
ECE431 Parallel Computer Architecture 1

Parallel Computer Architecture
Spring 2019

Shared Memory Multiprocessors
Memory Coherence

Nikos Bellas

Computer and Communications Engineering Department

University of Thessaly

ECE431 Parallel Computer Architecture 2

Introduction to Multiprocessing

3

ECE431 Parallel Computer Architecture

Multicore Era

From Hennessy and Patterson, Computer Architecture: A Quantitative
Approach, 5th edition, September 2011

General-purpose unicores have stopped historic performance scaling

Single-core performance

4

ECE431 Parallel Computer Architecture

History
“… today’s processors … are nearing an impasse as technologies approach the

speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance)
 Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore designs.
… This is a sea change in computing”

Paul Otellini, President, Intel (2005)

• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
 Procrastination penalized: 2X sequential perf. / 5 yrs

Chip Name

(Year)

Intel Xeon E-
2186G

(Coffee Lake)
(2018)

AMD

Ryzen 1950X

(2017)

IBM Power9

SMT4

(2017)

ARMv8 Xgene-3

(2018)

Cores/Chip 6 16 24 32

Threads/Core 2 2 4 1

Threads/Chip 12 32 96 32

Max Freq

(GHz)

4.7 4.1 4 3

5

ECE431 Parallel Computer Architecture

Factors for the Multiprocessor adoption

• Slowdown in uniprocessor performance due to
limited ILP

• Growth in multithreaded applications
– Data bases, file servers, …

• Growing interest in servers, server performance

• Increasing desktop performance less important
– Except for graphics

• Improved understanding in how to use
multiprocessors effectively

– Especially server where significant natural TLP

• Advantage of leveraging design investment by
replication

– Rather than unique design

– Exploit the huge cost-performance advantages of commodity
processors

6

ECE431 Parallel Computer Architecture

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD  Data-Level Parallelism

• MIMD  Thread-Level Parallelism

• MIMD popular because

– Flexible: N programs or 1 multithreaded program

– Cost-effective: same MPU in desktop & MIMD machine

Multiple Instruction, Multiple
Data MIMD

(Clusters, SMP servers)

Multiple Instruction, Single
Data (MISD)

(????)

Single Instruction, Multiple
Data SIMD

(single PC: Vector, CM-2,
GPUs)

Single Instruction, Single Data
(SISD)

(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

ECE431 Parallel Computer Architecture

What is a “Parallel Computer”

A collection of processing elements (PEs) than
can communicate and co-operate to solve large
problems fast

A collection of PEs
How many? How powerful?

Fewer and more powerful? More and weaker?

Compare Chip Multiprocessors (i7, Power) and GPUs

that can communicate
How do they communicate

Message Passing vs Shared Memory

Interconnect architecture (Bus vs Point-to-point
interconnects

and co-operate
Synchronization needed to organize computation

7

Granularity of parallelism
Grain size:

Process : > 1e6 instructions

Tasks/Functions : 1e3 – 1e6 instructions

Loop iterations: 10 -1e3 instructions

ILP : few tens instructions

ECE431 Parallel Computer Architecture

What is a “Parallel Computer”

8

ECE431 Parallel Computer Architecture

Two Models for Communication and
Memory Architecture

1. Communication occurs by explicitly passing messages
among the processors:
message-passing multiprocessors (aka
multicomputers)

• Modern cluster systems contain multiple stand-alone
computers communicating via messages

• Streaming communication can also be classified as
a fine-granularity message passing mechanism

2. Communication occurs through a shared address
space (via loads and stores):
shared-memory multiprocessors either

• UMA (Uniform Memory Access time) for shared
address, centralized memory MP. Symmetric
Multiprocessors (SMP)

• NUMA (Non-Uniform Memory Access time
multiprocessor) for shared address, distributed
memory MP

9

ECE431 Parallel Computer Architecture

Communication and Synchronization

• Parallel processes must co-operate to complete a single task
faster

• Requires distributed communication and synchronization

– Communication is for data values, or “what”

– Synchronization is for control, or “when”

– Communication and synchronization are often inter-related

» i.e., “what” depends on “when”

• Message-passing bundles data and control

– Message arrival encodes “what” and “when”

• In shared-memory machines, communication usually via
coherent caches & synchronization via atomic memory
operations

– Due to advent of single-chip multiprocessors, it is likely
cache-coherent shared memory systems will be the
dominant form of multiprocessor in the near future

10

11

ECE431 Parallel Computer Architecture

Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory:
UMA

Distributed Memory:
NUMA

Scale
P1

$

Interconnection network

$

Pn

Mem MemMem

ECE431 Parallel Computer Architecture 12

Symmetric Multiprocessors

(SMP)

ECE431 Parallel Computer Architecture

Centralized Memory Multiprocessor

• Single main memory has a symmetric relationship to all
processors

• Large caches  single memory can satisfy memory
demands of small number of processors

• Can scale to a few dozen processors by using a switch
and by using many memory banks

• Although scaling beyond that is technically conceivable, it
becomes less attractive as the number of processors
sharing centralized memory increases

P1

$

Interconnection network

$

Pn

Mem MemMem
13

ECE431 Parallel Computer Architecture

Distributed Memory Multiprocessor

• Pro: Cost-effective way to scale memory
bandwidth

• If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors
more complex

• Con: Software must be aware of data placement to
take advantage of increased memory BW

P1

$

Interconnection network

$

Pn

Mem Mem

14

ECE431 Parallel Computer Architecture

Challenges of Parallel Processing I

• Big challenge is % of program that is
inherently sequential
– What does it mean to be inherently sequential?

• Suppose we want 80X speedup from 100
processors. What fraction of original
program can be sequential?
a. 10%

b. 5%

c. 1%

d. <1%

15

ECE431 Parallel Computer Architecture

Challenges of Parallel Processing II

• Remote memory accesses can have a detrimental
effect on performance

• Suppose in a 2 GHz multiprocessing system each
processor requires 200 ns to access a remote
memory

• Only 0.2% of the instructions involve a remote
access

• Assume base CPI is 0.5

• Each remote access requires 200/0.5 = 400 cycles

• CPI (new) = CPI (base) + Remote Request
Rate*Remote Request Cost = 0.5+0.002*400 = 1.3

• Increase of CPI from 0.5 to 1.3!

16

ECE431 Parallel Computer Architecture 17

symmetric
• All memory is equally far
away from all processors
• Any processor can do any I/O
(set up a DMA transfer)

Symmetric Multiprocessors (SMP)

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

Cache Cache

ECE431 Parallel Computer Architecture

Cache coherence and consistency
problems

Caching of shared data in multiple locations can
create coherence and consistency problems

A memory system is coherent if
any read of a data item from any processor returns the
most recently written value of that data item, AND

writes to the same location are serialized: two writes to the
same location by any two processors are seen in the same
order by all processors.

Coherence defines the behavior of reads and writes
in the same memory location

The issue of when exactly a written value must be
seen by the reader is defined by the memory
consistency model 18

ECE431 Parallel Computer Architecture

Cache coherence problem

Cache coherence when two processors access a memory location X.
At the end of step 3, CPU A has updated the value for X in its cache, but
CPU B has still the old value.
This is the cache coherence problem

19

ECE431 Parallel Computer Architecture

Cache coherence protocol

First, the two CPUs read the value of X in their internal cache.
Then, CPU A wants to modify the value of X. Before it does that, it
invalidates the copy of X in the cache of CPU B.
When CPU B reads X again, it misses in the cache, and CPU A provides
the most up-to-date version

Example cache coherence protocol based on cache line invalidation.

20

ECE431 Parallel Computer Architecture

Cache coherence and consistency
problems

Cache coherence protocols used to maintain
coherence for multiple processors

Snoop based
Every cache with a copy of the shared data, has also a copy of the
sharing status of the data

No centralized control

Cache controllers monitor (snoop) the broadcast medium to
determine if they have a copy of the requested block

Does not scale very good with larger number of processors.

Directory based
The sharing status of a block is kept in a single location – the
directory

Scales better than snoop-based approaches

21

ECE431 Parallel Computer Architecture 22

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads (S,I)

P1 writes (M,I)

P2 reads (S,S)

P2 writes (I,M)

P1 writes (M,I)

P2 writes (I,M)

P1 reads (S,S)

P1 writes (M,I)

Initially, both

P1 P2 are in
(I,I)

ECE431 Parallel Computer Architecture 23

Snoopy Cache

Idea: Have cache watch (or snoop upon)

bus transfers, and then “do the right thing”

Snoopy cache tags are dual-ported

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

ECE431 Parallel Computer Architecture 24

Implementation details
The MSI protocol assumed that all steps are
atomic

Things are not so straightforward (e.g in split
transaction buses):

In a write miss to location X from the Modified state:

The CPU misses in location X, and the cache controller
requests the bus (1-2 cycles)

Waiting for bus arbitration.... (~5 cycles)

The bus becomes available, and the cache controller writes
back to memory the old data of location X. The bus is
released (1 cycle)

The cache controller requests the bus again to read in the
new data (1-2 cycles)

Waiting for bus arbitration.... (~5 cycles)

The bus becomes available, and the cache controller reads
in the new data from the memory or the owner (3-4 cycles)

ECE431 Parallel Computer Architecture 25

Implementation details

Atomic operations require a read-modify-write
instruction

In general, a read-modify-write instruction requires
two memory (bus) operations without intervening
memory operations by other processors

In a multiprocessor setting, bus needs to be locked
for the entire duration of the atomic read and write
operation

expensive for simple buses

very expensive for split-transaction buses

The solution is a more complex protocol with
intermediate states for complex transitions.

ECE431 Parallel Computer Architecture 26

Snooper Snooper Snooper Snooper

Optimized Snoop with L2 Caches

Processors often have at least two-level cache
small L1, large L2 (both on chip)

Inclusion property: all entries in L1 must be in L2
invalidation in L2 ==> invalidation in L1

Snooping on L2 does not affect CPU-L1 bandwidth
However, invalidation of L1 may stall the CPU

• Core i7 has inclusive L2 and L3 caches

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

ECE431 Parallel Computer Architecture 27

Performance of Symmetric
Shared-Memory Multiprocessors

Cache performance in SMPs is combination
of:

Uniprocessor cache miss traffic

Coherence misses

4th C: coherence miss
Joins Compulsory, Capacity, Conflict

ECE431 Parallel Computer Architecture 28

Coherence Misses

True sharing misses arise from the communication
of data through the cache coherence mechanism

Processors P1 and P2 share data X1

Processor P1 wants to write shared data X1 and invalidates data
in P2

Later, Processor P2 wants to read X1  true sharing cache miss

False sharing misses when a block is invalidated
because some word in the block, other than the
one being read, is written into

Data X1 and X2 are in the same cache block

Processor P1 wants to write shared data X1 and invalidates the
whole block, including X2

Later, Processor P2 wants to read X2  false sharing cache miss

Miss would not occur if block sizes were 1 word

ECE431 Parallel Computer Architecture 29

False Sharing

state blk addr data0 data1 ... dataN

A cache block contains more than one word

Cache-coherence is usually done at the block-
level and not word-level (for simplicity)

Suppose P1 writes wordi and later P2 reads wordk

and

both words have the same block address.

if (i==k) true sharing
if (i <> k) false sharing

ECE431 Parallel Computer Architecture 30

Example:
True v. False Sharing v. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11

StatusP2P1Time

• Assume x1 and x2 in same cache block.
• Initially, both cache lines in shared state (S,S)
• Any miss that would occur if the block size were one word is designated a
sharing miss

(M,I) Write Hit

(S,S) False shar. miss; x1 irrelevant to P2

(I, M) False shar. miss; x1 irrelevant to P2

(S,S)True shar. miss; invalidate x2 in P1

(M,I) Write Hit

ECE431 Parallel Computer Architecture 31

SMP Performance
Normalized Exec. Time vs L3 Cache Size

Alpha Server 4100
4 Processor SMP, 4-issue per

cycle per core, 300 MHz cores

Three-level cache hierarchy for
each core – L3 is off-chip
L2 Cache is unified, 96 KB

Commercial Workload: OLTP
(online transaction processing
workload) modeled after the TPC-B
benchmark suite

Cache misses decrease with
larger L3 Caches, but not beyond 2
MBs.

Idle time increases with larger L3
cache because the I/O effect
becomes stronger – Fewer memory
stalls require more server
processes to keep the processors
busy

Performance unchanged for L3
Cache larger than 2 MB

1 2 4 8

0

10

20

30

40

50

60

70

80

90

100

Idle

PAL code

Main Memory Access

L2/L3 Cache Access

Instruction Execution

L3 Cache Size (MB)

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

ECE431 Parallel Computer Architecture 32

SMP Performance
Memory Cycles vs L3 Cache Size

What is the reason for high
execution overhead due to
L3 Caches?

Instruction and
Capacity/Conflict misses the
main miss contributors in
smaller L3 Caches

True sharing misses
dominate for larger L3
Caches.

True sharing and Cold
misses untouched by larger
L3 Caches

ECE431 Parallel Computer Architecture 33

SMP Performance
Memory Cycles vs # of processors

•2 MB, 2-way set
associative L3
cache

•True sharing,
false sharing
increase going
from 1 to 8 CPUs

ECE431 Parallel Computer Architecture 34

SMP problems

Snooping requires message broadcasting to all
processors

This increases the bandwidth and does not scale well
with increasing number of processors

The broadcast medium (e.g. bus) and the memory
become bottlenecks

Snooping used for up to about 10 processors

