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Introduction to Multiprocessing
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Multicore Era 

From Hennessy and Patterson, Computer Architecture: A Quantitative 
Approach, 5th edition, September 2011

General-purpose unicores have stopped historic performance scaling

Single-core performance
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History
“… today’s processors … are nearing an impasse as technologies approach the 

speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance)
 Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore designs. 
… This is a sea change in computing”

Paul Otellini, President, Intel (2005) 

• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
 Procrastination penalized: 2X sequential perf. / 5 yrs

Chip Name 

(Year)

Intel Xeon E-
2186G

(Coffee Lake)
(2018)

AMD

Ryzen 1950X 

(2017)

IBM Power9 

SMT4

(2017)

ARMv8 Xgene-3 

(2018)

Cores/Chip 6 16 24 32

Threads/Core 2 2 4 1

Threads/Chip 12 32 96 32

Max Freq 

(GHz)

4.7 4.1 4 3
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Factors for the Multiprocessor adoption

• Slowdown in uniprocessor performance due to 
limited ILP

• Growth in multithreaded applications
– Data bases, file servers, …

• Growing interest in servers, server performance

• Increasing desktop performance less important 
– Except for graphics

• Improved understanding in how to use 
multiprocessors effectively 

– Especially server where significant natural TLP

• Advantage of leveraging design investment by 
replication 

– Rather than unique design

– Exploit the huge cost-performance advantages of commodity 
processors
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Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD  Data-Level Parallelism

• MIMD  Thread-Level Parallelism

• MIMD popular because 

– Flexible: N programs or 1 multithreaded program

– Cost-effective: same MPU in desktop & MIMD machine

Multiple Instruction, Multiple 
Data MIMD

(Clusters, SMP servers)

Multiple Instruction, Single 
Data (MISD)

(????)

Single Instruction, Multiple 
Data SIMD

(single PC: Vector, CM-2, 
GPUs)

Single Instruction, Single Data 
(SISD)

(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers", 
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.
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What is a “Parallel Computer”

A collection of processing elements (PEs) than 
can communicate and co-operate to solve large 
problems fast

A collection of PEs
How many? How powerful?

Fewer and more powerful? More and weaker?

Compare Chip Multiprocessors (i7, Power) and GPUs

that can communicate
How do they communicate

Message Passing vs Shared Memory

Interconnect architecture (Bus vs Point-to-point 
interconnects

and co-operate
Synchronization needed to organize computation

7



Granularity of parallelism
Grain size: 

Process :  >  1e6 instructions

Tasks/Functions :  1e3 – 1e6 instructions

Loop iterations:  10 -1e3 instructions

ILP : few tens instructions
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What is a “Parallel Computer”

8
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Two Models for Communication and 
Memory Architecture

1. Communication occurs by explicitly passing messages 
among the processors: 
message-passing multiprocessors (aka 
multicomputers)

• Modern cluster systems contain multiple stand-alone 
computers communicating via messages

• Streaming communication can also be classified as 
a fine-granularity message passing mechanism 

2. Communication occurs through a shared address 
space (via loads and stores): 
shared-memory multiprocessors either

• UMA (Uniform Memory Access time) for shared 
address, centralized memory MP. Symmetric 
Multiprocessors (SMP)

• NUMA (Non-Uniform Memory Access time 
multiprocessor) for shared address, distributed 
memory MP

9
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Communication and Synchronization

• Parallel processes must co-operate to complete a single task 
faster

• Requires distributed communication and synchronization

– Communication is for data values, or “what”

– Synchronization is for control, or “when”

– Communication and synchronization are often inter-related

» i.e., “what” depends on “when”

• Message-passing bundles data and control

– Message arrival encodes “what” and “when”

• In shared-memory machines, communication usually via 
coherent caches & synchronization via atomic memory 
operations

– Due to advent of single-chip multiprocessors, it is likely 
cache-coherent shared memory systems will be the 
dominant form of multiprocessor in the near future

10
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Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory:
UMA

Distributed Memory:
NUMA

Scale
P1

$

Interconnection network

$

Pn

Mem MemMem
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Symmetric Multiprocessors 

(SMP) 
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Centralized Memory Multiprocessor 

• Single main memory has a symmetric relationship to all 
processors

• Large caches  single memory can satisfy memory 
demands of small number of processors

• Can scale to a few dozen processors by using a switch 
and by using many memory banks

• Although scaling beyond that is technically conceivable, it 
becomes less attractive as the number of processors 
sharing centralized memory increases

P1

$

Interconnection network

$

Pn

Mem MemMem
13
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Distributed Memory Multiprocessor 

• Pro: Cost-effective way to scale memory 
bandwidth 

• If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors 
more complex

• Con: Software must be aware of data placement to 
take advantage of increased memory BW

P1

$

Interconnection network

$

Pn

Mem Mem

14
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Challenges of Parallel Processing I

• Big challenge is % of program that is 
inherently sequential
– What does it mean to be inherently sequential?

• Suppose we want 80X speedup from 100 
processors. What fraction of original 
program can be sequential?
a. 10%

b. 5%

c. 1%

d. <1%

15
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Challenges of Parallel Processing II

• Remote memory accesses can have a detrimental 
effect on performance

• Suppose in a 2 GHz multiprocessing system each 
processor requires 200 ns to access a remote 
memory

• Only 0.2% of the instructions involve a remote 
access

• Assume base CPI is 0.5

• Each remote access requires 200/0.5 = 400 cycles

• CPI (new) = CPI (base) + Remote Request 
Rate*Remote Request Cost = 0.5+0.002*400 = 1.3

• Increase of CPI from 0.5 to 1.3!

16
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symmetric
• All memory is equally far 
away from all processors
• Any processor can do any I/O
(set up a DMA transfer)

Symmetric Multiprocessors (SMP)

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

Cache Cache
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Cache coherence and consistency 
problems

Caching of shared data in multiple locations can 
create coherence and consistency problems

A memory system is coherent if
any read of a data item from any processor returns the 
most recently written value of that data item, AND 

writes to the same location are serialized: two writes to the 
same location by any two processors are seen in the same 
order by all processors. 

Coherence defines the behavior of reads and writes 
in the same memory location

The issue of when exactly a written value must be 
seen by the reader is defined by the memory 
consistency model 18
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Cache coherence problem

Cache coherence when two processors access a memory location X.
At the end of step 3, CPU A has updated the value for X in its cache, but
CPU B has still the old value. 
This is the cache coherence problem 

19
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Cache coherence protocol

First, the two CPUs read the value of X in their internal cache.
Then, CPU A wants to modify the value of X. Before it does that, it 
invalidates the copy of X in the cache of CPU B.
When CPU B reads X again, it misses in the cache, and CPU A provides
the most up-to-date version

Example cache coherence protocol based on cache line invalidation.

20
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Cache coherence and consistency 
problems

Cache coherence protocols used to maintain 
coherence for multiple processors

Snoop based 
Every cache with a copy of the shared data, has also a copy of the 
sharing status of the data

No centralized control 

Cache controllers monitor (snoop) the broadcast medium to 
determine if they have a copy of the requested block

Does not scale very good with larger number of processors. 

Directory based 
The sharing status of a block is kept in a single location – the 
directory

Scales better than snoop-based approaches

21
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Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads (S,I)

P1 writes (M,I)

P2 reads (S,S)

P2 writes (I,M)

P1 writes (M,I)

P2 writes (I,M)

P1 reads (S,S)

P1 writes (M,I)

Initially, both 

P1 P2 are in 
(I,I)
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Snoopy Cache

Idea: Have cache watch (or snoop upon) 

bus transfers, and then “do the right thing”

Snoopy cache tags are dual-ported

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W 

Used to drive Memory Bus
when Cache is Bus Master

A

R/W 
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Implementation details
The MSI protocol  assumed that all steps are 
atomic

Things are not so straightforward (e.g in split 
transaction buses):

In a write miss to location X from the Modified state:

The CPU misses in location X, and the cache controller 
requests the bus (1-2 cycles)

Waiting for bus arbitration.... (~5 cycles)

The bus becomes available, and the cache controller writes 
back to memory the old data of location X. The bus is 
released (1 cycle)

The cache controller requests the bus again to read in the 
new data  (1-2 cycles)

Waiting for bus arbitration.... (~5 cycles)

The bus becomes available, and the cache controller reads 
in the new data from the memory or the owner (3-4 cycles)



ECE431 Parallel Computer Architecture 25

Implementation details

Atomic operations require a read-modify-write
instruction

In general, a read-modify-write instruction requires 
two memory (bus) operations without intervening 
memory operations by other processors

In a multiprocessor setting, bus needs to be locked 
for the entire duration of the atomic read and write 
operation

expensive for simple buses

very expensive for split-transaction buses

The solution is a more complex protocol with 
intermediate states for complex transitions. 
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Snooper Snooper Snooper Snooper

Optimized Snoop with L2 Caches

Processors often have at least two-level cache
small L1, large L2 (both on chip)

Inclusion property: all entries in L1 must be in L2
invalidation in L2 ==>  invalidation in L1

Snooping on L2 does not affect CPU-L1 bandwidth
However, invalidation of L1 may stall the CPU

• Core i7 has inclusive L2 and L3 caches

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $
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Performance of Symmetric 
Shared-Memory Multiprocessors

Cache performance in SMPs is combination 
of:

Uniprocessor cache miss traffic

Coherence misses 

4th C: coherence miss
Joins Compulsory, Capacity, Conflict
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Coherence Misses

True sharing misses arise from the communication 
of data through the cache coherence mechanism

Processors P1 and P2 share data X1

Processor P1 wants to write shared data X1 and invalidates data 
in P2

Later, Processor P2 wants to read X1    true sharing cache miss

False sharing misses when a block is invalidated 
because some word in the block, other than the 
one being read, is written into

Data X1 and X2 are in the same cache block

Processor P1 wants to write shared data X1 and invalidates the 
whole block, including X2

Later, Processor P2 wants to read X2  false sharing cache miss

Miss would not occur if block sizes were 1 word
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False Sharing

state   blk addr  data0 data1        ...     dataN

A cache block contains more than one word

Cache-coherence is usually done at the block-
level and not word-level (for simplicity)

Suppose P1 writes wordi and later P2 reads wordk 

and

both words have the same block address.

if (i==k) true sharing
if (i <> k) false sharing



ECE431 Parallel Computer Architecture 30

Example: 
True v. False Sharing v. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11

StatusP2P1Time

• Assume x1 and x2 in same cache block. 
• Initially, both cache lines in shared state (S,S)
• Any  miss that would occur if the block size were one word is designated a 
sharing miss

(M,I) Write Hit

(S,S) False shar. miss; x1 irrelevant to P2

(I, M) False shar. miss; x1 irrelevant to P2

(S,S)True shar. miss; invalidate x2 in P1

(M,I) Write Hit
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SMP Performance 
Normalized Exec. Time vs L3 Cache Size

Alpha Server 4100          
4 Processor SMP, 4-issue per 

cycle per core, 300 MHz cores

Three-level cache hierarchy for 
each core – L3 is off-chip 
L2 Cache is unified, 96 KB

Commercial      Workload: OLTP 
(online transaction processing 
workload) modeled after the TPC-B 
benchmark suite

Cache misses decrease with 
larger L3 Caches, but not beyond 2 
MBs. 

Idle time increases with larger L3 
cache because the I/O effect 
becomes stronger – Fewer memory 
stalls require more server 
processes to keep the processors 
busy

Performance unchanged for L3 
Cache larger than 2 MB
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SMP Performance 
Memory Cycles vs L3 Cache Size

What is the reason for high 
execution overhead due to 
L3 Caches?

Instruction and 
Capacity/Conflict misses the 
main miss contributors in  
smaller L3 Caches

True sharing misses 
dominate for larger L3 
Caches. 

True sharing and Cold 
misses untouched by larger 
L3 Caches
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SMP Performance 
Memory Cycles vs # of processors 

•2 MB, 2-way set 
associative L3 
cache

•True sharing,
false sharing 
increase going 
from 1 to 8 CPUs
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SMP problems 

Snooping requires message broadcasting to all 
processors 

This increases the bandwidth and does not scale well 
with increasing number of processors

The broadcast medium (e.g. bus) and the memory 
become bottlenecks

Snooping used for up to about 10 processors


