
3/8/2016

1

CAD Algorithms for Physical Design

– Longest Path and Max Flow

Christos P Sotiriou

8/3/2016CE439 - CAD Algorithms II1

Contents

 Dijkstra’s Shortest Path Algorithm

 Binary Heap Tree Basics

 Operations: Insert, Extract Max, Heapify, Delete?

 Complexity

 Longest Path Algorithm

 Traversed Edges Flag

 Priority Queue Operations

 Slack Computation (Back-Trace)

 Slack Definition

 Slack Computation

 Longest Path Complexity

8/3/2016CE439 - CAD Algorithms II2

3/8/2016

2

Binary Heap Basics

 A Heap viewed as (a) a binary tree, (b) an aray

 Heap Property

 for every node, other than the root, the value of a node is

less/equal to the value of its parent node,

 Value[Parent(i)] >= Value[i]

 Thus, the root node always store maximum value in the Heap

8/3/2016CE439 - CAD Algorithms II3

Binary Heap Basics

 Heap/Binary Tree Properties:

 for N-sized heap, represented as an array, elements [N/2...N]

are leaves

 for a heap/binary tree node i:

 parent(i) = i/2, left(i) = 2*i, right(i) = 2*i + 1

 size of N-height heap is 2^(N + 1)-1,

where height N excludes root node!

 Minimum value heap can be created simply by storing

negative values

8/3/2016CE439 - CAD Algorithms II4

3/8/2016

3

Heapify

 Assuming that left(i), right(i) are heaps, but node i may

smaller than its children, heapify pushes down i

 Heapify of node 2:

8/3/2016CE439 - CAD Algorithms II5

Basic Heap Operations

8/3/2016CE439 - CAD Algorithms II6

3/8/2016

4

Heap Insert Example

8/3/2016CE439 - CAD Algorithms II7

Dijkstra’s Shortest Path Algorithm

CE439 - CAD Algorithms II8

DIJKSTRA’s Shortest Path (Graph(V, E), source)

for each vertex v in Graph: // Initializations

dist[v] := infinity ; // Unknown distance function from source to v

previous[v] := undefined ; // Previous node in optimal path

end for // from source

dist[source] := 0 ; // Distance from source to source

Q := the set of all nodes in Graph ; // All nodes in the graph are unoptimized

// thus are in Q

while Q is not empty: // the main loop

u := vertex in Q with smallest distance in dist[] ; // Source node in first case

remove u from Q ;

if dist[u] = infinity:

break ; // all remaining vertices are

end if // inaccessible from source

for each neighbor v of u: // where v has not yet been removed from Q.

alt := dist[u] + dist_between(u, v) ;

if alt < dist[v]: // Relax (u,v,a)

dist[v] := alt ;

previous[v] := u ; // Store Shortest Path

decrease-key v in Q; // Reorder v in the Queue

end if

end for

end while

return dist;

8/3/2016

3/8/2016

5

STA Longest Path Algorithm

CE439 - CAD Algorithms II9

STA Longest_Path(Graph(V, E), L, I, spec)

n = |V|; m = |E|; q = |I|;

for (v in V) {

dist[v] := 0 ;

Dv = |v| ;

}

Q = I;

while (Q != 0) {

v = DEQUEUE(Q);

foreach (a in v) {

dist[a] = max(dist[a], (dist[v] + L(v, a)));

Da = Da – 1;

if (Da == 0) QUEUE(Q, a);

}

maxdist = maxv in V(dist[v]);

maxv = SELECT1(V, maxdist);

critical_path = BACK_TRACE(V, E, L, dist[], maxv, (spec – maxdist));

return (critical_path, dist[]);

8/3/2016

 L(v, u) is the edge length

 dist[v] is an iteratively increasing lower bound on the longest path length from the PIs to v

 Dv is the number of incoming edges to node v in V

 v  is the successors of v,  v the predecessors of v

STA Longest Path Algorithm and

Backtracing

 The length of the longest path to any node maxdist is

computed and passed to select one node, whereby

 dist[v] = maxdist

 spec is the RAT – Required Arrival Time

 (spec – maxdist) indicates path slack or violation

 Complete picture of delay evaluation includes

 Arrival Time

 Required Arrival Time

 The difference between the two is the slack

8/3/2016CE439 - CAD Algorithms II10

3/8/2016

6

Timing Graph Example

8/3/2016CE439 - CAD Algorithms II11

Data Trace running Longest Path

8/3/2016CE439 - CAD Algorithms II12

3/8/2016

7

Edge and Node Slack

 Definition

 The slack if an edge (a, v) is the slack of v, plus the difference

between the longest path length to v, and the longest path to v

through (a, v):

 The slack if a node v is the minimum slack of its fanout edges

 Simpler Formula for Single Critical Path

8/3/2016CE439 - CAD Algorithms II13

Back-Tracing – Slack Computation

CE439 - CAD Algorithms II14

BACK_TRACE(Graph(V, E), L, maxdist, maxv, Rslack)

foreach (v in V) slack[v] = maxdist;

slack[maxv] = Rslack;

critical_path = {maxv};

QUEUE(Q, maxdist);

while (Q != 0) {

v = DEQUEUE(Q);

foreach (a in v) {

slack[a] = slack[v] + (dist[v] – (dist[a] + La,v));

if (slack[a] == Rslack) {

QUEUE(Q, a);

critical_path = {a} U critical_path;

break;

}

}

}

return (critical_path, slack[]);

8/3/2016

 maxv is a (any) node of maximum depth

 Rslack is the required Slack – could be 0

3/8/2016

8

Back-Tracing – Slack Computation

 For each active node v, as soon as a new 0-slack node a is

encountered in the backward traversal

 a is put at the end of Q, and the for loop is exited by break

 Non critical nodes may not be updated

 Will still have their initialized slack values (Rslack)

 Final slack values also depend on the order in which

nodes in the fanin v are processed

 Critical Path for example: {0, 4, 5, 6, 7, 9}

 Slack values:

8/3/2016CE439 - CAD Algorithms II15

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

slack 0 14 7 1 0 0 0 0 24 0 23

Related Issue: Zero Slack Assignment

 Establish timing budgets for nets

 Gate and wire delays must be optimized during timing driven

layout design

 Wire delays depend on wire lengths

 Wire lengths are not known until after placement and routing

 Delay budgeting with the zero-slack algorithm

 Let vi be the logic gates

 Let ei be the nets

 Let DELAY(v) and DELAY(e) be the delay of the gate and net,

respectively

 Define the timing budget of a gate

 TB(v) = DELAY(v) + DELAY(e)

8/3/2016CE439 - CAD Algorithms II16

3/8/2016

9

ZSA Example

 Tuple is <AT, Slack, RAT>

8/3/2016CE439 - CAD Algorithms II17

ZSA Example

 Identify minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II18

3/8/2016

10

ZSA Example

 Distribute slacks, and update timing budgets

8/3/2016CE439 - CAD Algorithms II19

ZSA Example

 Identify again the minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II20

3/8/2016

11

ZSA Example

 Distribute slacks, and update timing budgets

8/3/2016CE439 - CAD Algorithms II21

ZSA Example

 Identify new minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II22

3/8/2016

12

ZSA Example

 … distribute slacks, update local timing budgets

8/3/2016CE439 - CAD Algorithms II23

ZSA Example

 … Identify new minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II24

3/8/2016

13

ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II25

ZSA Example

 … new minimum slack > 0 path

8/3/2016CE439 - CAD Algorithms II26

3/8/2016

14

ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II27

ZSA Example

 … identify

8/3/2016CE439 - CAD Algorithms II28

3/8/2016

15

ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II29

ZSA Wire Delays

 Wire delays render placement feasible

 Translate to wire bound constraints

 This example is infeasible as certain wires have 0 delay

 Zero WL constraint

8/3/2016CE439 - CAD Algorithms II30

3/8/2016

16

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

J

Q

Q

K

SET

CLR0

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)
≤ d1

≤ d3

≤ d2

≤ d7

≤ d10≤ d6

≤ d12

≤ d5

≤ d4

≤ d11

≤ d8

≤ d9

ZSA and Bounds

 Wire Bounds correspond to Slack converted to Wire Delay

CE439 - CAD Algorithms II31

1.2

1

0.7

1

1.5

1.8

0.5

1

0.7

8/3/2016

Maximum Flow

8/3/2016CE439 - CAD Algorithms II32

3/8/2016

17

Flow Networks and Flows

 A flow network G = (V, E) is a DAG, where each edge,

(u, v) in E has a non-negative capacity c(u, v) >= 0

 Two vertices are special: a source s, and a sink t

 Typically, each vertex lies on a source to sink path

 A flow in G is a real valued function f: (V x V)  R, s.t.:

 Capacity Constraint: for all u, v in V, f(u, v) <= c(u, v)

 Skew Symmetry: for all u, v in V, f(u, v) = -f(v, u)

 Flow Conservation: for all u in V – {s, t},

 The quantity f(u, v) is the net flow from u to v

 The value of flow f is defined as:

 The total net flow out of the source

 Maximum Flow: find flow of maximum value from s to t
8/3/2016CE439 - CAD Algorithms II33

𝑣∈𝑉

𝑓 𝑢, 𝑣 = 0

𝑓 =

𝑣∈𝑉

𝑓 𝑠, 𝑣

Flow Network Example – not a Flow!

 Each edge is labelled with its capacity

 Only positive net flows are shown

 Flow in G is |f| = 19

 Slash notation separates flow and capacity

 Positive net flow entering vertex v:

8/3/2016CE439 - CAD Algorithms II34

𝑢∈𝑉,𝑓(𝑢,𝑣)>0

𝑓(𝑢, 𝑣)

3/8/2016

18

Actual Network Flow

 Flow magnitude |f| = 11 + 8 = 19

 For an actual network flow, Flow Conservation holds

 e.g. Node v1: (11 + 1 – 12) = 0

 Node v2: (8 + 4 – 1 – 11) = 0

 Node v3: (12 + 7 – 4 – 15) = 0

 Node v4: (11 – 7 – 4) = 0

8/3/2016CE439 - CAD Algorithms II35

12

11

4

1

11
4

7

15

Ford-Fulkerson Method

 Augmenting Path: a s to t path through which the flow

can be increased

 Residual capacity of (u, v)

 Additional net flow we can push from u to v <= c(u, v)

 cf(u, v) = c(u, v) – f(u, v)

 Residual Network G(V, Ef):

 Ef = {(u, v) in V x V, s.t. cf(u, v) > 0}

8/3/2016CE439 - CAD Algorithms II36

3/8/2016

19

Residual Network

 Residual network of initial flow

8/3/2016CE439 - CAD Algorithms II37

Residual Network and Modified Flow

8/3/2016CE439 - CAD Algorithms II38

3/8/2016

20

Optimised Network Actual Flow

 Flow Magnitude |f| = 11 + 12 = 23

 For an actual network flow, Flow Conservation holds

 e.g. Node v1: (11 + 1 – 12) = 0

 Node v2: (12 + 0 – 1 – 11) = 0

 Node v3: (12 + 7 – 0 – 19) = 0

 Node v4: (11 – 7 – 4) = 0

8/3/2016CE439 - CAD Algorithms II39

12

11

11
7

4

19

0

12

1

Ford-Fulkerson Algorithm

 Efficiency depends on augmenting path

 Edmonds-Karp variation

 Shortest path from s to t, where edge distance is 1

 O(VE2) Complexity = O(E x VE) (shortest path)

8/3/2016CE439 - CAD Algorithms II40

3/8/2016

21

Ford-Fulkerson Algorithm Execution

Example

8/3/2016CE439 - CAD Algorithms II41

Ford-Fulkerson Degenerate Example

 If we keep adding WC augmenting path of 1 when

identifying a path from s to t the algorithm will take

O(E x |f*|)

 Use shortest unit edge weight path from s to t

8/3/2016CE439 - CAD Algorithms II42

3/8/2016

22

Cuts of Flow Networks

 A cut (S, T) of flow network G = (V, E) is a partition of V

into S and T = V – S, such what s is in S and t is in T

 The netflow across the cut (S, T) is f(S, T)

 The capacity of the cut (S,T) is c(S,T)

 Always positive, from S to T

 Max-Flow Min-Cut Theorem

 If f is a flow in a flow network G = (V, E) with source s and sink

t, then the following conditions are equivalent:

 F is a maximum flow in G

 The residual network Gf contains no augmenting paths

 |f| = c(S, T) for some cut (S, T) of G

8/3/2016CE439 - CAD Algorithms II43

Cut Example

 Cut across original flow network

 Net flow across (S, T) is 19 (12 + 11 – 4)

 Cutsize is 26 (12 + 14)

8/3/2016CE439 - CAD Algorithms II44

