) such that » and g have
no literals in common and every term in the Boolean in-
tersection of h and g(hg)isinf, i.e., f= (f/g)g + r, =
hg + r,, where r, is the appropriate remainder. In the
example above, if g = A = a + b, then F|/g = ef, and
r, = cef. Note if f/g # ¢, then both g and f/g are divisors
of f.

During the decomposition phase, there are two types of
candidate subexpressions, those generated by distillation
and those generated by condensation. There are parame-
ters to guide which type to generate during each pass. Op-
tions exist to generate both or to generate distillation terms
until the merit drops below a user-specified value and then
to generate both.

Candidate distillation expressions are subexpressions of
kernels which appear in more than one function. The ker-
nels K of an expression f are formally defined as a set of
cubes K( f) which satisfies

K(f) = {flc: cisacube and f/cis cube free}. (3)

An expression is cube free if there is no literal which
appears in every cube. Note that a single product term is
not cube free; thus, a kernel is defined to contain two or
more product terms.

In the Example, the only kernel of F; is a + b + c,
which is F,/ef. F,/e is not cube free and F\/a, F/b, F,/c
do not contain two or more cubes.

The kernel construction algorithm shows in Fig. 6 is a
recursive algorithm. Initially, F is the function to obtain
kernels for and start _lit is set to 0. A level O kernel X is
defined to be one where K(K) = K. A level n + 1 kernel
is one where K(K) are all of level < n. In a level 0 kernel,
no literal appears in more than one cube. The kernels for
each function are generated independently, but all kernels
are stored in a common kernel table whose rows corre-
spond to the kernels and whose columns correspond to the
functions divided by the kernel.

After generating kernels for all functions, additional
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FUNCTIONS
FOFLEE,
 — X XN X
— XX
X X
= X X - SELECTED
SUBSTITUTION
I D<D,A<A

EXPRESSIONS

COMMON DIVISOR
TABLE

BOOLEAN NETWORK
Fig. 7. WEAK DIVISION process.

common divisors are found and added to the kernel table.
A common divisor is any K; M K such that K; is a kernel
from function i, K; is a kernel from function j, and there
are at least two cubes which appear in both kernels. As-
sociated with each divisor are the cubes comprising the
divisor and the functions which it divides.

The complement of each kernel is also generated and
each function is checked to see if it can be divided by the
complement. Those kernels which do not divide multiple
functions will not be considered for substitution. The
above process is illustrated in Fig. 7. At the top right is
shown the Boolean network prior to the selection and
substitution of a common divisor. At the left, a table is
shown where the rows:correspond to common divisors and
the columns to functions (nodes of the Boolean network).
The entries X may take one of three values, indicating the
‘“signature’’ of the expression, i.e., whether the division
function occurs in true form, complement form, or in both
forms in the function associated with its column. No entry
means the divisor does not occur in that function (col-
umn). Divisors not common to two or more functions are
not present in the table. The cost is computed, as de-
scribed in Section III-A, for each candidate substitution,
and the resulting transformation of least cost is selected.

Note that, generally speaking, divisors which are com-
mon to more functions provide greater area savings.
However, in the case illustrated in Fig. 7, a divisor com-
mon to only two functions (F, and F5) is selected, despite
the existence of a divisor (the first) common to three func-
tions (Fy, F,, and F3). This is because of the connectivity
of the Boolean network. Substitution of the latter divisor
would result in an extra level of logic. This subexpression
would not be considered if it resulted in violating any de-
lay constraints.

Candidate condensation subexpressions are cubes whicn
can cofactor multiple functions. A condensation table is
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constructed containing all such cubes. Associated with
each are the literals comprising the cube and the functions
which it can cofactor.

A function fcan be reexpressed in terms of a subexpres-
sion g if f/g is not empty. The complement of the candi-
date subexpression is also considered for substitution.
Thus, as a result of substitution, we have a new represen-
tation of the function fin the form f = (f/g) G + (f/g)
-G+ r,, where g is the expression to be substituted and
G is the literal associated with it. As a subexpression may
have been substituted into other functions on a previous
pass, it is necessary to check if it has already been imple-
mented. If neither the subexpression or its complement
exist in the function table, the subexpression is added and
associated with a unique literal. All eligible occurrences
of the subexpression and its complement are then replaced
with the corresponding literal or its complement. Two
subexpressions g and h are disjoint if ( f/g) g and (f/h) h
do not contain any of the same cubes or if f/g 2 h and
fih 2 g.

As the common subexpressions are typically quite
small, the number of kernels to consider can be reduced
greatly by considering only level O kemels. This also
speeds up the kernel intersection process. Often, the more
complicated common divisors can be obtained by back
substituting (collapsing) any literals referenced by a sin-
gle intermediate variable.

The algorithms used for factorization are very similar
to those used for decomposition. Only one function is
considered at a time and the candidate subexpressions are
the level O kernels of each function.

C. Program Control of WEAK DIVISION

The objective of our WEAK DIVISION process is to
select those subexpressions that will yield the best imple-
mentation in the specified target technology. After each
generate phase, merit and delay increment estimates are
obtained for the candidate subexpressions. The best dis-
joint subexpressions become intermediate functions. Dif-
ferent candidate subexpressions will generate alternate
representations of the functions into which they can be
substituted. Selecting one intermediate subexpression may
eliminate other candidate subexpressions.

The user may influence the final propagation delay by
specifying delay constraints. These prevent, regardless of
merit, the substitution of any candidate subexpressions
which would increase the delay of any critical primary
output functions by more than a user-specified amount.
There are several different user-specified ways a primary
output function can be considered critical:

a) exceeds a certain absolute delay figure;
b) exceeds the maximum initial delay;
¢) exceeds the maximum current delay.

Given a criteria for determining if a primary output func-
tion is critical, the slack associated with each primary out-
put is calculated as follows. If the initial network is mul-
tilevel or if kernels of level >0 are allowed, it is necessary
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to determine how much a change in the delay of an inter-
mediate function will affect the delay of the primary out-
put functions in its transitive fan-out. This can be done
by maintaining an array showing the longest path between
each primary output and each intermediate function. The
slack o; associated with each intermediate function F; is

g = ll\g)lgl {o: + P() — (P() + LPG, j)} 4

where PO denotes the set of primary output indices in the
transitive fan-out of j, P(j) is the length of the longest
path from any primary input to the intermediate function
F;, and LP(i, j) is the length of the longest path to primary
output function F; from intermediate function F;.

If substituting a candidate subexpression into a function
ca a delay increase which is greater than the slack
¢ «tic  d for the function, then the subexpression is no
lc v .onsidered for substitution in this function.

The merit M(G, F) of substituting a subexpression G
into a specific function F is the difference in cost between
the original (f) and the revised representation (f’ =

(fle) G + (fI2) G + rp), i.e.,
M(G, F) = COST(f) — COST(f").

(-

®)

If the subexpression G is to be substituted into the func-
tions F;, j € Jg, where Jg is the set of functions G can
cofactor without violating delay constraints, then the total
merit MT(G) is given by

©)

jeJc

MT(G) = <Z M(G, F,)> — COST(G)

where COST(G) is as defined in Section III-A.

D. Multilevel Function Minimization

As WEAK DIVISION is a strictly algebraic process,
the network may contain intermediate or primary output
functions that are functionally equivalent. Because of
‘“!don’t care’’ conditions inherent to multilevel Boolean
networks, functions which are prime and irredundant in
the two-level sense may be nonminimal in the multilevel
sense. As a result, the network may also contain functions
which can be more efficiently expressed in terms of a dif-
ferent set of intermediate functions. To exploit these pos-
sibilities, we now discuss a technique we call “MULTI-
LEVEL MINIMIZATION.”’

The “‘two-level’’ notions of primality and irredundancy
are yet to be rigorously defined in the multilevel context,
but the don’t care methods described below establish a
promising multilevel minimization technique for two-level
minimization. In fact, if the full don’t care set described
below is used, then there is a meaningful sense in which
the resulting network may be called prime and irredun-
dant. We plan to explore these matters more fully in a
later paper [17]. For now we content ourselves by think-
ing of MULTILEVEL MINIMIZATION as a process
which, like WEAK DIVISION, reduces the cost function
of Fig. 3 by a series of local transformations. In this case,
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the transformations are those made by the ESPRESSO
logic minimizer given the multilevel don’t care set dis-
cussed below.

In two-level minimization, we are given F:B"—B and
attempt to minimize || FU D,||, where |- || is some mea-
sure of term count (circuits) and literal count (transistors)
in the given cubical cover of F. Here, D* = {xeB"| “x
never occurs as input’’} is the so-called don’t-care set [4].

In multilevel minimization, we are given a set of pri-
mary inputs x;, i = 1,2, . . ., n, and a set of intermediate
variables y, = F,(x,y) k=1,2, . . ., m. Note that here
F,:B"""—B. The y, can be primary outputs or literals
representing intermediate variables which are output from
node k of the Boolean network example of Fig. 1.

The ‘‘intermediate’” don’t care set associated with
function F; of the Boolean network is given by

Dj = xF;(x.y) + % (xy) . (72)

Simply stated, Df gives the set of vertices of B" "™ which
have inconsistent combinations of the components of x
and y vectors, i.e., combinations which cannot occur, and
are, therefore, ‘‘don’t care.”’ The totality of such inter-
mediate don’t care conditions
D= 2 D (7b)
jeL2,...m
is known to be potentially prohibitively large and, when
minimizing function F, of the Boolean network, is usually
replaced by a subset D*, defined by
D=2 2 DplcD

JEjk i€l;

(7o)

where I; is a set of node indices and J; is a set of set
indices. The purpose of the double summation is to permit
sufficiently powerful subsets of D’ to be expressed which,
it is hoped, are minimally sufficient for the complete mini-
mization of F,. We are currently using the transitive fan-
out of the transitive fan-in of node k, minus the transitive
fan-out of node k for that purpose.

In terms of these definitions, the multilevel don’t care
set for function F, can be expressed as follows:

D, = D* U D*U D% (7d)

where D% stands for the “‘output’’ don’t care set [7],
which we have neglected in the work described below.
The effects of D% will be discussed in a later paper [17].
If D% is neglected, only primary output functions will
necessarily be rendered prime and irredundant by our pro-
cedure. However, any of the F, may possibly be simpli-
fied, thus reducing the cost function of Figure 3, whether
or not they are primary outputs.

Assuming that D* = D' and that node k of the Boolean
network is a primary output, for which D% = &, then it
can be shown that (7d) gives the complete don’t care set
for function F,. If a complete don’t care set is used, for
each F,, then after ESPRESSO is applied to function
F,UD,, forall k=1,2, ..., m, the resulting Boolean
network can be shown to be prime and irredendant in the
sense that no cube or product term of any functions can

(+)
ofjo
AT

F\=Fy
Fy=ab+ba
LITS=5

TERMS=3

Fo=ab+F,
F.=ab
F,=ab+ba
LITS=9
TERMS=5
Fig. 8. MULTILEVEL MINIMIZATION example.

be deleted without altering the Boolean functionality of
the Boolean network. -

However, with any don’t care set which is complete in
the sense described above, the adjacency relations of the
Boolean network may be altered as shown in the example
of Fig. 8. It is of interest to observe that in this example
the starting representation (on the left) is prime and irre-
dundant. Thus, the ‘first EXPAND and IRREDUNDANT-
__cover operations in ESPRESSO will have no effect.
However, after the REDUCE operation is performed, the
optimal result will be obtained in the second EXPAND step.
We observe, in fact, that REDUCE is performing a major
part of the role of the minimization process referred to as
Boolean substitution in [6]. This effect offers a major av-
enue for future research.

IV. LoGic-LEVEL SYNTHESIS AND OPTIMIZATION

The final step in the synthesis of a circuit is to imple-
ment the optimal multilevel function at the logic level.
The challenge here is to make the best possible use of the
target technology. The approach taken to this problem is
to first map the multilevel function to a logic-level circuit,
and then to optimize the synthesized circuit. Since this
module of the synthesis system has been described in ear-
lier publications [10], we will merely summarize in this
paper its workings and concentrate on the timing specific
parts.

A. Initial Mapping to Target Technology

The translation of a multilevel function to a circuit is a
straightforward operation. In order to make this transla-
tion tool technology-independent, the initial circuit is al-
ways implemented using the same small subset of library
gates. If these gates do not actually exist in the target
technology, then a high cost is assigned to them to force
their later removal.

B. The SOCRATES Rule-Based System

The optimization of the circuit at the gate level is done
by a rule-based system. A knowledge-based approach,
rather than an algorithmic approach, was used in order to
provide a paradigm for the use of specialized knowledge
about the target technology. A circuit is optimized by per-
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forming local transformations on it: each transformation
replaces one small configuration of gates with another
configuration that is functionally equivalent. A cost func-
tion similar to that described in Section III is used to as-
sess the merit of the replacement. Any given transfor-
mation may reduce the cost of the circuit from the
standpoint of either area, performance (i.e., delay), or
both.

Knowledge acquisition has traditionally been difficult
in existing rule-based systems. A rule entry module aids
the knowledge engineer in adding new local transforma-
tions to the system. This module automatically verifies all
new rules for functional correctness and orders them in
the knowledge base. The ordering is determined by the
area and delay benefits associated with the rule in ques-
tion and is also a function of the relationship of the trans-
formation to the rules already in the knowledge basc.

During the optimization, the system performs four sets
of tasks.

1) A pattern matcher is used to find which rules apply
on the circuit. Generally, more than one rule can be ap-
plied at any time during the optimization.

2) For each potential rule application, a cost function
is computed to determine the quality of the resulting cir-
cuit.

3) A selection mechanism decides which rule is to be
applied next.

4) The rule is applied by constructing the new gate
configuration on top of the old configuration, removing
the old one and adjusting the cost function to its new
value.

C. The Search Strategy

The actual sequence of transformations that will be used
is determined by a control module which ‘“‘looks ahead”’
several rule applications in order to select the most useful
set of transformations. This is done in order to avoid local
minima of the cost function. Although the amount of CPU
time required increases rapidly with increased breadth and
width of the search space explored for each move, it was
found that on the average the resulting circuit size can be
reduced by an additional 10 percent using a look-ahead
strategy. The search space explored is the space of Bool-
ean networks which can be obtained from the initial 1i-
brary mapping by some sequence of rule applications. If
the Boolean network has Ny, nodes and there are Ni rules
in the rules library, there are, potentially

Nr

Ny, 22 k!
k=1

such sequences. We explore a meaningful subspace of this
potentially large state space by a search algorithm that is
illustrated in Fig. 9. This algorithm is controlled by a
number of parameters, the most important of which are
breadth (the number of rule sequences explored from a
given network configuration) and depth (the length of the
rule sequence to be explored).
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Y1
NODES = 3YSTEM STATES

EDGES = RULE APPLICATIONS

BREADTH

5 T mo

DESCENT ESTIMATION BOXES

SEARCH METROD
1. LOOKN AT ALL STATES IN EACH SON'S ESTIMATION BOX
2. TAKE BEST RULKE (r,) TO NEW STATE (s,) AND RECUR
3. IF BOX CONTAINS SUFFICIENTLY MERITORIOUS STATE
4. THEN SEARCH RECURS FROM s,

Fig. 9. State space search.

D. Meta-Rules

During the development of the optimizer, it became ap-
parent that the search parameters should be dynamically
adjusted during optimization to improve results and run
time. A second rule-based system was therefore built to
control the search strategy of the system. A set of meta-
rules modifies the control parameters of the search mech-
anism based on a set of diagnostics from the system.
While the transformation rules used reflect the expertise
of the circuit designer, the meta-rules capture the expe-
rience of the designer of the optimization system. The
meta-rule system has proven extremely valuable while ex-
perimenting with a variety of search strategies.

Just as in Fig. 7, each “‘local transformation’’ may be
regarded as changing the ‘‘state’’ of the Boolean network,
or, equivalently, transforming the given Boolean network
into an alternate Boolean network. This alternate network
realizes the same (given) Boolean logic functions, but at
lower cost (cf., Fig. 3). On this view, the objective of the
expert system is to find the ‘‘state’’ (i.e., Boolean net-
work) with minimum cost.

The rule-based system thus *‘searches’’ the space of all
possible states, systematically, under meta-rule control.
Suppose the system reaches state s, of the state space by
applying rule r; to node v, of the previous Boolean net-
work. The META__RULES subsystem then selects an or-
dered application sequence which explores a set of ‘‘de-
scent estimation boxes.’” The number of these boxes is a
breadth parameter determined by the META RULES
subsystem, as are the breadth and depth parameters which
characterize each estimation box. Each such box com-
prises a subspace of the overall state space. The look-
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ahead procedure consists of applying a sequence of rules
which determines the state of least cost in each descent
estimation box. If the box initiated by applying rule r, to
node v, has less estimated cost than that of the boxes as-
sociated with the pairs r3, vs, 74, © © -, then state s, is
selected as the next official state, and the process recurs
with s; replaced by s,. In exceptional cases, if the cost of
some state, say ss, is sufficiently low, then the process
recurs from s instead of from s,.

It is significant that the nodes v,, v3, Uy * + - selected
by the META RULES subsystem are chosen from the
immediate neighborhood, in the Boolean network of state
s), of the original active node v,. This strategy promotes
early competition between rule applications. Such com-
petition is ultimately necessary, since OPTIMIZE termi-
nates only when no further rule applications are possible.
Early competition gives the META RULES subsystem
the opportunity to optimize rule tradeoffs.

E. Optimization of Delay

In order to assess the timing benefits of applying a rule,
a critical path algorithm is used to compute the typical-
case delay times of each signal and the slack time of each
gate. Like the critical path finder used in the multilevel
synthesis modules, this critical path algorithm is latent,
i.e., it operates incrementally for greater efficiency.
Whenever a transformation is performed, the critical path
finder restricts its operation to the gates in the circuit that
are descendants or ancestors of an altered gate. This en-
sures that no time is spent recomputing delay information
that didn’t change. Since the path finder is working on an
actual circuit, the predicted path lengths will now be exact
(modulo the accuracy of the library element delay equa-
tions) with the exception of the interconnect delays, for
which a simple approximation is used.

The user can specify the timing constraints in the form
of signal arrival times at the inputs and desired maximum
delays at the output. The drive limitations of the logic
driving the inputs of the synthesized circuit as well as the
loads connected to the output of the synthesized circuit
are also specified by the user. The system will synthesize
the smallest circuit that meets the timing constraints, or
the circuit that comes closest to meeting them. The end
product of SOCRATES is a netlist of an automatically
generated schematic.

1) Optimization Phases: The process of gate-level
optimization proceeds in three main phases. In the first
phase, only transformations that reduce both the delay and
area cost of the circuit are applied. This phase produces
a circuit that is appropriate to the target technology and
that strikes a balance between area efficiency and time ef-
ficiency. In the second phase, the circuit is optimized for
delay only by applying delay-saving rules to the gates
along the critical path until the timing constraints are met
or the optimizer can do no better. In the last phase, area-
saving transformations are used on gates off the critical
path. These transformations will reduce the area of the
circuit without changing the delay of the circuit.

2) Delay Improving Rules: There are several ways in
which local transformations can speed up a circuit.

e Faster, Similar Gates. Often logic functions can be
implemented in a variety of ways resulting in the same
area but different timing behavior. For instance, in
CMOS, a NAND/NAND implementation tends to be faster
than a NOR/NOR implementation; xNOR gates tend to be
faster than XOR gates.

® Break-Up Large Gates. Performance improvements
can be obtained by replacing larger gates with sequences
of smaller, faster gates. The timing benefits of such re-
placements are strongly a function of the configuration of
neighboring gates and can only be assessed by actually
recomputing the resulting loading delays of the new cir-
cuit.

® Move Critical Signals Closer to Output. This is es-
pecially useful in cases where one or more input signals
arrive late. Reducing the number of levels of logic that
such a signal has to traverse to arrive at the output can
significantly improve the overall timing of the circuit.

® Buffering. Finally, buffering heavily loaded gates ap-
propriately tends to improve the performance of a circuit.

V. COMPUTATIONAL RESULTS

We will now describe three types of experimental re-
sults. First, the results of applying the SOCRATES sys-
tem to a set of the ESPRESSO book PLA’s [4] which can
be thought of as a set of ‘‘real world’” multiple output,
two-level, combinational logic functions. We then dem-
onstrate the flexibility and technology independence of our
system with some detailed case studies of specific PLA’s
(RD53 and F2). Finally, we conclude with some experi-
ments designed to illustrate basic compatibility and de-
tailed interaction of -the SYNTHESIS and OPTIMIZE
modules.

A. Experiments on ESPRESSO Book PLA’s

Both WEAK DIVISION and OPTIMIZE can be run in
either area or delay mode. (Note that the other SYNTHE-
SIZE modules, e.g., MULTILEVEL MINIMIZATION
and LIBRARY MAPPING, also depend on the cost func-
tion and, hence, have both area and delay modes also.) In
area mode, the objective is to minimize area independent
of delay. However, in delay mode, the objective, roughly
speaking, is to minimize area subject to constraints on
delay. Table I shows the results for 24 examples. Four
experiments were performed on each example:

1) WEAK DIVISION in area mode followed by OP-
TIMIZE in area mode (A,A);

2) WEAK DIVISION in area mode followed by OP-
TIMIZE in delay mode (A,D);

3) WEAK DIVISION in delay mode followed by OP-
TIMIZE in area mode (D,A);

4) WEAK DIVISION in delay mode followed by OP-
TIMIZE in delay mode (D,D).

We will subsequently refer to the four modes of operation
corresponding to these four experiments as AA, AD, DD,
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TABLE I
EXAMPLES OF CONSTRAINTS ON DELAY

Area Timing
namelecpumin} [ (a.a) {ad) (da) (dd) j(aa) {(ad) (da) (dd)
mark(0.7) 9 9 21 20 3 3 8 4
f1{1.0) 19 23 20 25 5] 5 7 )
clpl{1.0} 20 20 51 48 17 17 12 10
£0{0.1) 26 29 2 29 10 7 10 7
gerf(0.R) 26 25 31 33 12 10 12 10
f2{1.0) 32 32 56 (i3 6 ] 9 4
fadd(1.7) 39 39 16 47 12 12 13 9
adde(1.6) 50 A7 Bl 5T 19 18 19 18
decl(s.1) 73 T T &1 12 10 10 G
z4(90.3} 76 76 108 117 13 12 22 16
rda3(6.1) 9 95 ) 00 22 16 16 1t
{11 a7 112 103 124 14 11 14 1t
exam{13.) 08 108 f12 127 13 10 14 9
13(8.3) 99 107 99 114 14 13 14 9
19.2) 103 113 108 118 13 10 16 10
&fun{11.} 107 127 125 141 14 13 15 13
plab(12.) 158 176 165 192 I8 14 17 14
Sxpl{89.) 191 217 220 254 24 19 21 16
dec2(66.) 203 219 215 213 22 17 22 16
f51m(63.) 209 2345 256 285 25 19 24 18
root{63.) 234 247 269 287 27 22 43 29
plac(31.) 249 2RR 303 237 22 17 23 16
bw{192) 2R6G 311 2R3 307 16 14 17 14
Osym (51} 361 380 397 426 37 25 50 38
average 114 130 134 148 17 14 18 13
TABLE 11

AVERAGES OF AREA AND DELAY VALUES

WDIV
Arca/Delay | Area Mode | Speed Mode
Area Mode 119.4/16.6 | 134.7/18.3
OPTIM
Speed mode | 130.1/13.8 148.6/13.5

and DD. In all four experiments, WEAK DIVISION was
run with the ‘‘unit delay’’ delay model.

The first half of Table I lists the resulting area values;
the second half of the table shows the obtained delay val-
ues. Area refers to the number of transistor pairs, delay
is in nanoseconds, and (cpu min) refers to the number of
VAX 780 cpu minutes to run WEAK DIVISION and OP-
TIMIZE.

The results are summarized in Table 11, which gives the
averages of the area and delay values. It is immediately
apparent that the best area optimization is obtained by
having both modules work in area mode; the best delay
optimization is achieved using the two modules in delay
mode. Between those two cases, we observe an area in-
crease of 20 percent and a delay decrease of 20 percent.
It should be noted that there are some cases (z4, root,
9sym) where a better delay number is obtained for WEAK
DIVISION operating in area mode. Section V-C will ana-
lyze reasons for these discrepancies and present some par-
tial remedies.

Table III contains a subset of the Table I examples
where MULTILEVEL MINIMIZATION was able to fur-
ther optimize the output. AA corresponds to running
MULTILEVEL MINIMIZATION on WEAK DIVI-
-SION-A output and then running OPTIMIZE-A. DD cor-
responds to running MULTILEVEL MINIMIZATION
with delay constraints on WEAK DIVISION-D output and
then running OPTIMIZE-D.

TABLE 111
EFFECT OF MULTILEVEL MINIMIZATION

AA DD
name | Area Delay | Area Delay
fadd 32 9
adde 59 14
dect 69 10
24 58 16 61 14
rd53 82 15
f5 95 14 109 8
exam 94 11 116 10
f4 103 9 124 8
8fun 110 13 128 10
plab 176 15
dec2 201 20
plac 256 26 336 15
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Fig. 10. Area Speed Tradeoffs of RD53.

Comparing the two tables, it can be observed that, in
the 12 A4 examples, better area numbers (than AA) were
obtained in eight cases. Three of the other cases illus-
trated better area delay tradeoffs. In the 6 DD examples,
the delay was reduced (relative to DD) in all but one case
(exam2). These numbers indicate the MULTILEVEL
MINIMIZATION is often a valuable step to take in the
optimization process.

B. Flexibility and Technology Independence

To show the system’s flexibility, we took one example
and ran it with increasingly severe timing constraints. That
is, the required arrival times at circuit outputs were pro-
gressively reduced. The results in Fig. 10 show the area/
delay tradeoff for example RD353, and demonstrate how
SOCRATES can be used to explore a design space quickly
and easily.

To demonstrate the technology independence of SOC-
RATES, when we changed the description of our two in-
put NOR from small and fast to large and slow in the li-
brary and ran an example again, SOCRATES replaced all
of the original NOR gates with NAND gates and inverters.
The schematics for both the original (on the left) and the
new circuit (at the right) are shown in Fig. 11. The new
implementation without the NOR’s is clearly less efficient.

C. SYNTHESIS-OPTIMIZE Interactions

The results of Table I and II clearly establish the overall
benefits of the partnership between OPTIMIZE and
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Fig. 11. Example change in technology for F2.

WEAK DIVISION. However, it is of interest to explore
further the detailed interaction between modules. One
would expect that the AA case (both modules in area
mode) would always have the lowest area and that the DD
case (both in delay mode) would always have the lowest
delay. This is always true in the area case. However, as
can be observed in circuits z4, root, and 9sym of Table I,
there are discrepancies in the delay case. Examining the
differences between AD and DD indicates that when OP-
TIMIZE is in the delay mode, whichever mode of WEAK
DIVISION is used has significant, but mixed, impact on
the delay of the final circuit. Subsequent experiments dis-
cussed below have shown that, while WEAK DIVISION
was always very useful in reducing the area and was ef-
fective in reducing the average delay, it was actually det-
rimental to delay reduction in a few cases.

The delay and area differences between AA and DA or
AD and DD can be viewed as indicating how effective
WEAK DIVISION is at influencing the delay/area. Sim-
ilarly, the differences between AA and AD and DA and
DD indicate how OPTIMIZE can influence the delay. A
tie between AA and AD or DA and DD indicates that the
circuit is such that optimizing the area also optimizes the
delay. A tie between AD and DD or AA and DA indicates
that OPTIMIZE is so effective that it can obtain the best
delay/area independent of what WEAK DIVISION does
to the input circuit. There are (at least) four possible rea-
sons which may account for these apparent inconsisten-
cies between the WEAK DIVISION and OPTIMIZE
components of SOCRATES.

1) limited rule base;

2) WEAK DIVISION unit delay model does not incor-
porate fan-out or technology dependence;

3) AND/OR translation in the LIBRARY MAPPING
module obscures the WEAK DIVISION architec-
ture;

4) different assumptions about forms available for pri-
mary inputs

All of these are directly tied to our initial assumption that
it would be possible for WEAK DIVISION to operate in
a technology-independent manner, using very crude area
estimates. Thus, WEAK DIVISION would have the task
of efficiently decomposing the original two-level network
which could be optimally mapped by OPTIMIZE. Reali-
zation that architectural decisions with global implica-
tions during WEAK DIVISION were not readily undone

by OPTIMIZE’s local transformations inspired the tech-
nology-independent unit delay model. Clearly, if there
were an infinite rule base, OPTIMIZE could obtain the
best final implementation from any representation, but this
would require much larger global transformations and may
not be feasible in terms of the size of the rule base or in
computation time.

As WEAK DIVISION produces a multilevel PLA and

" OPTIMIZE requires a netlist as input, it is necessary to

have a translation program in between them. Based on the
above assumptions, the initial LIBRARY MAPPING
module used in producing the data of Tables I and II
mapped each function in the multilevel cover to a repre-
sentation consisting of inverters, two input AND gates
(anND2), and two input Or gates (OR2). OPTIMIZE views
AND2 ad oR2 as dummy gates; they are in the library but
have been given very high cost to assure that rules will be
applied to replace them. What appears to be happening is
that, once larger gates (such as AND4 and xOR) are broken
down into two input gates, they are not being recovered
by the OPTIMIZE rules so the architecture (or ‘‘logic
structure’’) generated by WEAK DIVISION is obscured
or lost.

There are (at least) two ways to test and/or remedy this
situation. One would be to assure that the rule base con-
tains rules to regenerate gates corresponding to the func-
tions that were decomposed. The second would be to have
the input to OPTIMIZE more closely correlate to the out-
put generated by WEAK DIVISION. This requires more
technology-dependence in the LIBRARY MAPPING
module. After WEAK DIVISION, almost all of the func-
tions satisfy the fan-in constraints of the gates in OPTI-
MIZE’s library. By introducing additional intermediate
functions, those that don’t satisfy fan-in constraints can
be transformed in a straightforward manner to func-
tions that do. A new LIBRARY MAPPING module,
Exact Map, has been written which maps each function
into the corresponding gate adding inverters where nec-
essary.

Experimental results with the new LIBRARY MAP-
PING modules have produced more consistent results.
Lower delays have been obtained running all modes, and
WEAK DIVISION appears to be having more of an effect
on the delay. OPTIMIZE also ran considerably faster with
an input consisting of the larger gates. We believe even
better area delay tradeoffs could be obtained if there were
rules to decompose the large gates in order to investigate
alternate configurations.

The original delay model utilized by WEAK DIVI-
SION was the unit delay model. In estimating the delay,
functions were decomposed into ‘‘gates’’ satisfying the
fan-in constraints of the library and one unit was charged
for each gate. (Inverters were not considered.) This model
does not take into account load delay, which is often a
very important contributor to the total delay through a cir-
cuit. Experiments using the library element gate delay
model of Fig. 4, which incorporates load delay, have pro-
duced more consistent results, in which the WEAK DI-
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TABLE IV
EFFECT OF INCREASING MODELING DETAIL IN SYNTHESIS MODULE (12
EXAMPLE AVERAGES)

SYNTHESIS 7.0(nS); Arga Ratio AT(WD) Anomaly

Sequence AA AD DA DD Tan = Ton | Count”
WD1/MAP1 13.2/1.8 | 11.1/1.8 | 15.5/1.7 | 11.0/1.5 01 6{1)
WD1'MAP2 12.1/1.9 9.6/1.8 | 11.5/1.8 9.211.6 0.4 )
WD1:MAP3 11.3/1.8 9.51.8 | 11.0/11.7 8.8/1.6 0.7 2(3)
WD2'MAP1 12.31.9 9.8/1.8 | 12.9/1.6 9.211.5 0.6 4
WD2'MAP3 11.2/1.9 3.6/1.8 | 10.5/1.5 8.2/1.4 1.4 2
WD3 MAP3 11.21.9 9.6’1.8 | 10.9/1.6 8.7/1.4 0.8 4

Area Ratio = W

AREA

*Anomalies: Individual cases in which WEAK DIVISION pays penalty
for area reduction

Tap — Top <0.

Ties (if any) in parenthesis.

TABLE V
OPTIMIZE wiTH AND WITHOUT WEAK DIVISION

Sequence AA DD
- /MAPT/OPT 142,28 | 152.07
11.53 8.59

(area)
(5 p(n8)
WD2/MAP3/OPT | 20.71
11.22

10021
8.24

Ceimprovement 43 31
2.6 a1

VISION mode has more influence on the final delay. To
see how much of an effect load delay has, we recomputed
the delay of the Boolean networks created by WEAK DI-
VISION in unit delay mode. This experiment showed that
almost all of them had exceeded the original input delay
rather than decreasing it.

Another possible inconsistency between the two pro-
grams is that, while WEAK DIVISION assumes that all
primary inputs are available in both their positive and
complemented forms, OPTIMIZE does not automatically
make this assumption. Examining a few examples man-
ually has indicated that a large portion of their delay is
due to the complement of a primary input being used in
many places, thus having a very high load delay compo-
nent. By adding additional primary inputs corresponding
to the complement of each primary input and specifying
they are complements, OPTIMIZE will not need to gen-
erate the complement. Early experiments indicate this may
reduce the amount of inconsistency.

Tables IV and V show the effect of correcting some of
the possible SYNTHESIS module deficiencies discussed
above. To this end, we present the results produced by
two successively more sophisticated versions of both the
WEAK DIVISION and LIBRARY MAPPING modules.
We shall refer to the (technology-independent) WEAK
DIVISION module, running with the ‘‘unit delay’’ delay
model, as ““WD1.”” When the effects of fan-out are intro-
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duced as in Fig. 4, but all gates are assumed to have the
same set delay, load resistances, and input pin capaci-
tances, we shall mark the experiments *‘WD2.”” When
the full technology dependence of the ‘‘Library Element
gate delay’’ delay model is used, we shall mark the ex-
periments ‘“WD3.”’

A similar sophistication level is attached to the three
versions of the LIBRARY MAPPING module. The Basic
AND/OR mapping scheme is marked ‘“‘MAP1,”” More so-
phisticated mapping schemes which try successively
harder to retain the logic structure supplied by WEAK DI-
VISION are marked ‘‘MAP2”’ and ‘*“MAP3,” respec-
tively.

The results of running a subset of the 24 problems of
Tables I and II are presented in Tables IV and V. The
rows of Table IV are marked with the appropriate labels
for the WEAK DIVISION and LIBRARY MAPPING
modules employed. The average delay (in nS) and area
ratio constitute the first four columns of data. Area ratio
is the OPTIMIZE (delay mode) output area (no WEAK
DIVISION, anp/or mapping) divided by the area ob-
tained using the sequence specified in column 1. This is
a measurement of how much WEAK DIVISION influ-
ences the final area. This data shows that, generally
speaking, final average delays are reduced by increased
sophistication of the SYNTHESIS module, while area im-
provement ratios are slightly reduced. Note that in all
cases, the WEAK DIVISION module produces at least a
40 percent area improvement.

The last two columns address the presence of ‘‘anom-
alies,”” i.e., delay counter-productive WEAK DIVI-
SION. It is observed that increased technology depen-
dence is markedly helpful in reducing the anomaly count,
as well as significantly enhancing the delay improvement
which can be ascribed solely to the WEAK DIVISION
module (1.4 nS i the WD2/MAPS case). Interestingly
though, the best results are not obtained by the most so-
phisticated SYNTHESIS sequence.

Finally, Table V summarizes the data comparison with
and without WEAK DIVISION. The first row of the table
shows the result of no WEAK DIVISION. In contrast, the
second row gives results for the (best) WD2/MAP3 SYN-
THESIS sequence. The third row shows the percent im-
provement for both area and delay. It can be seen that
WEAK DIVISION clearly aids in improving both the area
and delay when run in either area or delay mode.

VI. CONCLUSIONS

Both the SYNTHESIS (WEAK DIVISION and MUL-
TILEVEL MINIMIZATION) and OPTIMIZE modules
are effective at trading off area for delay. The OPTIMIZE
module, which operates with a finite rule set and a heu-
ristic state space search, is effective stand alone, but at-
tains better local minima when aided by the optimized de-
composition provided by WEAK DIVISION. It is
interesting to note that SYNTHESIS on the average, is
effective despite operating with relatively crude delay
models. Apparently, this is because SYNTHESIS oper-
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ates on a higher, more technology-independent level of
abstraction. More consistent results, with better delay im-
provements, can, however, be obtained by adding more
technology dependence to the LIBRARY MAPPING
modules and incorporating fan-out in the SYNTHESIS
delay models (cf., Tables IV and V). These latter results
challenge our original paradigm of SYNTHESIS as a
purely ‘‘architectural’’ (and, hence, technology-indepen-
dent) logic optimization process.

In future work, we plan to improve our rule base with
more architectural level rules, i.e., ones which are more
capable of directly exploiting parallelism to enhance de-
lay. We also plan to investigate still more sophisticated
SYNTHESIS modules, including more detailed LI-
BRARY MAPPING modules, as well as putting WEAK
DIVISION in an iteration loop with OPTIMUM PHASE
ASSIGNMENT, MULTILEVEL MINIMIZATION, and
finally SELECTIVE FLATTENING (which provides
WEAK DIVISION with further opportunities for logic
optimization).
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