CAD Algorithms for Physical Design - Longest Path and Max Flow

Christos P Sotiriou

- 1

CE439 - CAD Algorithms II 8/3/2016

Contents

- Dijkstra's Shortest Path Algorithm
- ▶ Binary Heap Tree Basics
 - Delete? Operations: Insert, Extract Max, Heapify, Delete?
 - Complexity
- ▶ Longest Path Algorithm
 - ▶ Traversed Edges Flag
 - Priority Queue Operations
- ▶ Slack Computation (Back-Trace)
 - Slack Definition
 - ▶ Slack Computation
- ▶ Longest Path Complexity

2

Binary Heap Basics

A Heap viewed as (a) a binary tree, (b) an aray

- ▶ Heap Property
 - for every node, other than the root, the value of a node is less/equal to the value of its parent node,
 - Value[Parent(i)] >= Value[i]
 - Thus, the root node always store maximum value in the Heap

3

CE439 - CAD Algorithms II 8/3/2016

Binary Heap Basics

- ▶ Heap/Binary Tree Properties:
 - ▶ for N-sized heap, represented as an array, elements [N/2...N] are leaves
 - ▶ for a heap/binary tree node i:
 - $\qquad \qquad \text{parent(i)} = \text{i/2}, \text{left(i)} = 2 \text{*i}, \text{right(i)} = 2 \text{*i} + 1$
 - ▶ size of N-height heap is 2[^](N + 1)-1, where height N excludes root node!
- Minimum value heap can be created simply by storing negative values

- 4

Heapify

- Assuming that left(i), right(i) are heaps, but node i may smaller than its children, heapify pushes down i
- ▶ Heapify of node 2:

CE439 - CAD Algorithms II 8/3/2016

Basic Heap Operations

```
HEAPIFY(A, i)

1 l \leftarrow \text{Left}(i)

2 r \leftarrow \text{Right}(i)

3 if l \leq \text{heap-size}[A] and A[l] > A[i]

4 then largest \leftarrow l

5 else largest \leftarrow i

6 if r \leq \text{heap-size}[A] and A[r] > A[largest]

7 then largest \leftarrow r

8 if largest \neq i

9 then exchange A[i] \leftrightarrow A[largest]

10 HEAPIFY(A, largest)
```

```
HEAP-EXTRACT-Max(A)

1 if heap-size[A] < 1

2 then error "heap underflow"

3 max \leftarrow A[1]

4 A[1] \leftarrow A[heap-size[A]]

5 heap-size[A] \leftarrow heap-size[A] - 1

6 HEAPIFY(A, 1)

7 return max
```

```
\begin{aligned} & \text{Heap-Insert}(A, key) \\ & 1 \quad heap\text{-}size[A] \leftarrow heap\text{-}size[A] + 1 \\ & 2 \quad i \leftarrow heap\text{-}size[A] \\ & 3 \quad \text{while } i > 1 \text{ and } A[\text{Parent}(i)] < key \\ & 4 \quad \quad \text{do } A[i] \leftarrow A[\text{Parent}(i)] \\ & 5 \quad \quad i \leftarrow \text{Parent}(i) \\ & 6 \quad A[i] \leftarrow key \end{aligned}
```

5

Dijkstra's Shortest Path Algorithm

DIJKSTRA's Shortest Path (Graph(V, E), source)

```
for each vertex v in Graph:
                                           // Initializations
 dist[v] := infinity ;
                                           // Unknown distance function from source to v
  previous[v] := undefined ;
                                           // Previous node in optimal path
                                           // from source
end for
dist[source] := 0 ;
                                           // Distance from source to source
Q := the set of all nodes in Graph ;
                                           // All nodes in the graph are unoptimized
                                           // thus are in Q
while Q is not empty: // the main loop
   u := vertex in Q with smallest distance in dist[] ; // Source node in first case
   remove u from Q ;
   if dist[u] = infinity:
                                           // all remaining vertices are
    break ;
                                           // inaccessible from source
   end if
   // where \boldsymbol{v} has not yet been removed from \boldsymbol{Q}.
      if alt < dist[v]:
    dist[v] := alt;
    previous[v] := u;</pre>
                                          // Relax (u, v, a)
                                          // Store Shortest Path
         decrease-key v in Q;
                                           // Reorder v in the Queue
      end if
   end for
end while
return dist;
```

STA Longest Path Algorithm

STA Longest_Path(Graph(V, E), L, I, spec)

```
n = |V|; m = |E|; q = |I|;
for (v in V) {
    dist[v] := 0;
    D_v = | \rightarrow v|;
}
Q = I;
while (Q != 0) {
    v = DEQUEUE(Q);
    foreach (a in v \rightarrow) {
        dist[a] = max(dist[a], (dist[v] + L(v, a)));
        D_a = D_a - 1;
        if (D_a == 0) QUEUE(Q, a);
}
maxdist = max_v in v (dist[v]);
maxv = SELECT1(V, maxdist);
critical_path = BACK_TRACE(V, E, L, dist[], maxv, (spec - maxdist));

return (critical_path, dist[]);
```

- L(v, u) is the edge length
- b dist[v] is an iteratively increasing lower bound on the longest path length from the PIs to v
- Dv is the number of incoming edges to node v in V
- \rightarrow v \rightarrow is the successors of v, \rightarrow v the predecessors of v

9

CE439 - CAD Algorithms II 8/3/2016

STA Longest Path Algorithm and Backtracing

- ▶ The length of the longest path to any node maxdist is computed and passed to select one node, whereby
 - dist[v] = maxdist
- ▶ spec is the RAT Required Arrival Time
 - ▶ (spec maxdist) indicates path slack or violation
- Complete picture of delay evaluation includes
 - Arrival Time
 - Required Arrival Time
 - ▶ The difference between the two is the slack

10

Timing Graph Example

► II CE439 - CAD Algorithms II 8/3/2016

Data Trace running Longest Path

Line	υ, λ* 6	<i>v</i> → 6	(λ_a,D_a) 10										
1	0/0	1,2,3,4	0/0	1/0	2/0	3/0	4/0	0/2	0/4	0/2	0/2	0/3	0/0
2	10/0	9										1/2	
3	1/1	6							2/3			15%	
4	2/2	6							9/2				
5	3/3	5,6						8/1	11/1				
6	4/4	5,7,9						9/0		13/1		7/1	
7	5/9	6						,	16/0				1
8	6/16	7,8							,	20/0	17/1		
9	7/20	8,9									23/0	24/0	
10	8/23	Ø									,	,	
11	9/24	Ø											
	final	λ:	0	1	2	3	4	9	16	20	23	24	0

12

Edge and Node Slack

Definition

The slack if an edge (a, v) is the slack of v, plus the difference between the longest path length to v, and the longest path to v through (a, v):

$$slack_{a,v} = slack_v + (dist[v] - (dist[a] + L_{a,v}))$$

The **slack** if a node v is the minimum slack of its fanout edges

$$slack_a = min_{v in a \rightarrow} slack_{a.v}$$

▶ Simpler Formula for Single Critical Path

$$slack_a = slack_v + (dist[v] - (dist[a] + L_{a,v}))$$

13

CE439 - CAD Algorithms II 8/3/2016

Back-Tracing - Slack Computation

BACK_TRACE(Graph(V, E), L, maxdist, maxv, Rslack)

```
foreach (v in V) slack[v] = maxdist;
slack[maxv] = Rslack;
critical_path = {maxv};
QUEUE(Q, maxdist);
while (Q!= 0) {
  v = DEQUEUE(Q);
  foreach (a in v →) {
    slack[a] = slack[v] + (dist[v] - (dist[a] + La,v));
    if (slack[a] == Rslack) {
        QUEUE(Q, a);
        critical_path = {a} U critical_path;
        break;
    }
}
return (critical_path, slack[]);
```

- maxv is a (any) node of maximum depth
- ▶ Rslack is the required Slack could be 0

14

Back-Tracing – Slack Computation

- ► For each active node v, as soon as a new 0-slack node a is encountered in the backward traversal
 - a is put at the end of Q, and the for loop is exited by break
- Non critical nodes may not be updated
 - Will still have their initialized slack values (Rslack)
- Final slack values also depend on the order in which nodes in the fanin →v are processed
- ▶ Critical Path for example: {0, 4, 5, 6, 7, 9}
- Slack values:

	v0	vI	v2	v3	v4	v5	v6	v7	v8	v9	vI0
slack	0	14	7	ı	0	0	0	0	24	0	23

15

CE439 - CAD Algorithms II 8/3/2016

Related Issue: Zero Slack Assignment

- Establish timing budgets for nets
 - Gate and wire delays must be optimized during timing driven layout design
 - Wire delays depend on wire lengths
 - Wire lengths are not known until after placement and routing
- Delay budgeting with the zero-slack algorithm
 - Let vi be the logic gates
 - Let ei be the nets
 - ► Let DELAY(v) and DELAY(e) be the delay of the gate and net, respectively
 - Define the timing budget of a gate
 - ▶ TB(v) = DELAY(v) + DELAY(e)

16

Flow Networks and Flows

- A flow network G = (V, E) is a DAG, where each edge, (u, v) in E has a non-negative capacity c(u, v) >= 0
 - Two vertices are special: a source s, and a sink t
 - Typically, each vertex lies on a source to sink path
- ▶ A **flow** in G is a real valued function f: $(V \times V) \rightarrow R$, s.t.:
 - ▶ Capacity Constraint: for all u, v in V, $f(u, v) \le c(u, v)$
 - **Skew Symmetry**: for all u, v in V, f(u, v) = -f(v, u)
 - Flow Conservation: for all u in V {s, t}, $\sum_{v \in V} f(u, v) = 0$
- The quantity f(u, v) is the net flow from $u^{\nu \in V}$
- ▶ The value of flow f is defined as: $|f| = \sum_{s=1}^{\infty} f(s, v)$
 - The total net flow out of the source
- Maximum Flow: find flow of maximum value from s to t

33

CE439 - CAD Algorithms II 8/3/2016

Flow Network Example - not a Flow!

- ▶ Each edge is labelled with its capacity
- Only positive net flows are shown
- Flow in G is |f| = 19
- ▶ Slash notation separates flow and capacity
- **Positive net flow** entering vertex v: $\sum_{u \in V, f(u,v) > 0} f(u,v)$

34

Actual Network Flow

- ▶ Flow magnitude |f| = 11 + 8 = 19
- For an actual network flow, Flow Conservation holds
 - e.g. Node vI: (II + I I2) = 0
 - Node v2: (8 + 4 1 11) = 0
 - Node v3: (12 + 7 4 15) = 0
 - Node v4: (11 7 4) = 0

35

CE439 - CAD Algorithms II 8/3/2016

Ford-Fulkerson Method

▶ Augmenting Path: a s to t path through which the flow can be increased

Ford-Fulkerson-Method(G, s, t)

- 1 initialize flow f to 0
- 2 while there exists an augmenting path p
- 3 **do** augment flow f along p
- 4 return f
- Residual capacity of (u, v)
 - Additional net flow we can push from u to $v \le c(u, v)$
 - $\qquad \qquad \mathsf{cf}(\mathsf{u},\mathsf{v}) = \mathsf{c}(\mathsf{u},\mathsf{v}) \mathsf{f}(\mathsf{u},\mathsf{v}) \\$
- ▶ Residual Network G(V, Ef):
 - Ef = $\{(u, v) \text{ in } V \times V, \text{ s.t. } cf(u, v) > 0\}$

36

Optimised Network Actual Flow

- ▶ Flow Magnitude |f| = 11 + 12 = 23
- For an actual network flow, Flow Conservation holds
 - e.g. Node vI: (II + I I2) = 0
 - Node v2: (12 + 0 1 11) = 0
 - Node v3: (12 + 7 0 19) = 0
 - Node v4: (11 7 4) = 0

39

CE439 - CAD Algorithms II 8/3/2016

Ford-Fulkerson Algorithm

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

- Efficiency depends on augmenting path
- ▶ Edmonds-Karp variation
 - ▶ Shortest path from s to t, where edge distance is I
 - $ightharpoonup O(VE^2)$ Complexity = $O(E \times VE)$ (shortest path)

40

Ford-Fulkerson Degenerate Example

- If we keep adding WC augmenting path of I when identifying a path from s to t the algorithm will take O(E x |f*|)
- ▶ Use shortest unit edge weight path from s to t

42

Cuts of Flow Networks

- A cut (S,T) of flow network G = (V, E) is a partition of V into S and T = V − S, such what s is in S and t is in T
 - ▶ The netflow across the cut (S,T) is f(S,T)
 - The capacity of the cut (S,T) is c(S,T)
 - Always positive, from S to T
- Max-Flow Min-Cut Theorem
 - If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:
 - F is a maximum flow in G
 - The residual network Gf contains no augmenting paths
 - \mid |f| = c(S,T) for some cut (S,T) of G

43

CE439 - CAD Algorithms II 8/3/2016

Cut Example

- ▶ Cut across original flow network
 - Net flow across (S,T) is 19 (12 + 11 4)
 - Cutsize is 26 (12 + 14)

44