
1

ECE 431
Parallel Computer Architecture

Spring 2019

Data Level Parallelism (DLP)
Graphics Processor Units (GPUs)

Nikos Bellas

Electrical and Computer and Engineering Department

University of Thessaly

ECE 431 Parallel Computer Architecture

Serial Performance Scaling is Over

Cannot continue to scale processor frequencies

no 10 GHz chips

Cannot continue to increase power consumption

can’t melt chip

Can continue to increase transistor density (Moore’s law)

although Moore’s law has slowed down

ECE 431 Parallel Computer Architecture 2

How to Use Transistors?

Instruction-level parallelism

out-of-order execution, speculation, …

vanishing opportunities in power-constrained world

Data-level parallelism

vector units, SIMD execution, …

increasing … SSE, AVX, GPUs

Thread-level parallelism

increasing … multithreading, multicore, manycore

Chip Multiprocessors (Intel, AMD, IBM), GPUs, MPSoCs
ECE 431 Parallel Computer Architecture 3

Data Level Parallelism

Individual Data Elements

•Between independent loop iterations or iterations of
“stateless” tasks
• Multiple data are processed by the same instruction.
•Typically in vector form 4ECE 431 Parallel Computer

Architecture

Data Level Parallelism

for (i = 0; i < 128; i++)
C[i] = A[i] + B[i];

Data parallel:
Perform the same computation
on different data

A[i] A[i+1] A[i+2] A[i+3]

B[i] B[i+1] B[i+2] B[i+3]

vadd C[i] C[i+1] C[i+2] C[i+3]

5ECE 431 Parallel Computer
Architecture

Vector Processors

6ECE 431 Parallel Computer
Architecture

Peak performance comparison : GPU/CPU >10x

In 2018: Volta GPUs > 10000 TFLOPS peak performance

Why Massively Parallel Processing?

ECE 431 Parallel Computer Architecture 7

The “New” Moore’s Law

Computers no longer get faster, just wider

You must re-think your algorithms to be parallel !

Data-parallel computing is most scalable solution

Otherwise: refactor code for 2 cores

You will always have more data than cores –
build the computation around the data

8 cores4 cores 16 cores…

ECE 431 Parallel Computer Architecture 8

Processor Memor
y

Processor Memor
y

Global Memory

Generic Multicore Chip

Handful of processors each supporting ~2 hardware threads

On-chip memory near processors (cache, RAM, or both)

Shared global memory space (external DRAM)

• • •
Processor Memor

y
Processor Memor

y

Global Memory

Generic Manycore Chip

Many processors each supporting many hardware threads

On-chip memory near processors (cache, RAM, or both)

Shared global memory space (external DRAM)

Multicore & Manycore, cont.
Specifications Intel Xeon E-2186G

(Coffe Lake uarch)
GeForce RTX 2080 Ti

(Turing uarch)

Processing Elements
6 cores, 256-bit SIMD

(=8 FP ops)
@4.7 GHz

68 SMs, 2x32=64 SPs
per SM @ 1.545 GHz

Resident
Strands/Threads

(max)

6 cores, 2 threads, 8
way SIMD:

96 strands

68*64 = 4352
threads

SP GFLOPs 451.2 13448*

Memory Bandwidth 41.6 GB/s 616 GB/s

TDP (Power) 95 W 250 W

Technology 14 nm 12 nm

Intel Coffee Lake uarch

Turing uarch

ECE 431 Parallel Computer Architecture 11
* One FMAC op counts for 2

Why is this different from a CPU?

Different goals produce different designs

• CPU must be good at everything, parallel or not

• GPU assumes work load is highly parallel

CPU: minimize latency experienced by 1 thread

• big on-chip caches

• sophisticated control logic

GPU: maximize throughput of all threads (amortization)

• # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)

• multithreading can hide latency => skip the big caches

• However, Fermi architecture (and later) include caches

• share control logic across many threads

12ECE 431 Parallel Computer Architecture

ECE 431 Parallel Computer Architecture

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs: Different Design
Philosophies

13

ECE 431 Parallel Computer Architecture

block

grid thread

CUDA Main Ideas

• CUDA defines a geometric partitioning of grid of computations
• Grid consists of N dimensional space of blocks
• Each block consists of N dimensional space of threads

1 ≤ 𝑁 ≤ 3
N = 2 in Fig.

14

CUDA Simple Example

__kernel void vadd(
__global int* a,
__global int* b,
__global int* c) {

idx = threadIDx.x +
blockDim.x * blockIdx.x;

c[idx] = a[idx] + b[idx];
}

CUDA kernel describes the computation of a work-item
• Finest parallelism granularity

e.g add two integer vectors (N=1)

void add(int* a,
int* b,
int* c) {

for (int idx=0; idx<sizeof(a); idx++)
c[idx] = a[idx] + b[idx];

}

C code CUDA kernel code

Run-time calls
Used to differentiate execution
for each thread

15ECE 431 Parallel Computer Architecture

CUDA kernel code

int main() {

// Run grid of N=1 blocks

// of N=256 thread each

vadd <<< 1, 256>>>(a,b,c)

}

Host code

4 -3 10 11 -1 8 99 2 1

0 1 2 3 4 5 6 … 254 255

9 -1 78 6 21 5 7 2 101

0 1 2 3 4 5 6 … 254 255

a

b

idx for thread no 6

13 -4 88 17 20 13 106 4 102

0 1 2 3 4 5 6 … 254 255
c

16

CUDA Simple Example

ECE 431 Parallel Computer Architecture

__kernel void vadd(

__global int* a,

__global int* b,

__global int* c) {

idx = threadIDx.x +

blockDim.x * blockIdx.x;

c[idx] = a[idx] + b[idx];

}

CUDA Refresher

Why? Realities of integrated circuits: need to cluster computation and storage
to achieve high speeds

ECE 431 Parallel Computer Architecture 17

GPU Architecture Overview
GeForce GTX 480 Diagram

ECE 431 Parallel Computer Architecture 18

• 16 Streaming Multiprocessors
(SM)

• 32 Streaming Processors (SPs) per
SM

• No scalar processor

• Grid is launched on the
Streaming Processor Array (SPA)

• A thread block is assigned to a
SM

• Thread Block Scheduler
schedules Blocks to SMs

• Thread Blocks are
distributed to all the SMs

• Potentially >1 Blocks in
each SM

• A CUDA thread is assigned to a SP

GPU Architecture Overview
Streaming Multiprocessor (SM) Diagram (1)

ECE 431 Parallel Computer Architecture 19

• In this diagram each SM has 16
SPs (not 32)

• Each SP has a simple data
path with 1K 32-bit
registers

• Also ports to memory

• Each SM launches Warps of
Threads

• For NVIDIA 1 warp has 32
threads

• Implementation decision,
not part of the CUDA
programming model

• All threads in the Warp execute
the same instruction

• With probably different
operands

• Single Instruction
Multiple Threads (SIMT)

GPU Architecture Overview
Streaming Multiprocessor (SM) Diagram (2)

ECE 431 Parallel Computer Architecture 20

• SM schedules and executes
Warps that are ready to run

• Using the Warp
scheduler

• Threads in a block are
independent (by definition)

• Therefore, no need to check
dependencies between
warps

• All 32 instructions of the
warp are executed in lockstep
mode

• One PC per warp

• As Warps and Thread Blocks
complete, resources are
freed

• SPA can distribute more
Thread Blocks

Warp Scheduling
• SM hardware implements zero-

overhead Warp scheduling
– Warps whose next instruction has its

operands ready for consumption are
eligible for execution

– Eligible Warps are selected for execution
on a prioritized scheduling policy

– All threads in a Warp execute the same
instruction when selected

• 4 clock cycles needed to dispatch the
same instruction for all threads in a
Warp in G200

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

ECE 431 Parallel Computer Architecture 21

How many warps are there?

If 3 blocks are assigned to an SM and each Block has 256
threads, how many Warps are there in an SM?

Each Block is divided into 256/32 = 8 Warps

There are 8 * 3 = 24 Warps

At any point in time, only one of the 24 Warps will be selected
for instruction fetch and execution.

ECE 431 Parallel Computer Architecture 22

Warp Scheduling: Hiding Thread stalls

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

ECE 431 Parallel Computer Architecture 23

Warp Scheduling Ramifications
If one global memory access is needed for every 4

instructions

A minimal of 13 Warps are needed to fully tolerate a
200-cycle memory latency

Why?

Need to hide 200 cycles every four instructions

Every Warp occupies 4 cycles during which the same instruction
executes

Every 4 instructions a thread stalls

Every 16 cycles a thread stalls

200/16 =12.5 or at least 13 warps

ECE 431 Parallel Computer Architecture 24

GPU ISA

ECE 431 Parallel Computer Architecture 25

• Parallel Thread Execution (PTX)

• Virtual ISA as abstraction of the hardware
instruction set

• Uses unlimited number of virtual registers

• Compiler/Optimizer does register allocation to physical registers in
the final GPU device

• Translation to machine code is performed in
software at compiler and load time

• Compare to x86 uops

• Format of PTX instructions

opcode.type dest, src1, src2, src3;

• All instructions can be predicated
setp.lt.f32 p, a, b ; p = (a<b)

PTX example

ECE 431 Parallel Computer Architecture 26

Example vadd kernel:

shl.s32 R8, blockIdx, 8 ; blockIdx.x * blockDim.x (=256)

add.s32 R8, R8, threadIdx ; R8 = idx = my CUDA thread ID

shl.u32 R8, R8, 3 ; byte offset

ld.global.f64 RD0, [a+R8] ; RD0 = a[idx]

ld.global.f64 RD2, [b+R8] ; RD2 = b[idx]

add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (c[idx])

st.global.f64 [c+R8], RD0 ; c[idx] = a[idx]+b[idx]

__kernel void vadd(

__global double* a,

__global double* b,

__global double* c) {

idx = threadIDx.x + blockDim.x * blockIdx.x;

c[idx] = a[idx] + b[idx];

}

Conditional Branching in GPUs

• As we mentioned, each thread in a Warp
executes the same instruction in every clock cycle

• What if some of the 32 threads diverge in an if-
then-else statement?

• GPU approach:

• Use predication to either execute an
instruction

• Or Nullify it (execute NOP)

• Per-thread 1-bit predicate register, specified by
programmer

• Predicate register is the bit-mask to decide if
instruction executes or is NOP

• Conditional branching may be source of
inefficiencies

ECE 431 Parallel Computer Architecture 27

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

TF

L2

Memory

SM 0

Conditional Branching Example

ECE 431 Parallel Computer Architecture 28

CUDA
Kernel

if (X[i] != 0)
X[i] = X[i] – Y[i];

else
X[i] = Z[i];

PTX code ld.global.f64 RD0, [X+R8]
setp.neq.s32 P1, RD0, #0

@!P1, bra ELSE1, *Push

ld.global.f64 RD2, [Y+R8]
sub.f64 RD0, RD0, RD2
st.global.f64 [X+R8], RD0

@P1, bra ENDIF1, *Comp

ELSE1: ld.global.f64 RD0, [Z+R8]
st.global.f64 [X+R8], RD0

ENDIF1: <next instruction>, *Pop

; RD0 = X[i]
; P1 = (X[i]!=0)
; Push old mask. Set new mask bits. if
P1 is false, goto ELSE1
; RD2 = Y[i]
; Difference in RD0
; X[i] = RD0
; Complement mask bits.
; if P1 true, goto ENDIF1
; RD0 = Z[i]
; X[i] = RD0
; pop to restore old mask

Branch synchronization
markers use the branch stack

Note:

@p bra target ; if (p) goto target;

Granularity Considerations
For a 2D grid , should I use 8X8, 16X16 or 32X32 blocks?

Constraints:

1 SM can take at most 1024 threads

1 SM can take at most 8 blocks

1 block can have at most 512 threads

• For 8X8, we have 64 threads per Block. Since each SM can take up to 1024
threads, it can take up to 16 Blocks. However, each SM can only take up to
8 Blocks, only 512 threads will go into each SM

• For 16X16, we have 256 threads per Block. Since each SM can take up to
1024 threads, it can take up to 4 Blocks and achieve full capacity unless
other resource considerations overrule.

• For 32X32, we have 1024 threads per Block. Not even one can fit into an
SM. ECE 431 Parallel Computer Architecture 31

Memory System Goals

GOAL: High-Bandwidth

As much parallelism as possible

wide. 512 pins in G200 / Many DRAM chips

fast signaling. max data rate per pin.

maximize utilization

Multiple bins of memory requests

Coalesce requests to get as wide as possible

Goal to use every cycle to transfer from/to memory

Compression: lossless and lossy

Caches where it makes sense. Small
ECE 431 Parallel Computer Architecture 34

Parallelism in the Memory System

• Local Memory: per-thread
– Private per thread

– Auto variables, register spill

• Shared Memory: per-Block
– Shared by threads of the same block

– Inter-thread communication

• Global Memory: per-grid
– Shared by all threads

– Inter-Grid communication

Thread

Private/Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory

ECE 431 Parallel Computer Architecture 35

SM Memory Architecture

Threads in a Block share data & results

• In Shared Memory and Global Memory

• Synchronize at barrier instruction

Per-Block Shared Memory Allocation

• Keeps data close to processor

• Minimize trips to global Memory

• SM Shared Memory dynamically allocated to Blocks,
one of the limiting resources

ECE 431 Parallel Computer Architecture 36

SM Register File

• Register File (RF)

• Implements Local Memory

– 64 KB

– 16K 32-bit registers

– Provides 4 operands/clock

• Load/Store pipe can also read/write
RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

ECE 431 Parallel Computer Architecture 37

Programmer’s View of Register File

There are 16K registers in each
SM in G200

This is an implementation decision,
not part of CUDA

Registers are dynamically
partitioned across all Blocks
assigned to the SM

Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

Each thread in the same Block only
access registers assigned to itself

4 blocks 3 blocks

ECE 431 Parallel Computer Architecture 38

Dynamic Partitioning

Dynamic partitioning gives more flexibility to
compilers/programmers

One can run a smaller number of threads that require
many registers each or a large number of threads
that require few registers each

This allows for finer grain threading than traditional CPU
threading models.

The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

ECE 431 Parallel Computer Architecture 39

Constants

Immediate address constants

Indexed address constants

Constants stored in DRAM, and cached
on chip

L1 per SM

64KB total in DRAM

A constant value can be broadcast to all
threads in a Warp

Extremely efficient way of accessing a value
that is common for all threads in a Block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

ECE 431 Parallel Computer Architecture 40

Shared Memory
Each SM has 16 KB of Shared Memory

16 banks of 32bit words

CUDA uses Shared Memory as shared
storage visible to all threads in a thread
block

read and write access

Key Performance Enhancement

Move data in Shared memory

Operate in there

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

ECE 431 Parallel Computer Architecture 41

Parallel Memory Architecture

In a parallel machine, many threads access shared memory

Therefore, memory is divided into banks

Essential to achieve high bandwidth

Each bank can service one address per cycle

A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized
Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

ECE 431 Parallel Computer Architecture 42

Bank Addressing Examples

• No Bank Conflicts

– Linear addressing
stride == 1

• No Bank Conflicts

– Random 1:1
Permutation

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

ECE 431 Parallel Computer Architecture 43

2-way Bank Conflicts

Linear addressing
stride == 2

• 8-way Bank Conflicts

– Linear addressing
stride == 8

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 9

Bank 8

Bank 15

Bank 7

Bank 2

Bank 1

Bank 0
x8

x8

Bank Addressing Examples

ECE 431 Parallel Computer Architecture 44

Example: how addresses map to banks

Each bank has a bandwidth of 32 bits per clock cycle

Successive 32-bit words are assigned to successive
banks

Assume memory has 16 banks

bank = (word address) % 16

Same as the size of a half-warp

No bank conflicts between different half-warps, only within a
single half-warp

ECE 431 Parallel Computer Architecture 45

Shared memory bank conflicts

Shared memory is as fast as registers if there are no
bank conflicts

The fast case:

If all threads of a half-warp access different banks, there
is no bank conflict

If all threads of a half-warp access the identical address,
there is no bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp
access the same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank
ECE 431 Parallel Computer Architecture 46

Linear Addressing

Given:

__shared__ float buffer[256];

float foo = buffer[baseIndex + s *

threadIdx.x];

This is only bank-conflict-free if s shares no
common factors with the number of banks

Here, s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

s=1

ECE 431 Parallel Computer Architecture 47

Data types and bank conflicts

This has no conflicts if type of shared is 32-bits:

__shared__ float buffer[256];

foo = buffer [baseIndex + threadIdx.x]

But not if the data type is smaller

4-way bank conflicts:

__shared__ char buffer[256];

foo = buffer [baseIndex + threadIdx.x];

2-way bank conflicts:

__shared__ short buffer[256];

foo = buffer[baseIndex + threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

ECE 431 Parallel Computer Architecture 48

Common Array Bank Conflict Patterns 1D

Each thread loads 2 elements into shared
memory:

2-way-interleaved loads result in
2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

This makes sense for traditional CPU
threads, locality in cache line usage
and reduced sharing traffic.

Not in shared memory usage where there is
no cache line effects but banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

ECE 431 Parallel Computer Architecture 49

Common Bank Conflict Patterns (2D)
Operating on 2D array of floats in shared

memory

e.g., image processing

Example: 16x16 2D array, 16 threads in
block

Each thread processes a row

So threads in a block access the elements in
each column simultaneously (example:
column1 in purple)

16-way bank conflicts: rows all start at bank 0

Solution 1) pad the rows

Add one float to the end of each row

Solution 2) transpose before processing

Suffer bank conflicts during transpose

But possibly save them later

Bank Indices without Padding

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

1 2 3 4 5 6 7 8 0

2 3 4 5 6 7 8 9 1

3 4 5 6 7 8 9 10 2

4 5 6 7 8 9 10 11 3

5 6 7 8 9 10 11 12 4

6 7 8 9 10 11 12 13 5

7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0

1

2

3

4

5

6

8

15

Bank Indices with Padding

ECE 431 Parallel Computer Architecture 50

Load/Store (Memory read/write)
Clustering/Batching

Use LD to hide LD latency (non-dependent LD ops only)

Use same thread to help hide own latency

Instead of:

LD 0 (long latency)

Dependent MATH 0

LD 1 (long latency)

Dependent MATH 1

Do:

LD 0 (long latency)

LD 1 (long latency - hidden)

MATH 0

MATH 1

Compiler handles this!

But, you must have enough non-dependent LDs and Math

ECE 431 Parallel Computer Architecture 51

