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About This Manual

This manual provides a general overview of designing Field 
Programmable Gate Arrays (FPGAs) with Hardware Description 
Languages (HDLs). It includes design hints for the novice HDL user, 
as well as for the experienced user who is designing FPGAs for the 
first time. 

The design examples in this manual were created with Verilog and 
VHSIC Hardware Description Language (VHDL); compiled with 
various synthesis tools; and targeted for XC4000, Spartan, Spartan-II, 
Spartan-XL, Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and XC5200 
devices. Xilinx equally endorses both Verilog and VHDL. VHDL may 
be more difficult to learn than Verilog and usually requires more 
explanation.

The design examples in this manual were created with Verilog and 
VHSIC Hardware Description Language (VHDL); compiled with 
various synthesis tools; and targeted for Spartan-II, Virtex, Virtex-E, 
Virtex-II, Virtex-II Pro, and XC5200 devices. Xilinx equally endorses 
both Verilog and VHDL. VHDL may be more difficult to learn than 
Verilog and usually requires more explanation.

This manual does not address certain topics that are important when 
creating HDL designs, such as the design environment; verification 
techniques; constraining in the synthesis tool; test considerations; and 
system verification. Refer to your synthesis tool’s reference manuals 
and design methodology notes for additional information.

Before using this manual, you should be familiar with the operations 
that are common to all Xilinx software tools. 
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Manual Contents
This book contains the following chapters.

• Chapter 1, “Introduction,” provides a general overview of 
designing Field Programmable Gate Arrays (FPGAs) with HDLs. 
This chapter also includes installation requirements and instruc-
tions.

• Chapter 2, “Understanding High-Density Design Flow,” 
provides synthesis and Xilinx implementation techniques to 
increase design performance and utilization.

• Chapter 3, “General HDL Coding Styles,” includes HDL coding 
hints and design examples to help you develop an efficient 
coding style. 

• Chapter 4, “Architecture Specific HDL Coding Styles for Spartan-
II, Virtex, Virtex-E, Virtex-II, and Virtex-II Pro,” includes coding 
techniques to help you use the latest Xilinx devices.

• Chapter 5 “Virtex-II Pro Considerations,” highlights some of the 
outstanding features of Xilinx Virtex-II Pro FPGAs.

• Chapter 6, “Simulating Your Design,” describes simulation 
methods for verifying the function and timing of your designs.

Additional Resources
For additional information, go to http://support.xilinx.com. The 
following table lists some of the resources you can access from this 
Web site. You can also directly access these resources using the 
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification 
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers 
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application 
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
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About This Manual
Data Book Pages from The Programmable Logic Data Book, which contains device-
specific information on Xilinx device characteristics, including readback, 
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design 
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
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Conventions

This manual uses the following conventions. An example illustrates 
most conventions. 

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files 
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a 
syntactical statement. However, braces “{ }” in Courier bold are 
not literal and square brackets “[ ]” in Courier bold are literal 
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a 
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply 
values

edif2ngd design_name

♦ References to other manuals

See the Development System Reference Guide for more 
information.
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♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the 
two nets are not connected.

• Square brackets “[ ]” indicate an optional entry or parameter. 
However, in bus specifications, such as bus [7:0], they are 
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose 
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been 
omitted.

IOB #1: Name = QOUT’ 

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “…” indicates that an item can be repeated 
one or more times.

allow block  block_name loc1 loc2 … locn;

Online Document
The following conventions are used for online documents.

• Blue text indicates cross-references within a book. Red text 
indicates cross-references to other books. Click the colored text to 
jump to the specified cross-reference.

• Blue, underlined text indicates a Web site. Click the link to open 
the specified Web site. You must have a Web browser and internet 
connection to use this feature.
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Chapter 1

Introduction

This chapter provides a general overview of designing Field 
Programmable Gate Arrays (FPGAs) with HDLs, and also includes 
installation requirements and instructions. It includes the following 
sections.

• “Architecture Support”

• “Overview of Hardware Description Languages”

• “Advantages of Using HDLs to Design FPGAs”

• “Designing FPGAs with HDLs”

• “Xilinx Internet Web Sites”

Architecture Support
The software supports the following architecture families in this 
release.

• Virtex™/-II/-II PRO/

• CoolRunner™ XPLA3/-II

• XC9500™/XL/XV
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Overview of Hardware Description Languages
Hardware Description Languages (HDLs) are used to describe the 
behavior and structure of system and circuit designs. This chapter 
includes a general overview of designing FPGAs with HDLs. HDL 
design examples are provided in subsequent chapters of this book, 
and design examples can be downloaded from the Xilinx web site. 
System requirements and installation instructions for designs avail-
able from the web are also provided in this chapter.

This chapter also includes a brief description of why using FPGAs is 
more advantageous than using ASICs for your design needs.

To learn more about designing FPGAs with HDLs, Xilinx recom-
mends that you enroll in the appropriate training classes offered by 
Xilinx and by the vendors of synthesis software. An understanding of 
FPGA architecture allows you to create HDL code that effectively 
uses FPGA system features. 

For the latest information on Xilinx parts and software, visit the 
Xilinx web site at http://www.xilinx.com. On the Xilinx home page, 
click on Products. You can get answers to your technical questions 
from the Xilinx support web site at http://www.support.xilinx.com. 
On the support home page, click on Advanced Search to set up search 
criteria that match your technical questions. You can also download 
software service packs from http://www.support.xilinx.com. On the 
support home page, click on Software, and then Service Packs. Soft-
ware documentation, tutorials, and design files are available from the 
www.support.xilinx.com web site.

Advantages of Using HDLs to Design FPGAs
Using HDLs to design high-density FPGAs is advantageous for the 
following reasons.

• Top-Down Approach for Large Projects—HDLs are used to create 
complex designs. The top-down approach to system design 
supported by HDLs is advantageous for large projects that 
require many designers working together. After the overall 
design plan is determined, designers can work independently on 
separate sections of the code.

• Functional Simulation Early in the Design Flow—You can verify the 
functionality of your design early in the design flow by simu-
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lating the HDL description. Testing your design decisions before 
the design is implemented at the RTL or gate level allows you to 
make any necessary changes early in the design process.

• Synthesis of HDL Code to Gates—You can synthesize your hard-
ware description to a design implemented with gates. This step 
decreases design time by eliminating the need to define every 
gate. Synthesis to gates also reduces the number of errors that can 
occur during a manual translation of a hardware description to a 
schematic design. Additionally, you can apply the automation 
techniques used by the synthesis tool (such as machine encoding 
styles or automatic I/O insertion) during the optimization of 
your design to the original HDL code, resulting in greater effi-
ciency.

• Early Testing of Various Design Implementations—HDLs allow you 
to test different implementations of your design early in the 
design flow. You can then use the synthesis tool to perform the 
logic synthesis and optimization into gates. Additionally, Xilinx 
FPGAs allow you to implement your design at your computer. 
Since the synthesis time is short, you have more time to explore 
different architectural possibilities at the Register Transfer Level 
(RTL). You can reprogram Xilinx FPGAs to test several imple-
mentations of your design.

• Reuse of RTL Code —You can retarget RTL code to new FPGA 
architectures with a minimum of recoding.

Designing FPGAs with HDLs
If you are more familiar with schematic design entry, you may find it 
difficult at first to create HDL designs. You must make the transition 
from graphical concepts, such as block diagrams, state machines, 
flow diagrams, and truth tables, to abstract representations of design 
components. You can ease this transition by not losing sight of your 
overall design plan as you code in HDL. To effectively use an HDL, 
you must understand the syntax of the language; the synthesis and 
simulator software; the architecture of your target device; and the 
implementation tools. This section gives you some design hints to 
help you create FPGAs with HDLs.
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Using Verilog
Verilog® is popular for synthesis designs because it is less verbose 
than traditional VHDL, and it is standardized as IEEE-STD-1364-95. 
It was not originally intended as an input to synthesis, and many 
Verilog constructs are not supported by synthesis software. The 
Verilog examples in this manual were tested and synthesized with 
current, commonly-used FPGA synthesis software. The coding strate-
gies presented in the remaining chapters of this manual can help you 
create HDL descriptions that can be synthesized.

Using VHDL
VHSIC Hardware Description Language (VHDL) is a hardware 
description language for designing Integrated Circuits (ICs). It was 
not originally intended as an input to synthesis, and many VHDL 
constructs are not supported by synthesis software. However, the 
high level of abstraction of VHDL makes it easy to describe the 
system-level components and test benches that are not synthesized. 
In addition, the various synthesis tools use different subsets of the 
VHDL language. The examples in this manual will work with most 
commonly used FPGA synthesis software. The coding strategies 
presented in the remaining chapters of this manual can help you 
create HDL descriptions that can be synthesized.

Comparing ASICs and FPGAs
Xilinx FPGAs are reprogrammable and when combined with an HDL 
design flow can greatly reduce the design and verification cycle seen 
with traditional ASICs.

Using Synthesis Tools
Most of the commonly-used FPGA synthesis tools have special opti-
mization algorithms for Xilinx FPGAs. Constraints and compiling 
options perform differently depending on the target device. There are 
some commands and constraints in ASIC synthesis tools that do not 
apply to FPGAs and, if used, may adversely impact your results. You 
should understand how your synthesis tool processes designs before 
creating FPGA designs. Most FPGA synthesis vendors include infor-
mation in their manuals specifically for Xilinx FPGAs.
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Using FPGA System Features
You can improve device performance and area utilization by creating 
HDL code that uses FPGA system features, such as global reset, wide 
I/O decoders, and memory. FPGA system features are described in 
this manual.

Designing Hierarchy
Current HDL design methods are specifically written for ASIC 
designs. You can use some of these ASIC design methods when 
designing FPGAs; however, certain techniques may unnecessarily 
increase the number of gates or CLB levels. This design guide will 
train you in techniques for optional FPGA design methodologies.

Design hierarchy is important in the implementation of an FPGA and 
also during incremental or interactive changes. Some synthesizers 
maintain the hierarchical boundaries unless you group modules 
together. Modules should have registered outputs so their boundaries 
are not an impediment to optimization. Otherwise, modules should 
be as large as possible within the limitations of your synthesis tool. 
The “5,000 gates per module” rule is no longer valid, and can inter-
fere with optimization. Check with your synthesis vendor for the 
current recommendations for preferred module size. As a last resort, 
use the grouping commands of your synthesizer, if available. The size 
and content of the modules influence synthesis results and design 
implementation. This manual describes how to create effective design 
hierarchy.

Specifying Speed Requirements
To meet timing requirements, you should understand how to set 
timing constraints in both the synthesis and placement/routing tools. 
For more information, see the “Setting Constraints” section of the 
“Understanding High-Density Design Flow” chapter. 

Xilinx Internet Web Sites
You can get product information and product support from the Xilinx 
internet web sites. Both sites are described in the following sections.
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 Xilinx World Wide Web Site
You can reach the Xilinx web site at http://www.xilinx.com. The 
following features can be accessed from the Xilinx web site.

• Products — You can find information about new Xilinx products 
that are being offered, as well as previously announced Xilinx 
products. 

• Service and Support — You can jump to the Xilinx technical 
support site by choosing Service and Support.

• Xpresso Cafe —You can purchase Xilinx software, hardware and 
software tool education classes through Xilinx and Xilinx distrib-
utors.

Technical Support Web Site
Answers to questions, tutorials, Application notes, software manuals 
and information on using Xilinx products can be found on the tech-
nical support web site. You can reach the support web site at http://
www.support.xilinx.com. The following features can be accessed 
from the Xilinx support web site.

• Troubleshoot — You can do an advanced search on the answers 
database to troubleshoot questions or issues you have with your 
design.

• Software — You can download the latest software service packs, 
IP updates, and product information from the Xilinx support 
website. 

• Library — You can view the Software manuals from this web site. 
The manuals are provided in both HTML, viewable through most 
HTML browsers, and PDF. The Databook, CORE Generator 
documentation and datasheets are also available. 

• Design — You can find helpful application notes that illustrate 
specific design solutions and methodologies.

• Services — You can open a support case when you need to have 
information from a Xilinx technical support person. You can also 
find information about your hardware or software order. 

• Feedback —We are always interested in how well we’re serving 
our customers. You can let us know by filling out our customer 
service survey questionnaire.
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You can contact Xilinx technical support and application support for 
additional information and assistance in the following ways.

Technical and Applications Support Hotlines
The telephone hotlines give you direct access to Xilinx Application 
Engineers worldwide. You can also e-mail or fax your technical ques-
tions to the same locations.

Note When e-mailing or faxing inquiries, provide your complete 
name, company name, and phone number. Also, provide a complete 
problem description including your design entry software and design 
stage.

Xilinx FTP Site
ftp://ftp.xilinx.com

The FTP site provides online access to automated tutorials, design 
examples, online documents, utilities, and published patches.

Table 1-1  Technical Support

Location Telephone Electronic Mail Facsimile (Fax)

North America 1-800-255-7778 hotline@xilinx.com 1-408-879-4442

Japan 81-3-3297-9163 jhotline@xilinx.com 81-3-3297-0067

France 33-1-3463-0100 eurosupport@xilinx.com 44-870-7350-620

Germany 49- 180-3-60-60-60 eurosupport@xilinx.com 44-870-7350-620

Sweden 46- 8-33-14-00 eurosupport@xilinx.com 44-870-7350-620

United Kingdom 44-870-7350-610 eurosupport@xilinx.com 44-870-7350-620

Corporate 
Switchboard

1-408-559-7778
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Vendor Support Sites
Vendor support for synthesis and verification products can be 
obtained at the following locations.

Table 1-2  Vendor Support Sites

Vendor Name 
and Product

Telephone Electronic Mail Web Site

Synopsys - XSI 1-800-245-8005 support_center
@synopsys.com

www.synopsys.com

Cadence -
Concept-HDL

1-877-237-4911 support@cadence.com sourcelink.cadence.com

Mentor Graphics 1-800-547-4303 support_net@mentor.com www.mentor.com

Synplicity 1-408-548-6000 support@synplicity.com www.synplicity.com
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Chapter 2

Understanding High-Density Design Flow

This chapter describes the steps in a typical HDL design flow. 
Although these steps may vary with each design, the information in 
this chapter is a good starting point for any design. This chapter 
includes the following sections.

• “Design Flow”

• “Entering your Design and Selecting Hierarchy”

• “Functional Simulation of your Design”

• “Synthesizing and Optimizing your Design”

• “Setting Constraints”

• “Evaluating Design Size and Performance”

• “Evaluating your Design for Coding Style and System Features”

• “Modular Design and Incremental Design (ECO)”

• “Placing and Routing Your Design”

• “Timing Simulation of Your Design”

• “Downloading to the Device and In-system Debugging”

• “Creating a PROM File for Stand-Alone Operation”

Design Flow
An overview of the design flow steps is shown in the following 
figure.
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Figure 2-1  Design Flow Overview
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Entering your Design and Selecting Hierarchy
The first step in implementing your design is creating the HDL code 
based on your design criteria.

Design Entry Recommendations
The following recommendations can help you create effective 
designs.

Using RTL Code

By using register transfer level (RTL) code and avoiding (when 
possible) instantiating specific components, you can create designs 
with the following characteristics.

Note In some cases instantiating optimized CORE Generator or Logi-
CORE modules is beneficial with RTL.

• Readable code

• Faster and simpler simulation

• Portable code for migration to different device families

• Reusable code for future designs 

Carefully Select Design Hierarchy

Selecting the correct design hierarchy is advantageous for the 
following reasons.

• Improves simulation and synthesis results

• Improves debugging and modifying modular designs

• Allows parallel engineering (a team of engineers can work on 
different parts of the design at the same time)

• Improves the placement and routing of your design by reducing 
routing congestion and improving timing

• Allows for easier code reuse in the current design, as well as in 
future designs
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Architecture Wizard
The Architecture Wizard is a graphical application provided in 
Project Navigator that lets you configure complicated aspects of some 
Xilinx devices. The Architecture Wizard consists of several 
components, that you can use to configure specific device features. 
Each component is presented as an independent wizard. The 
following is a list of the wizards that make up the Architecture 
Wizard: 

• DCM Wizard 

• Rocket I/O Wizard

The Architecture Wizard produces an XAW file, which is an XDM file 
with.xaw file extension. The Architecture Wizard can create a new 
XAW file, or it can read in an existing XAW file. When it reads in an 
existing XAW file, it allows you to modify the settings. When you 
finish with the wizard, the new data is saved to the same XAW file 
that was read in.

The Architecture Wizard can also produce a VHDL, Verilog, or EDIF 
file, depending on the flow type that is passed to it. The generated 
HDL output is a module (consisting of one or more primitives and 
the corresponding properties) and not just a code snippet. This allows 
the output file to be referenced from the HDL Editor. There is no UCF 
output file, since the necessary attributes are embedded inside the 
HDL file.

Launch the Architecture Wizard from Project Navigator, from the File 
dropdown, select File → New Source → Architecture 
Wizard... menu item.

DCM Wizard

The DCM Wizard component of the Architecture Wizard provides 
the following functions.

• Provides the ability to specify Setup information. 

• Provides the ability to view DCM component, specify attributes, 
generate corresponding components and signals, and execute 
DRC checks. 

• Provides the ability to view up to eight clock buffers. 

• Provides the ability to setup the Feedback Path information. 
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• Provides the ability to setup the Clock Frequency Generator 
information and execute DRC checks. 

• Provides the ability to view and edit component attributes. 

• Provides the ability to view and edit component constraints. 

• Provides the ability to automatically place one component in the 
XAW file. 

• Provides the ability to save component settings in a VHDL file. 

• Provides the ability to save component settings in a Verilog file. 

Rocket I/O Wizard

The Rocket I/O Wizard component of the Architecture Wizard 
provides the following functions.

• Provides the ability to specify Gigabit I/O type. 

• Provides the ability to define Channel Bonding options. 

• Provides the ability to specify General Transmitter Settings 
including encoding, CRC and clock. 

• Provides the ability to specify General Receptor Settings 
including encoding, CRC and clock. 

• Provides the ability to specify Synchronization. 

• Provides the ability to specify Equalization, Signal integrity tip 
(resister, termination mode...). 

• Provides the ability to view and edit component attributes. 

• Provides the ability to view and edit component constraints. 

• Provides the ability to automatically place one component in the 
xaw file. 

• Provides the ability to save component settings to VHDL file. 

• Provides the ability to save component settings to Verilog file. 

Functional Simulation of your Design
Use functional or RTL simulation to verify the syntax and function-
ality of your design. Use the following recommendations when simu-
lating your design.
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• Typically with larger hierarchical HDL designs, you should 
perform separate simulations on each module before testing your 
entire design. This makes it easier to debug your code.

• Once each module functions as expected, create a test bench to 
verify that your entire design functions as planned. You can use 
the test bench again for the final timing simulation to confirm 
that your design functions as expected under worst-case delay 
conditions.

Synthesizing and Optimizing your Design
This section includes recommendations for compiling your designs to 
improve your results and decrease the run time.

Note Refer to your synthesis tool documentation for more informa-
tion on compilation options and suggestions.

Creating an Initialization File
Most synthesis tools provide a default initialization with default 
options. You may modify the initialization file or use the GUI to 
change compiler defaults, and to point to the applicable implementa-
tion libraries. Refer to your synthesis tool documentation for more 
information.

Creating a Compile Run Script
FPGA Compiler II, LeonardoSpectrum, and Synplify all support TCL 
scripting. Using TCL scripting can make compiling your design 
easier and faster while achieving shorter compile times. With more 
advanced scripting you can run a compile multiple times using 
different options and write to different directories. You can also 
invoke and run other command line tools. The following are some 
sample scripts that can be run from the command line or from the 
GUI.

FPGA Compiler II

FPGA Scripting Tool (FST) implements a TCL-based command line 
interface for FPGA Compiler II. FST can be accessed from a command 
line by typing the following.

• For FPGA Compiler II
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fc2_shell -f synth_file.tcl

The script will execute and put you back at the UNIX or DOS prompt.

FPGA Compiler II FST Example

The following FST commands can be run in FPGA Compiler II.

• To create the project, enter the following.

create_project -dir . d_register

• To open the project, enter the following.

open_project  d_register 

• To add the files to the project, enter the following.

add_file -format VHDL ../src/d_register.vhd 

• To analyze the design files enter the following.

analyze_file -progress

• To create a chip for a device enter the following.

create_chip  -progress -target Virtex -device v50PQ240 -speed -5 -
name d_register d_register

• To set the top level as the current design, enter the following.

current_chip d_register 

• To optimize the design, enter the following.

set opt_chip [format "%s-Optimized" d_register]

optimize_chip  -progress -name $opt_chip

• To write out the messages enter the following.

list_message

• To write out the netlist, enter the following.

export_chip -progress -dir .

• close_project

• quit
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LeonardoSpectrum

The following TCL script can be run from LeonardoSpectrum by 
doing one of the following.

1. Select the File → Run Script menu item from the Leonar-
doSpectrum graphical user interface.

2. Type in the Level 3 GUI command line, source script_file.tcl

3. Type in the UNIX/DOS prompt with the EXEMPLAR environ-
ment path set up, spectrum -file script_file.tcl

4. Type spectrum at the UNIX/DOS prompt. This will put you in a 
TCL prompt. Then at the TCL prompt type source script_file.tcl

LeonardoSpectrum TCL Examples

The following TCL commands can be entered in LeonardoSpectrum.

• To set the part type, enter the following.

set part v50ecs144

• To read the HDL files, enter the following.

read  macro1.vhd macro2.vhd top_level.vhd

• To set assign buffers, enter the following.

PAD  IBUF_LVDS data(7:0)

• To optimize while preserving hierarchy, enter the following.

optimize -ta xcve -hier preserve

• To write out the EDIF file, enter the following.

auto_write ./M1/ff_example.edf

Synplify

The following TCL script can be run from Synplify by doing one of 
the following:

1. Use the File → Run TCL Script menu item from the GUI

2. Type synplify -batch script_file.tcl at a UNIX/DOS command 
prompt.
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Synplify TCL Example

The following TCL commands can be entered in Synplify.

• To start a new project, enter the following.

project -new

• To set device options, enter the following.

set_option -technology Virtex-E

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

• To add file options, enter the following.

add_file -constraint “watch.sdc”

add_file -vhdl -lib work “macro1.vhd”

add_file -vhdl -lib work “macro2.vhd”

add_file -vhdl -lib work “top_levle.vhd”

• To set compilation/mapping options, enter the following.

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler true

set_option -resource_sharing true

• To set simulation options, enter the following.

set_option -write_verilog false

set_option -write_vhdl false

• To set automatic place and route (vendor) options, enter the 
following.

set_option -write_apr_constraint true

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8
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• To set result format/file options, enter the following.

project -result_format “edif”

project -result_file “top_level.edf”

project -run

project -save “watch.prj”

• exit

Compiling Your Design
Use the recommendations in this section to successfully compile your 
design.

Modifying your Design

You may need to modify your code to successfully compile your 
design because certain design constructs that are effective for simula-
tion may not be as effective for synthesis. The synthesis syntax and 
code set may differ slightly from the simulator syntax and code set. 

Compiling Large Designs

Older versions of synthesis tools required incremental design compi-
lations to decrease run times. Some or all levels of hierarchy were 
compiled with separate compile commands and saved as output or 
database files. The output netlist or compiled database file for each 
module was read during synthesis of the top level code. This method 
is not necessary with new synthesis tools, which can handle large 
designs from the top down. The 5,000 gates per module rule of thumb 
no longer applies with the new synthesis tools. Refer to your 
synthesis tool documentation for details.

Saving Compiled Design as EDIF

After your design is successfully compiled, save it as an EDIF file for 
input to the Xilinx software. 
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Setting Constraints
You can define timing specifications for your design in the User 
Constraints File (UCF). You can use the Xilinx Constraints Editor 
which provides a graphical user interface allowing for easy 
constraints specification. You can also enter constraints directly into 
the UCF file. Both methods are described below. Most synthesis tools 
support an easy to use Constraints Editor interface for entering 
constraints in your design. 

Using the UCF File
The UCF gives you tight control of the overall specifications by 
giving you access to more types of constraints; the ability to define 
precise timing paths; and the ability to prioritize signal constraints. 
Furthermore, you can group signals together to simplify timing spec-
ifications. Some synthesis tools translate certain synthesis constraints 
to Xilinx implementation constraints. The translated constraints are 
placed in the NCF/NGC file. For more information on timing specifi-
cations in the UCF file, refer to the Constraints Guide, and the Answers 
Database on the Xilinx Support Web site, http://support.xilinx.com.

Using the Xilinx Constraints Editor
The Xilinx Constraints Editor is a GUI based tool that can be accessed 
from the Processes for Current Source window of the Project Navi-
gator GUI (Design Entry Utilities -> User Constraints -> 
Constraints Editor), or from the command line 
(constraints_editor). The Constraints Editor allows the user to 
easily enter design constraints in a spreadsheet form and writes out 
the constraints in the UCF file. This eliminates the need to know the 
UCF file syntax. The other benefit is the Constraints Editor reads the 
design and lists all the nets and elements in the design. This is very 
helpful in the HDL flow when the synthesis tool creates the names.

Some constraints are not available through the Constraints Editor. 
The unavailable constraints will need to be entered directly in the 
UCF file using a text editor. The new UCF file needs to be re-run 
through the Translate step or NGDBuild using the command line 
method. For more information on using the Xilinx Constraints Editor, 
please refer to the Constraints Editor Guide on the Xilinx Support Web 
site, http://support.xilinx.com.
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Using Synthesis Tools’ Constraints Editor
The FPGA Compiler II, LeonardoSpectrum, and Synplify synthesis 
tools all have constraint editors to apply constraints to your HDL 
design. Refer to your synthesis tool’s documentation for information 
on how to use the constraints editor specific to your synthesis envi-
ronment. You can add the following constraints:

• Clock frequency or cycle and offset

• Input and Output timing

• Signal Preservation

• Module constraints

• Buffering ports

• Path timing

• Global timing

Generally, the timing constraints will be written out to an NCF file, 
and all other constraints will be written to the output EDIF file. In 
XST, all constraints will be written to an NGC file. Please refer to the 
documentation for your synthesis tool to obtain more information on 
Constraint Editors. 

Evaluating Design Size and Performance
Your design should meet the following requirements.

• Design must function at the specified speed

• Design must fit in the targeted device

After your design is compiled, you can determine preliminary device 
utilization and performance with your synthesis tool’s reporting 
options. After your design is mapped by the Xilinx tools, you can 
determine the actual device utilization. At this point in the design 
flow, you should verify that your chosen device is large enough to 
incorporate any future changes or additions, and that your design 
will perform as specified. 
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Using your Synthesis Tool to Estimate Device 
Utilization and Performance

Use your synthesis tool’s area and timing reporting options to esti-
mate device utilization and performance. After compiling, use the 
report area command to obtain a report of device resource utilization. 
Some synthesis tools provide area reports automatically. Refer to 
your synthesis tool documentation for correct command syntax.

The device utilization and performance report lists the compiled cells 
in your design, as well as information on how your design is mapped 
in the FPGA. These reports are generally accurate because the 
synthesis tool creates the logic from your code and maps your design 
into the FPGA. However, these reports are different for the various 
synthesis tools. Some reports specify the minimum number of CLBs 
required, while other reports specify the “unpacked” number of 
CLBs to make an allowance for routing. For an accurate comparison, 
you should compare reports from the Xilinx place and route tool after 
implementation. Also, any instantiated components, such as CORE 
Generator modules, EDIF files, or other components that your 
synthesis tool does not recognize during compilation are not 
included in the report file. If you include these components in your 
design, you must include the logic area used by these components 
when estimating design size. Also, sections of your design may get 
trimmed during the mapping process, and may result in a smaller 
design.

Using the Timing Report Command

Use your synthesis tool’s timing report command to obtain a report 
with estimated data path delays. Refer to your synthesis vendor’s 
documentation for command syntax.

The timing report is based on the logic level delays from the cell 
libraries and estimated wire-load models for your design. This report 
is an estimate of how close you are to your timing goals; however, it is 
not the actual timing for your design. An accurate report of your 
design’s timing is only available after your design is placed and 
routed. This timing report does not include information on any 
instantiated components, such as CORE Generator modules, EDIF 
files, or other components that are not recognized by your synthesis 
tool during compilation.
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Determining Actual Device Utilization and Pre-routed 
Performance 

To determine if your design fits the specified device, you must map it 
with the Xilinx Map program. The generated report file 
design_name.mrp contains the implemented device utilization infor-
mation. The report file can be read by double-clicking on Map Report 
in the Project Navigator Process Window. You can run the Map 
program from Project Navigator or from the command line.

Using Project Navigator to Map Your Design

Use the following steps to map your design using Project Navigator.

Note For more information on using the Project Navigator, see Project 
Navigator Online Help.

1. After opening Project Navigator and creating your project, go to 
the Process Window and click the “+” symbol in front of 
Implement Design.

2. To run the Xilinx Map program, double-click Map.

3. To view the Map Report, double-click its name in the Process 
Window or click its name and then select Process → View. If the 
report does not currently exist, it is generated. If a green check 
mark is in front of the report name, the report is up-to-date and 
no processing is performed. If the desired report is not up-to-
date, you can click the report name and then select Process → Run 
to update the report before you view it. The auto-make process 
automatically runs only the necessary processes to update the 
report before displaying it. Or, you can select Process → Run All 
to re-run all processes— even those processes that are currently 
up-to-date— from the top of the design to the stage where the 
report would be.

4. View the Logic Level Timing Report with the Report Browser. 
This report shows the performance of your design based on logic 
levels and best-case routing delays.

5. At this point, you may want to start the Timing Analyzer to 
create a more specific report of design paths.

6. Use the Logic Level Timing Report and any reports generated 
with the Timing Analyzer or the Map program to evaluate how 
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close you are to your performance and utilization goals. Use 
these reports to decide whether to proceed to the place and route 
phase of implementation, or to go back and modify your design 
or implementation options to attain your performance goals. You 
should have some slack in routing delays to allow the place and 
route tools to successfully complete your design. Use the verbose 
option in the Timing Analyzer to see block-by-block delay. The 
timing report of a mapped design (before place and route) shows 
block delays, as well as minimum routing delays.

Note A typical Virtex /E/II/II Pro design should allow 40% of 
the delay for logic, and 60% of the delay for routing. If most of 
your time is taken by logic, then most likely, the design will not 
meet timing after place and route.

Using the Command Line to Map Your Design

1. Translate your design as follows.

ngdbuild -p target_device design_name.edf

2. Map your design as follows.

map design_name.ngd

3. Use a text editor to view the Device Summary section of the 
design_name.mrp Map Report. This section contains the device 
utilization information.

4. Run a timing analysis of the logic level delays from your mapped 
design as follows.

trce [options] design_name.ngd

Note For available options, enter only the trce command at the 
command line without any arguments.

Use the Trace reports to evaluate how close you are to your 
performance goals. Use the report to decide whether to proceed 
to the place and route phase of implementation, or to go back and 
modify your design or implementation options to attain your 
performance goals. You should have some slack in routing delays 
to allow the place and route tools to successfully complete your 
design.

The following is the Design Summary section of a Map Report 
containing device information.
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Release 4.1i - Map HEAD
Xilinx Mapping Report File for Design ‘udcntr’

Design Information
------------------
Command Line   : map udcntr.ngd -o udcntr_map.ncd 
Target Device  : xv300
Target Package : bg432
Target Speed   : -5
Mapper Version : virtex -- $Revision: 1.58 $
Mapped Date    : Wed May 23 10:32:53 2001

Design Summary
--------------
   Number of errors:      0
   Number of warnings:    1
   Number of Slices:                  3 out of  3,072    1%
   Number of Slices containing
      unrelated logic:                0 out of      3    0%
   Number of Slice Flip Flops:        4 out of  6,144    1%
   Number of 4 input LUTs:            6 out of  6,144    1%
   Number of bonded IOBs:            18 out of    316    5%
   Number of Tbufs:                   8 out of  3,200    1%
   Number of GCLKs:                   1 out of      4   25%
   Number of GCLKIOBs:                1 out of      4   25%
   Number of hard macros:           1
Total equivalent gate count for design (not including hard macros):  68
Additional JTAG gate count for IOBs:  912

Table of Contents
-----------------
Section 1 - Errors
Section 2 - Warnings
Section 3 - Informational
Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - IOB Properties
Section 7 - RPMs
Section 8 - Guide Report
Section 9 - Area Group Summary
Section 10 - Modular Design Summary
Section 1 - Errors
------------------

Section 2 - Warnings
--------------------
WARNING:MapLib:328 - Block U2 is not a recognized logical block. The mapper will
continue to process the design but there may be design problems if this block does
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not get trimmed.

Section 3 - Informational
-------------------------
INFO:MapLib:62 - All of the external outputs in this design are using slew rate
limited output drivers. The delay on speed critical outputs can be dramatically
reduced by designating them as fast outputs in the schematic.

Section 4 - Removed Logic Summary
---------------------------------
   3 block(s) removed
   1 block(s) optimized away
   3 signal(s) removed

Section 5 - Removed Logic
-------------------------

The trimmed logic report below shows the logic removed from your design due to
sourceless or loadless signals, and VCC or ground connections.  If the removal of a
signal or symbol results in the subsequent removal of an additional signal or symbol,
the message explaining that second removal will be indented.  This indentation will
be repeated as a chain of related logic is removed.

To quickly locate the original cause for the removal of a chain of logic, look
above the place where that logic is listed in the trimming report, then locate the
lines that are least indented (begin at the leftmost edge).

The signal “VCC” is loadless and has been removed.
 Loadless block “VCC” (ONE) removed.
The signal “U1/GND” is sourceless and has been removed.
The signal “U1/VCC” is sourceless and has been removed.
Unused block “U1/GND” (ZERO) removed.
Unused block “U1/VCC” (ONE) removed.

Optimized Block(s):
TYPE BLOCK
GND GND

Section 6 - IOB Properties
--------------------------
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+--------------------------------------------------------------------------------+
| IOB Name | Type |Direction|IO Standard|Drive |Slew|Reg(s)|Resistor|IOB |
| | | | |Strength |Rate| | |Delay|
+--------------------------------------------------------------------------------+
| clock |GCLKIOB | INPUT | LVTTL | | | | | |
| IN[0] | IOB | INPUT | LVTTL | | | | | |
| IN[1] | IOB | INPUT | LVTTL | | | | | |
| IN[2] | IOB | INPUT | LVTTL | | | | | |
| IN[3] | IOB | INPUT | LVTTL | | | | | |
| Q1[0] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q1[1] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q1[2] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q1[3] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q2[0] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q2[1] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q2[2] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| Q2[3] | IOB | OUTPUT | LVTTL | 12 |SLOW| | | |
| clear1 | IOB | INPUT | LVTTL | | | | | |
| clear2 | IOB | INPUT | LVTTL | | | | | |
| load1 | IOB | INPUT | LVTTL | | | | | |
| load2 | IOB | INPUT | LVTTL | | | | | |
| triL | IOB | INPUT | LVTTL | | | | | |
| triR | IOB | INPUT | LVTTL | | | | | |
+--------------------------------------------------------------------------------+
Section 7 - RPMs
----------------
Section 8 - Guide Report
------------------------
Guide not run on this design.
Section 9 - Area Group Summary
------------------------------
   AREA_GROUP AG_U1
   RANGE: CLB_R1C1.*:CLB_R32C24.*
   No COMPRESSION specified for AREA_GROUP AG_U1
      Number of Slices:               3 out of  1,536    1%
      Number of Slice Flip Flops:     4 out of  3,072    1%
      Total Number 4 input LUTs:      6 out of  3,072    1%
         Number used as 4 input LUTs:               6
Section 10 - Modular Design Summary
-----------------------------------
The following logic was added to the design to satisfy the
active module’s interface.  These interface components will
be removed during the Modular Design Final Assembly Phase.
0 Flip Flops.
  0 LUTs
  0 TBUFs
To get a listing of the active module port nets, set the
“XIL_MAP_LISTPORTNETS” environment variable and rerun map.
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The following is a sample Logic Level Timing Report.

Release 4.1i - Trace HEAD
Copyright (c) 1995-2001 Xilinx, Inc.  All rights reserved.

trce udcntr.ncd udcntr_map.pcf

Design file:              udcntr.ncd
Physical constraint file: udcntr_map.pcf
Device,speed:             xcv300,-5 (FINAL 1.115 2001-05-14)
Report level:             summary report
-----------------------------------------------------------------
WARNING:Timing - No timing constraints found, doing default
enumeration.
Asterisk (*) preceding a constraint indicates it was not met.
-----------------------------------------------------------------

Constraint | Requested | Actual | Logic 
| | | Levels

-----------------------------------------------------------------
Default period analysis | | 5.144ns | 3    

-----------------------------------------------------------------
Default net enumeration | | 4.326ns |      

-----------------------------------------------------------------

All constraints were met.

Data Sheet report:
-----------------
All values displayed in nanoseconds (ns)

Setup/Hold to clock clock
---------------+------------+------------+
               |  Setup to  |  Hold to   |
Source Pad     | clk (edge) | clk (edge) |
---------------+------------+------------+
IN[0]          |    2.964(R)|    0.000(R)|
IN[1]          |    2.971(R)|    0.000(R)|
IN[2]          |    3.068(R)|    0.000(R)|
IN[3]          |    2.967(R)|    0.000(R)|
clear1         |    1.370(R)|    0.654(R)|
load1          |    2.503(R)|    0.000(R)|
---------------+------------+------------+
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Clock clock to Pad
---------------+------------+
               | clk (edge) |
Destination Pad|   to PAD   |
---------------+------------+
Q1[0]          |   11.691(R)|
Q1[1]          |   12.304(R)|
Q1[2]          |   12.164(R)|
Q1[3]          |   12.454(R)|
---------------+------------+

Clock to Setup on destination clock clock
---------------+---------+---------+---------+---------+
               | Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock   |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clock          |    5.144|         |         |         |
---------------+---------+---------+---------+---------+

Timing summary:
---------------

Timing errors: 0  Score: 0

Constraints cover 30 paths, 22 nets, and 43 connections (100.0%
coverage)

Design statistics:
   Minimum period:   5.144ns (Maximum frequency: 194.401MHz)
   Maximum combinational path delay:  10.442ns
   Maximum net delay:   4.326ns

Analysis completed Wed May 23 10:36:47 2001
-----------------------------------------------------------------
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Evaluating your Design for Coding Style and System 
Features

At this point, if you are not satisfied with your design performance, 
you can re-evaluate your code and make any necessary improve-
ments. Modifying your code and selecting different compiler options 
can dramatically improve device utilization and speed.

Tips for Improving Design Performance
This section includes ways of improving design performance by 
modifying your code and by incorporating FPGA system features. 
Most of these techniques are described in more detail in this manual.

Modifying Your Code

You can improve design performance with the following design 
modifications.

• Reduce levels of logic to improve timing

• Redefine hierarchical boundaries to help the compiler optimize 
design logic

• Pipeline

• Logic replication

• Use of CORE Generator modules

• Resource sharing

• Restructure logic

Using FPGA System Features

After correcting any coding style problems, use any of the following 
FPGA system features in your design to improve resource utilization 
and to enhance the speed of critical paths. 

Note Each device family has a unique set of system features. Review 
the current version of the The Programmable Logic Data Book for the 
system features available for the device you are targeting.

• Use clock enables
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• In Virtex family components, modify large multiplexers to use 
tristate buffers

• Use one-hot encoding for large or complex state machines

• Use I/O registers when applicable

• In Virtex families, use dedicated shift registers

• In Virtex-II families use dedicated multipliers

Using Xilinx-specific Features of Your Synthesis Tool

Most synthesis tools have special options for the Xilinx-specific 
features listed in the previous section. Refer to your synthesis tool 
white papers, application notes, documentation and online help for 
detailed information on using Xilinx-specific features.

Modular Design and Incremental Design (ECO)
For information on Incremental Design (ECO), please refer to the 
following Application Notes:

• XAPP165: “Using Xilinx and Exemplar for Incremental Designing 
(ECO)”, application note, v1.0 (8/9/99) (http://
www.xilinx.com/xapp/xapp165.pdf).

• XAPP164: “Using Xilinx and Synplify for Incremental Designing 
(ECO)”, application note, v1.0 (8/6/99) (http://
www.xilinx.com/xapp/xapp164.pdf).

Xilinx Development Systems feature Modular Design to help you 
plan and manage large designs. Reference the following URL and 
application note for more information on the Modular Design 
feature:

• Xilinx Modular Design URL:

http://www.xilinx.com/products/software/moddes/
moddes.htm

• XAPP404: “Xilinx Modular Design”, application note.

http://www.xilinx.com/xapp/xapp404.pdf
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Placing and Routing Your Design
Note For more information on placing and routing your design, refer 
to the Development System Reference Guide.

The overall goal when placing and routing your design is fast imple-
mentation and high-quality results. However, depending on the situ-
ation and your design, you may not always accomplish this goal, as 
described in the following examples.

• Earlier in the design cycle, run time is generally more important 
than the quality of results, and later in the design cycle, the 
converse is usually true.

• During the day, you may want the tools to quickly process your 
design while you are waiting for the results. However, you may 
be less concerned with a quick run time, and more concerned 
about the quality of results when you run your designs for an 
extended period of time (during the night or weekend).

• If the targeted device is highly utilized, the routing may become 
congested, and your design may be difficult to route. In this case, 
the placer and router may take longer to meet your timing 
requirements.

• If design constraints are rigorous, it may take longer to correctly 
place and route your design, and meet the specified timing. 

Decreasing Implementation Time
The options you select for the placement and routing of your design 
directly influence the run time. Generally, these options decrease the 
run time at the expense of the best placement and routing for a given 
device. Select your options based on your required design perfor-
mance.

Note If you are using the command line, the appropriate command 
line option is provided in the following procedure.

Use the following steps to decrease implementation time in the 
Project Navigator. For details on implementing your design in Project 
Navigator see Project Navigator Online Help.

1. In the Project Navigator Process Window, right click Place & 
Route and then select Properties. 
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The Process Properties dialog box appears.

Set options in this dialog box as follows.

♦ Place & Route Effort Level

Generally, you can reduce placement times by selecting a less 
CPU-intensive algorithm for placement. You can set the 
placement level at one of five settings from Lowest (fastest 
run time) to Highest (best results) with the default equal to 
Low. Use the –l switch at the command line to perform the 
same function. 

Note In some cases, poor placement with a lower placement 
level setting can result in longer route times. 

♦ Router Options

You can limit router iterations to reduce routing times by 
setting the Number of Routing Passes option. However, this 
may prevent your design from meeting timing requirements, 
or your design may not completely route. From the 
command line, you can control router passes with the –i 
switch.

♦ Use Timing Constraints During Place and Route

You can improve run times by not specifying some or all 
timing constraints. This is useful at the beginning of the 
design cycle during the initial evaluation of the placed and 
routed circuit. To disable timing constraints in the Project 
Navigator, uncheck the Use Timing Constraints check box. To 
disable timing constraints at the command line, use the –x 
switch with PAR.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route to in the Process Window of Project 
Navigator to begin placing and routing your design. 

Improving Implementation Results
Conversely, you can select options that increase the run time, but 
produce a better design. These options generally produce a faster 
design at the cost of a longer run time. These options are useful when 
you run your designs for an extended period of time (overnight or 
over the weekend). The following options can be used to improve 
2-24 Xilinx Development System



Understanding High-Density Design Flow
implementation results. Detailed information for these options can be 
found in the Development System Reference Guide.

Map Timing Option

Use the Xilinx Map program Timing option to improve timing during 
the mapping phase. This switch directs the mapper to give priority to 
timing critical paths during packing. To use this feature at the 
command line, use the –timing switch. See the Development System 
Reference Guide for more in information.

Extra Effort Mode in PAR

Use the Xilinx PAR program Extra Effort mode to invoke advanced 
algorithmic techniques to provide higher quality results. To use this 
feature at the command line, use the –xe <level> switch. The level can 
be a value from 0 to 5; the default is 1. Using level 0 turns off all extra 
effort off, and can significantly increase runtime. See the Development 
System Reference Guide for more information.

Multi-Pass Place and Route

Use this feature to place and route your design with several different 
cost tables (seeds) to find the best possible placement for your design. 
This optimal placement results in shorter routing delays and faster 
designs. This works well when the router passes are limited (with the 
–i option). After an optimal cost table is selected, use the reentrant 
routing feature to finish the routing of your design. To use this feature 
double-click on Multi Pass Place & Route in the Process Window of 
Project Navigator, or specify this option at the command line with the 
–n switch. See the Development System Reference Guide for a descrip-
tion of Multi-Pass Place and Route, and how to set the appropriate 
options.

Turns Engine Option (UNIX only)

This option is a Unix-only feature that works with the Multi-Pass 
Place and Route option to allow parallel processing of placement and 
routing on several Unix machines. The only limitation to how many 
cost tables are concurrently tested is the number of workstations you 
have available. To use this option in Project Navigator, see the Project 
Navigator Online Help for a description of the options that can be set 
under Multi-Pass Place and Route. To use this feature at the 
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command line, use the –m switch to specify a node list, and the –n 
switch to specify the number of place and route iterations.

Note For more information on the turns engine option, refer to the 
Development System Reference Guide.

Reentrant Routing Option

Use the reentrant routing option to further route an already routed 
design. The router reroutes some connections to improve the timing 
or to finish routing unrouted nets. You must specify a placed and 
routed design (.ncd) file for the implementation tools. This option is 
best used when router iterations are initially limited, or when your 
design timing goals are close to being achieved.

From the Project Navigator

To initiate a reentrant route from Project Navigator, follow these 
steps. See the Project Navigator Online Help for details on reentrant 
routing.

1. In the Project Navigator Process Window, right click Place & 
Route and then select Properties. 

The Process Properties dialog box appears. Set the Place and 
Route Mode option to Reentrant Route.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route to in the Process Window of Project 
Navigator to begin placing and routing your design. 

Using PAR and Cost Tables

The PAR module places in two stages: a constructive placement and 
an optimizing placement. PAR writes the NCD file after constructive 
placement and modifies the NCD after optimizing placement.

During constructive placement, PAR places components into sites 
based on factors such as constraints specified in the input file (for 
example, certain components must be in certain locations), the length 
of connections, and the available routing resources. This placement 
also takes into account “cost tables,” which assign weighted values to 
each of the relevant factors. There are 100 possible cost tables. 
Constructive placement continues until all components are placed. 
PAR writes the NCD file after constructive placement.
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For more information on PAR and Cost Tables, refer to Chapter 9 of 
the Development System Reference Guide.

From the Command Line

To initiate a reentrant route from the command line, you can run PAR 
with the –k and –p options, as well as any other options you want to 
use for the routing process. You must either specify a unique name 
for the post reentrant routed design (.ncd) file or use the –w switch to 
overwrite the previous design file, as shown in the following exam-
ples.

par –k –p other_options design_name.ncd new_name.ncd

par –k –p –w other_options design_name.ncd design.ncd

Cost-Based Clean-up Option

This option specifies clean-up passes after routing is completed to 
substitute more appropriate routing options available from the initial 
routing process. For example, if several local routing resources are 
used to transverse the chip and a longline is available, the longline is 
substituted in the clean-up pass. The default value of cost-based 
cleanup passes is 1. You can change the default at the command line 
with the –c switch. To change the default value from Project Navi-
gator, follow these steps. See Chapter 9 of the Development System 
Reference Guide for details on the Cost-Based Clean-up Option.

1. In the Project Navigator Process Window, right click Place & 
Route and then select Properties. 

The Process Properties dialog box appears. Set the Cost-Based 
Clean-up Passes option to a value between 0 and 5.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route to in the Process Window of Project 
Navigator to begin placing and routing your design. 

Delay-Based Clean-up Option

This option specifies clean-up passes after routing is completed to 
substitute more appropriate routing options to reduce delays. The 
default number of passes for delay-based clean-up is 0. You can 
change the default at the command line with the –d switch. To change 
the default value from Project Navigator, follow these steps. See 
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Chapter 9 of the Development System Reference Guide for details on the 
Delay-Based Clean-up Option.

1. In the Project Navigator Process Window, right click Place & 
Route and then select Properties. 

The Process Properties dialog box appears. Set the Delay-Based 
Clean-up Passes option to a value between 0 and 5.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route in the Process Window of Project 
Navigator to begin placing and routing your design. 

Guide Option

This option is generally not recommended for synthesis-based 
designs, except for modular design flows. Re-synthesizing modules 
can cause the signal and instance names in the resulting netlist to be 
significantly different from those in earlier synthesis runs. This can 
occur even if the source level code (Verilog or VHDL) contains only a 
small change. Because the guide process is dependent on the names 
of signals and comps, synthesis designs often result in a low match 
rate during the guiding process. Generally, this option does not 
improve implementation results.

For information on guide in modular design flows, refer to XAPP 404 
at http://www.xilinx.com/xapp/xapp404.pdf.

Timing Simulation of Your Design
Note Refer to the“Simulating Your Design” chapter for more infor-
mation on design simulation.

Timing simulation is important in verifying the operation of your 
circuit after the worst-case placed and routed delays are calculated 
for your design. In many cases, you can use the same testbench that 
you used for functional simulation to perform a more accurate simu-
lation with less effort. You can compare the results from the two 
simulations to verify that your design is performing as initially speci-
fied. The Xilinx tools create a VHDL or Verilog simulation netlist of 
your placed and routed design, and provide libraries that work with 
many common HDL simulators.
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Timing Analysis Using TRACE
Timing-driven PAR is based upon Xilinx’s timing analysis software, 
an integrated static timing analysis tool (that is, it does not depend on 
input stimulus to the circuit). This means that placement and routing 
are executed according to timing constraints that you specify in the 
beginning of the design process. The timing analysis software inter-
acts with PAR to ensure that the timing constraints you impose on the 
design are met.

If you have timing constraints, TRACE will generate a report based 
on your constraints. If there are no constraints, the timing analysis 
tool has an option to write out a timing report containing the 
following.

• An analysis that enumerates all clocks and the required OFFSETs 
for each clock.

• An analysis of paths having only combinatorial logic, ordered by 
delay.

For more information on TRACE, refer to Chapter 9 of the Develop-
ment System Reference Guide. For more information on Timing Anal-
ysis, refer to the Timing Analyzer Online Help.

Downloading to the Device and In-system 
Debugging

After you have verified the functionality and timing of your placed 
and routed design, you can create a design data file to download for 
in-system verification. The design data or bitstream (.bit) file is 
created from the placed and routed .ncd file. 

In Project Navigator, create a bitstream file for your design using the 
following procedure.

1. Select the top-level source for the project in the Sources window.

2. Click Create Programming File in the Processes window.

3. Click Process .Run in the Project Navigator menu. (An alternative 
method is to double-click Creating Programming File in the 
Processes window.)

4. The programming file creation process runs. If there are no 
errors, the top_source_name.bit file is created.
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5. To view the Programming File Report in the ISE Report Viewer, 
double-click View Programming File Generation Report in the 
Processes window. The Programming File Report contains 
information about the BitGen run.

For a complete description of BitGen, see the “BitGen” chapter in the 
Development System Reference Guide.

From the command line, run BitGen on your placed and routed .ncd 
file to create the .bit file as follows.

bitgen [options] design.ncd

Use the .bit file with the XChecker cable and iMPACT to download 
the data to your device. You can run iMPACT from Project Navigator, 
or from the command line as follows.

impact design.bit

iMPACT allows you to download the data to the FPGA using your 
computer’s serial port. iMPACT can also synchronously or asynchro-
nously probe external or internal nodes in the FPGA. Waveforms can 
be created from this data and correlated to the simulation data for 
true in-system verification of your design.

Creating a PROM File for Stand-Alone Operation
After verifying that the FPGA works in the circuit, you can create a 
PROM file from the .bit file to program a PROM or other data storage 
device. You can then use this file to program the FPGA in-circuit 
during normal operation.

Use the Prom File Formatter to create the PROM file, or from the 
command line use PROMGen. You can run the Prom File Formatter 
from the Project Navigator, or from the command line as follows.

promfmtr design.bit

Run PROMGen from the command line by typing the following.

promgen [options] design.bit

Note For more information on using these programs, refer to the 
Development System Reference Guide.
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Chapter 3

General HDL Coding Styles

This chapter contains HDL coding styles and design examples to help 
you develop an efficient coding style. It includes the following 
sections.

• “Naming and Labeling Styles”

• “Specifying Constants”

• “Choosing Data Type (VHDL only)”

• “Coding for Synthesis”

HDLs contain many complex constructs that are difficult to under-
stand at first. Also, the methods and examples included in HDL 
manuals do not always apply to the design of FPGAs. If you 
currently use HDLs to design ASICs, your established coding style 
may unnecessarily increase the number of gates or CLB levels in 
FPGA designs. 

HDL synthesis tools implement logic based on the coding style of 
your design. To learn how to efficiently code with HDLs, you can 
attend training classes, read reference and methodology notes, and 
refer to synthesis guidelines and templates available from Xilinx and 
the synthesis vendors. When coding your designs, remember that 
HDLs are mainly hardware description languages. You should try to 
find a balance between the quality of the end hardware results and 
the speed of simulation.

The coding hints and examples included in this chapter are not 
intended to teach you every aspect of VHDL or Verilog, but they 
should help you develop an efficient coding style.
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Naming and Labeling Styles
Because HDL designs are often created by design teams, Xilinx 
recommends that you agree on a style for your code at the beginning 
of your project. An established coding style allows you to read and 
understand code written by your fellow team members. Also, ineffi-
cient coding styles can adversely impact synthesis and simulation, 
which can result in slow circuits. Additionally, because portions of 
existing HDL designs are often used in new designs, you should 
follow coding standards that are understood by the majority of HDL 
designers. This section of the manual provides a list of suggested 
coding styles that you should establish before you begin your 
designs.

Using Xilinx Naming Conventions
Use the Xilinx naming conventions listed in this section for naming 
signals, variables, and instances that are translated into nets, buses, 
and symbols. 

Note Most synthesis tools convert illegal characters to legal ones.

• User-defined names can contain A–Z, a–z, $, _, –, <, and >. A “/” 
is also valid, however, it is not recommended because it is used as 
a hierarchy separator

• Names must contain at least one non-numeric character

• Names cannot be more than 256 characters long

The following FPGA resource names are reserved and should not be 
used to name nets or components.

• Components (Comps), Configurable Logic Blocks (CLBs), Input/
Output Blocks (IOBs), Slices, basic elements (bels), clock buffers 
(BUFGs), tristate buffers (BUFTs), oscillators (OSC), CCLK, DP, 
GND, VCC, and RST

• CLB names such as AA, AB, SLICE_R1C2, SLICE_X1Y2, X1Y2, 
and R1C2

• Primitive names such as TD0, BSCAN, M0, M1, M2, or STARTUP

• Do not use pin names such as P1 and A4 for component names

• Do not use pad names such as PAD1 for component names
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Refer to the language reference manual for Verilog or VHDL for 
language-specific naming restrictions. Xilinx does not recommend 
using escape sequences for illegal characters. Also, if you plan on 
importing schematics into your design, use the most restrictive 
character set.

Matching File Names to Entity and Module Names
Xilinx recommends the following practices in naming your HDL files.

• Ensure that the VHDL or Verilog source code file name matches 
the designated name of the entity (VHDL) or module (Verilog) 
specified in your design file. This is less confusing and generally 
makes it easier to create a script file for the compilation of your 
design. 

• If your design contains more than one entity or module, each 
should be contained in a separate file with the appropriate file 
name. 

• It is a good idea to use the same name as your top-level design 
file for your synthesis script file with either a .do, .scr, .script, or 
the appropriate default script file extension for your synthesis 
tool.

Naming Identifiers, Types, and Packages
You can use long (256 characters maximum) identifier names with 
underscores and embedded punctuation in your code. Use mean-
ingful names for signals and variables, such as 
CONTROL_REGISTER. Use meaningful names when defining 
VHDL types and packages as shown in the following examples.

type LOCATION_TYPE is ...;
package STRING_IO_PKG is

Labeling Flow Control Constructs
You can use optional labels on flow control constructs to make the 
code structure more obvious, as shown in the following VHDL and 
Verilog examples. However, you should note that these labels are not 
translated to gate or register names in your implemented design. 
Flow control constructs can slow down simulations in some Verilog 
simulators.
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• VHDL Example

-- D_REGISTER.VHD

-- May 2001

-- Changing Latch into a D-Register

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

 port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

end d_register;

architecture BEHAV of d_register is

begin

My_D_Reg: process (CLK, DATA)

begin

if (CLK’event and CLK=’1’) then            

Q <= DATA;

end if;

end process; --End My_D_Reg

end BEHAV;
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• Verilog Example

/* Changing Latch into a D-Register

* D_REGISTER.V 

* May 2001

*/

module d_register (CLK, DATA, Q);

input CLK;

input DATA;

output Q;

reg Q;

    

always @ (posedge CLK)

begin: My_D_Reg

 Q <= DATA;

end

endmodule

 Using Named and Positional Association 
Use positional association in function and procedure calls, and in 
port lists only when you assign all items in the list. Use named associ-
ation when you assign only some of the items in the list. Also, Xilinx 
suggests that you use named association to prevent incorrect connec-
tions for the ports of instantiated components. Do not combine posi-
tional and named association in the same statement as illustrated in 
the following examples.
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• VHDL

Incorrect

CLK_1: BUFGS port map (I=>CLOCK_IN,CLOCK_OUT);

Correct

CLK_1: BUFGS port map(I=>CLOCK_IN,O=>CLOCK_OUT);

• Verilog

Incorrect 

BUFGS CLK_1 (.I(CLOCK_IN), CLOCK_OUT);

Correct 

BUFGS CLK_1 (.I(CLOCK_IN), .O(CLOCK_OUT));

Passing Attributes
An attribute is attached to HDL objects in your design. You can pass 
attributes to HDL objects in two ways; you can predefine data that 
describes an object, or directly attach an attribute to an HDL object. 
Predefined attributes can be passed with a command file or 
constraints file in your synthesis tool, or you can place attributes 
directly in your HDL code. This section will illustrate passing 
attributes in HDL code only. For information on passing attributes via 
the command file, please refer to your synthesis tool manual. 

Most vendors adopt identical syntax for passing attributes in VHDL, 
but not in Verilog. The examples below illustrate the VHDL syntax.

Note For FPGA Compiler II, attribute passing is available beginning 
with version 3.0 and the attributes can only be applied to instantiated 
components or ports (but not inferred logic and nets).

VHDL Attribute Examples

The following are examples of VHDL attributes.

• Attribute declaration:

attribute  <attribute_name> : <attribute_type> ;

• Attribute use on a port or signal:

attribute  <attribute_name> of <object_name> : signal is 
<attribute_value> 
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Example:

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

attribute FAST : string;

attribute FAST of Q : signal is "";

end d_register;

• Attribute use on an instance:

attribute  <attribute_name> of <object_name> : label is 
<attribute_value>

Example:

architecture struct of spblkrams is

attribute INIT_00: string;

attribute INIT_00 of INST_RAMB4_S4: label is

"1F1E1D1C1B1A191817161514131211100F0E0D0C0B09087
06050403020100";

begin

INST_RAMB4_S4 : RAMB4_S4 port map (

DI => DI(3 downto 0),

EN => EN,

WE => WE,

RST => RST,

CLK => CLK,

ADDR => ADDR(9 downto 0),

DO => DORAMB4_S4

);
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• Attribute use on a component:

attribute  <attribute_name> of <object_name> : component is 
<attribute_value> 

Example:

architecture xilinx of tenths_ex is

attribute black_box : boolean;

component tenths

port (     CLOCK : in STD_LOGIC;

CLK_EN : in STD_LOGIC;

Q_OUT : out STD_LOGIC_VECTOR(9 
downto 0));

end component;

attribute black_box of tenths : component is 
true;

begin

Verilog Attribute Examples

The following are examples of attribute passing in Verilog. Note that 
attribute passing in Verilog is synthesis tool specific.

• Attribute use in FPGA Compiler II syntax:

//synopsys attribute <name> <value>

Example:

BUFG CLOCKB (.I(oscout), .O(clkint)); //synopsys

attribute LOC "BR"

or

RAMB4_S4 U1 (.WE(w), .EN(en), .RST(r), .CLK(ck)

.ADDR(ad), .DI(di), .DO(do)); /* synopsys 
attribute INIT_00

"AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB" INIT_09 

"99999988888888887777777776666666" */
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• Attribute use in LeonardoSpectrum syntax:

//exemplar attribute  <object_name> <attribute_name> 
<attribute_value>

Examples:

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0), 

.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT));

//exemplar attribute U0 INIT_00 

1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A0908
070605040

3020100

• Attribute use in Synplify syntax:

// synthesis  <directive>

//synthesis  <attribute_name>=<value>

or 

/* synthesis  <directive> */

/* synthesis  <attribute_name>=<value> */

Examples:

FDCE u2(.D (q1),.CE(ce),.C (clk),.CLR (rst),

.Q (qo)) /* synthesis rloc="r1c0.s0" */;

or

module BUFG(I,O); // synthesis black_box 

input I; 

output O;

endmodule
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• Attribute use in XST syntax:

// synthesis <attribute_name> of <object_name> is <value>

Example:

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0), 

.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT));

//synthesis attribute INIT_00 of U0 is

“1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706
050403020100”

Understanding Synthesis Tools Naming Convention
Some net and logic names are preserved and some are altered by the 
synthesis tools during the synthesis process. This may result in a 
netlist that is hard to read or trace back to the original code.

This section will discuss how different synthesis tools generate names 
from your VHDL/Verilog codes. This will help you corollate nets and 
component names appearing in the EDIF netlist. It will also help 
corollate nets and names during your after-synthesis design view of 
the VHDL/Verilog source.

Note The naming conventions below apply to inferred logic. The 
names of instantiated components and their connections, and port 
names are preserved during synthesis.

• FPGA Compiler II Naming Styles:

Register instance: <output_signal>_reg

Output of register:  <output_signal>_reg

Output of clock buffer:  <signal>_BUFGed

Output of tristate:  <signal>_tri

Port names:  preserved

Hierarchy notation: ‘_’, e.g., <hier_1>_<hier_2>

Other inferred component and net names are machine generated.
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• LeonardoSpectrum Naming Styles:

Register instance: reg_<output signal>

Output of register: preserved, except if the output is also external 
port of the design. In this case, it will be <signal>_dup0

Clock buffer/ibuf: <driver_signal>_ibuf

Output of clock buffer/ibuf: <driver_signal>_int

Tristate instance: tri_<output_signal>

Driver and output of tristate: preserved

Hierarchy notation: ‘_’

Other names are machine generated.

• Synplify Naming Styles:

Register instance: output_signal

Output of register: output_signal

Clock buffer instance/ibuf: <portname>_ibuf

Output of clock buffer: <clkname>_c

Output/inout tristate instance: <output_signal>_obuft or 

<output_signal>_iobuf

Internal tristate instance: un<n>_<signal_name>_tb, when <n> is 
any number or <signal_name>_tb

Output of tristate driving an output/inout : name of port

Output of internal tristate: <signal_name>_tb_<number>

RAM instance and its output

♦ Dual Port RAM:

ram instance: <memory_name>_<n>.I_<n>

ram output : DPO-><memory_name>_<n>.rout_bus, SPO->

<memory_name>_<n>.wout_bus

♦ Single Port RAM:

ram instance: <memory_name>.I_<n>

ram output: <memory_name>
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♦ Single Port Block SelectRAM:

ram_instance: <memory_name>.I_<n>

ram output: <memory_name>

♦ Dual Port Block SelectRAM:

ram_instance: <memory_name>.I_<n>

ram output: <memory_name>[the output that is used]

Hierarchy delimiter is usually a ".", however when 
syn_hier="hard", the hierarchy delimiter in the edif is "/"

Other names are machine generated.

• XST Naming Styles:

Net Naming Conventions:

These rules are listed in order of naming priority. 

1. External pin names are maintained. 

2. Hierarchy in signal names is kept, using underscores as 
hierarchy designators. 

3. Output signal names of registers, including state bits, are 
maintained. The hierarchical name from the level where the 
register was inferred is used. 

4. Output signals of clock buffers get _clockbuffertype (like 
_BUFGP or _IBUFG) follow the clock signal name. 

5. Input nets to registers and tristates names are maintained. 

6. Output net names of IBUFs are named net_name_IBUF. For 
example, for an IBUF with an output net name of DIN, the 
output IBUF net name is DIN_IBUF. Input net names to 
OBUFs are named net_name_OBUF. For example, for an 
OBUF with an input net name of DOUT, the input OBUF net 
name is DOUT_OBUF.
3-12 Xilinx Development System



General HDL Coding Styles
Instance Naming Conventions:

These rules are listed in order of naming priority. 

1. Hierarchy in instance names is kept, using underscores as 
hierarchy designators. 

2. Register instances, including state bits, are named for the 
output signal. 

3. Clock buffer instances are named _clockbuffertype (like 
_BUFGP or _IBUFG) after the output signal. 

4. Instantiation instance names of black boxes are maintained. 

5. Instantiation instance names of library primitives are 
maintained. 

6. Input and output buffers are named _IBUF or _OBUF after 
the pad name. 

7. Output instance names of IBUFs are named 
instance_name_IBUF. Input instance names to OBUFs are 
named instance_name_OBUF.

Specifying Constants
Use constants in your design to substitute numbers to more mean-
ingful names. The use of constants helps make a design more read-
able and portable.

Using Constants to Specify OPCODE Functions 
(VHDL)

Do not use variables for constants in your code. Define constant 
numeric values in your code as constants and use them by name. This 
coding convention allows you to easily determine if several occur-
rences of the same literal value have the same meaning. In some 
simulators, using constants allows greater optimization. In the 
following code example, the OPCODE values are declared as 
constants, and the constant names refer to their function. This 
method produces readable code that may be easier to modify.
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constant ZERO   : STD_LOGIC_VECTOR (1 downto 0):=“00”;
constant A_AND_B: STD_LOGIC_VECTOR (1 downto 0):=“01”;
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):=“10”;
constant ONE    : STD_LOGIC_VECTOR (1 downto 0):=“11”;

process (OPCODE, A, B)
begin  

if    (OPCODE = A_AND_B)then OP_OUT <= A and B;  
elsif (OPCODE = A_OR_B) then OP_OUT <= A or B;  
elsif    (OPCODE = ONE) then OP_OUT <= ‘1’; 
else                         OP_OUT <= ‘0’;  

end if;
end process;

Using Parameters to Specify OPCODE Functions 
(Verilog)

You can specify a constant value in Verilog using the parameter 
special data type, as shown in the following examples. The first 
example includes a definition of OPCODE constants as shown in the 
previous VHDL example. The second example shows how to use a 
parameter statement to define module bus widths.

• Example 1

//Using parameters for OPCODE functions

parameter ZERO = 2’b00;

parameter A_AND_B = 2’b01;

parameter A_OR_B = 2’b10;

parameter ONE = 2’b11;

always @ (OPCODE or A or B)

begin 

if (OPCODE==‘ZERO)    OP_OUT=1’b0;

else if(OPCODE==‘A_AND_B) OP_OUT=A&B;

else if(OPCODE==‘A_OR_B)  OP_OUT=A|B;

else                     OP_OUT=1’b1;

end
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• Example 2

//Using a parameter for Bus Size

parameter BUS_SIZE = 8;

output [‘BUS_SIZE-1:0] OUT;

input [‘BUS_SIZE-1:0] X,Y;

Choosing Data Type (VHDL only)
Use the Std_logic (IEEE 1164) standards for hardware descriptions 
when coding your design. These standards are recommended for the 
following reasons.

• Applies as a wide range of state values—It has nine different values 
that represent most of the states found in digital circuits.

• Automatically initializes to an unknown value—Automatic initializa-
tion is important for HDL designs because it forces you to 
initialize your design to a known state, which is similar to what is 
required in a schematic design. Do not override this feature by 
initializing signals and variables to a known value when they are 
declared because the result may be a gate-level circuit that cannot 
be initialized to a known value.

• Easily performs board-level simulation—For example, if you use an 
integer type for ports for one circuit and standard logic for ports 
for another circuit, your design can be synthesized; however, you 
will need to perform time-consuming type conversions for a 
board-level simulation.

The back-annotated netlist from Xilinx implementation is in 
Std_logic. If you do not use Std_logic type to drive your top-level 
entity in the testbench, you cannot reuse your functional testbench 
for timing simulation. Some synthesis tools can create a wrapper for 
type conversion between the two top-level entities; however, this is 
not recommended by Xilinx.

Declaring Ports
Xilinx recommends that you use the Std_logic package for all entity 
port declarations. This package makes it easier to integrate the 
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synthesized netlist back into the design hierarchy without requiring 
conversion functions for the ports. A VHDL example using the 
Std_logic package for port declarations is shown below.

Entity alu is 
 port( A : in STD_LOGIC_VECTOR(3 downto 0);        
 B : in STD_LOGIC_VECTOR(3 downto 0);        
 CLK : in STD_LOGIC;        
 C : out STD_LOGIC_VECTOR(3 downto 0) );
end alu;

Since the downto convention for vectors is supported in a back-anno-
tated netlist, the RTL and synthesized netlists should use the same 
convention if you are using the same test bench. This is necessary 
because of the loss of directionality when your design is synthesized 
to an EDIF netlist.

Minimizing the Use of Ports Declared as Buffers
Do not use buffers when a signal is used internally and as an output 
port. In the following VHDL example, signal C is used internally and 
as an output port.

Entity alu is   
port( A : in STD_LOGIC_VECTOR(3 downto 0);        

 B : in STD_LOGIC_VECTOR(3 downto 0);        
 CLK : in STD_LOGIC;        
 C : buffer STD_LOGIC_VECTOR(3 downto 0) );
end alu;
architecture BEHAVIORAL of alu is
begin 
process begin     
 if (CLK’event and CLK=’1’) then        
 C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);     
 end if; 
 end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every 
level of hierarchy in your design that connects to port C must be 
declared as a buffer. However, buffer types are not commonly used in 
VHDL designs because they can cause problems during synthesis. To 
reduce the amount of buffer coding in hierarchical designs, you can 
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insert a dummy signal and declare port C as an output, as shown in 
the following VHDL example. 

Entity alu is 
 port( A : in STD_LOGIC_VECTOR(3 downto 0);        
 B : in STD_LOGIC_VECTOR(3 downto 0);        
 CLK : in STD_LOGIC;        
 C : out STD_LOGIC_VECTOR(3 downto 0));   

end alu;

architecture BEHAVIORAL of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin 
 C <= C_INT;   

process begin     
 if (CLK’event and CLK=’1’) then      

C_INT < =UNSIGNED(A) + UNSIGNED(B) +         
 UNSIGNED(C_INT);
     
 end if; 
 end process;
end BEHAVIORAL;

Comparing Signals and Variables (VHDL only)
You can use signals and variables in your designs. Signals are similar 
to hardware and are not updated until the end of a process. Variables 
are immediately updated and, as a result, can affect the functionality 
of your design. Xilinx recommends using signals for hardware 
descriptions; however, variables allow quick simulation. 

The following VHDL examples show a synthesized design that uses 
signals and variables, respectively. These examples are shown imple-
mented with gates in the “Gate Implementation of XOR_VAR” and 
“Gate Implementation of XOR_SIG” figures.

Note If you assign several values to a signal in one process, only the 
final value is used. When you assign a value to a variable, the assign-
ment takes place immediately. A variable maintains its value until 
you specify a new value.
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Using Signals (VHDL)

-- XOR_SIG.VHD
-- May 2001
Library IEEE;
use IEEE.std_logic_1164.all;
entity xor_sig is
   
 port (A, B, C: in  STD_LOGIC;
  X, Y: out STD_LOGIC);
end xor_sig;

architecture SIG_ARCH of xor_sig is
 signal D: STD_LOGIC;
begin

SIG:process (A,B,C)
begin

 D <= A; -- ignored !!
X <= C xor D;
D <= B; -- overrides !!
Y <= C xor D;

end process;
end SIG_ARCH;
3-18 Xilinx Development System



General HDL Coding Styles
Figure 3-1  Gate implementation of XOR_SIG

Using Variables (VHDL)

-- XOR_VAR.VHD
-- May 2001

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity xor_var is
 port (A, B, C: in  STD_LOGIC;
 X, Y:    out STD_LOGIC);
end xor_var;
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architecture VAR_ARCH of xor_var is
begin
    

VAR:process (A,B,C)
 variable D: STD_LOGIC;   
 begin

D := A;
 X <= C xor D;
 D := B;
 Y <= C xor D;

end process;
end VAR_ARCH;

Figure 3-2  Gate Implementation of XOR_VAR

Coding for Synthesis
VHDL and Verilog are hardware description and simulation 
languages that were not originally intended as inputs to synthesis. 
Therefore, many hardware description and simulation constructs are 
not supported by synthesis tools. In addition, the various synthesis 
tools use different subsets of VHDL and Verilog. VHDL and Verilog 
semantics are well defined for design simulation. The synthesis tools 
must adhere to these semantics to ensure that designs simulate the 
same way before and after synthesis. Follow the guidelines presented 
below to create code that simulates the same way before and after 
synthesis.
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Omit the Wait for XX ns Statement
Do not use the Wait for XX ns statement in your code. XX specifies the 
number of nanoseconds that must pass before a condition is 
executed. This statement does not synthesize to a component. In 
designs that include this statement, the functionality of the simulated 
design does not match the functionality of the synthesized design. 
VHDL and Verilog examples of the Wait for XX ns statement are as 
follows.

• VHDL

wait for XX ns;

• Verilog

#XX;

Omit the ...After XX ns or Delay Statement
Do not use the ...After XX ns statement in your VHDL code or the 
Delay assignment in your Verilog code. Examples of these statements 
are as follows.

• VHDL

(Q <=0 after XX ns)

• Verilog

assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a 
condition is executed. This statement is usually ignored by the 
synthesis tool. In this case, the functionality of the simulated design 
does not match the functionality of the synthesized design.

Omit Initial Values
Do not assign signals and variables initial values because initial 
values are ignored by most synthesis tools. The functionality of the 
simulated design may not match the functionality of the synthesized 
design.
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For example, do not use initialization statements like the following 
VHDL and Verilog statements.

• VHDL

variable SUM:INTEGER:=0;

• Verilog 

wire SUM=1’b0;

Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions can influence 
design performance. For example, the following two VHDL state-
ments are not necessarily equivalent.

ADD <= A1 + A2 + A3 + A4;
ADD <= (A1 + A2) + (A3 + A4);

For Verilog, the following two statements are not necessarily equiva-
lent.

ADD = A1 + A2 + A3 + A4;
ADD = (A1 + A2) + (A3 + A4);

The first statement cascades three adders in series. The second state-
ment creates two adders in parallel: A1 + A2 and A3 + A4. In the 
second statement, the two additions are evaluated in parallel and the 
results are combined with a third adder. RTL simulation results are 
the same for both statements, however, the second statement results 
in a faster circuit after synthesis (depending on the bit width of the 
input signals).

Although the second statement generally results in a faster circuit, in 
some cases, you may want to use the first statement. For example, if 
the A4 signal reaches the adder later than the other signals, the first 
statement produces a faster implementation because the cascaded 
structure creates fewer logic levels for A4. This structure allows A4 to 
catch up to the other signals. In this case, A1 is the fastest signal 
followed by A2 and A3; A4 is the slowest signal.

Most synthesis tools can balance or restructure the arithmetic oper-
ator tree if timing constraints require it. However, Xilinx recommends 
that you code your design for your selected structure.
3-22 Xilinx Development System



General HDL Coding Styles
Comparing If Statement and Case Statement
The If statement generally produces priority-encoded logic and the 
Case statement generally creates balanced logic. An If statement can 
contain a set of different expressions while a Case statement is evalu-
ated against a common controlling expression. In general, use the 
Case statement for complex decoding and use the If statement for 
speed critical paths. 

Most current synthesis tools can determine if the if-elsif conditions 
are mutually exclusive, and will not create extra logic to build the 
priority tree. The following are points to consider when writing if 
statements.

• Make sure that all outputs are defined in all branches of an if 
statement. If not, it can create latches or long equations on the CE 
signal. A good way to prevent this is to have default values for all 
outputs before the if statements.

• Limiting the number of input signals into an if statement can 
reduce the number of logic levels. If there are a large number of 
input signals, see if some of them can be pre-decoded and regis-
tered before the if statement.

• Avoid bringing the dataflow into a complex if statement. Only 
control signals should be generated in complex if-else statements.

The following examples use an If construct in a 4–to–1 multiplexer 
design. The “If_Ex Implementation” figure shows the implementa-
tion of these designs. 

4–to–1 Multiplexer Design with If Construct

• VHDL Example
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-- IF_EX.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity if_ex is

 port (SEL: in STD_LOGIC_VECTOR(1 downto 0);   

 A,B,C,D: in STD_LOGIC;  

 MUX_OUT: out STD_LOGIC);

end if_ex;

architecture BEHAV of if_ex is

begin

    IF_PRO: process (SEL,A,B,C,D) 

    begin

        if    (SEL=”00”) then MUX_OUT <= A;

        elsif (SEL=”01”) then MUX_OUT <= B; 

       elsif (SEL=”10”) then MUX_OUT <= C; 

      elsif (SEL=”11”) then MUX_OUT <= D; 

      else                  MUX_OUT <= '0'; 

   end if;

end process; --END IF_PRO

end BEHAV;
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• Verilog Example

///////////////////////////////////////////////
// IF_EX.V  //
// Example of a If statement showing a      //
// mux created using priority encoded logic  //
// HDL Synthesis Design Guide for FPGAs  //
// November 2000  //
///////////////////////////////////////////////

module if_ex (A, B, C, D, SEL, MUX_OUT);

    input        A, B, C, D;

    input  [1:0] SEL;

    output       MUX_OUT;

reg          MUX_OUT;

    always @ (A or B or C or D or SEL)

    begin

 if (SEL == 2’b00)

 MUX_OUT = A; 

 else if (SEL == 2’b01) 

 MUX_OUT = B; 

 else if (SEL == 2’b10)   

 MUX_OUT = C; 

 else if (SEL == 2’b11) 

 MUX_OUT = D; 

 else 

MUX_OUT = 0;

    end

endmodule
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Figure 3-3  If_Ex Implementation 

The following VHDL and Verilog examples use a Case construct 
for the same multiplexer. The “Case_Ex Implementation” figure 
shows the implementation of these designs. In these examples, 
the Case implementation requires only one Virtex slice while the 
If construct requires two slices in some synthesis tools. In this 
case, design the multiplexer using the Case construct because 
fewer resources are used and the delay path is shorter.

When writing case statements, make sure all outputs are defined 
in all branches.
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4–to–1 Multiplexer Design with Case Construct

• VHDL Example

-- CASE_EX.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity case_ex is

    port (SEL: in STD_LOGIC_VECTOR(1 downto 0);

          A,B,C,D: in STD_LOGIC;

          MUX_OUT: out STD_LOGIC);

end case_ex;

architecture BEHAV of case_ex is

begin

    CASE_PRO: process (SEL,A,B,C,D)   

 begin

        case SEL is

            when “00” => MUX_OUT <= A;

            when “01” => MUX_OUT <= B;

            when “10” => MUX_OUT <= C;

            when “11” => MUX_OUT <= D;

            when others=> MUX_OUT <= '0';

        end case;

    end process; --End CASE_PRO

end BEHAV;
Synthesis and Simulation Design Guide 3-27



Synthesis and Simulation Design Guide
• Verilog Example

//////////////////////////////////////////
// CASE_EX.V                            //
// Example of a Case statement showing  //
// A mux created using parallel logic   //
// HDL Synthesis Design Guide for FPGAs //
// November 2000 //
//////////////////////////////////////////

module case_ex (A, B, C, D, SEL, MUX_OUT);

input        A, B, C, D;

input  [1:0] SEL;

output       MUX_OUT;

reg          MUX_OUT;

 

   always @ (A or B or C or D or SEL) 

 begin

 case (SEL) 

       2’b00:   

          MUX_OUT = A;   

 2’b01:    

         MUX_OUT = B;     

 2’b10:  

 MUX_OUT = C;   

 2’b11:     

 MUX_OUT = D;     

 default:      

 MUX_OUT = 0; 

   endcase 

   end

endmodule
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Figure 3-4  Case_Ex Implementation

Implementing Latches and Registers
Synthesizers infer latches from incomplete conditional expressions, 
such as an If statement without an Else clause. This can be problem-
atic for FPGA designs because not all FPGA devices have latches 
available in the CLBs. In addition, you may think that a register is 
created, and the synthesis tool actually created a latch. The Spartan-II 
and Virtex/E/II/II Pro FPGAs do have registers that can be config-
ured to act as latches. For these devices, synthesizers infer a dedi-
cated latch from incomplete conditional expressions.
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• VHDL Example

-- D_LATCH.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

entity d_latch is

    port (GATE, DATA: in STD_LOGIC;

  Q: out STD_LOGIC);

end d_latch;

architecture BEHAV of d_latch is

begin

LATCH: process (GATE, DATA)

    begin 

   if (GATE = ’1’) then

      Q <= DATA;

    end if;

end process; -- end LATCH

end BEHAV;
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• Verilog Example

/* Transparent High Latch

 * D_LATCH.V

 * May 2001

*/

module d_latch (GATE, DATA, Q);

input GATE;

input DATA;

output Q;

reg Q;

 

   always @ (GATE or DATA) 

   begin 

          if (GATE == 1’b1) 

              Q <= DATA; 

   end  // End Latch

endmodule

Converting D Latch to D Register

If your intention is to not infer a latch, but rather to infer a D 
register, then the following code is the latch code example, modi-
fied to infer a D register.
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• VHDL Example

-- D_REGISTER.VHD

-- May 2001

-- Changing Latch into a D-Register 

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

    port (CLK, DATA: in STD_LOGIC;

          Q: out STD_LOGIC);

end d_register;

architecture BEHAV of d_register is

begin

MY_D_REG: process (CLK, DATA) 

   begin 

   if (CLK’event and CLK=’1’) then

       Q <= DATA;

    end if;

    end process; --End MY_D_REG

end BEHAV;
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• Verilog Example

/* Changing Latch into a D-Register 

 * D_REGISTER.V

 * May 2001                           */

module d_register (CLK, DATA, Q);

input CLK;

input DATA;

output Q;

reg Q;

    always @ (posedge CLK)

    begin: My_D_Reg

     Q <= DATA;

    end 

endmodule

With some synthesis tools you can determine the number of 
latches that are implemented in your design. Check the manuals 
that came with your software for information on determining the 
number of latches in your design.

You should convert all If statements without corresponding Else 
statements and without a clock edge to registers. Use the recom-
mended register coding styles in the synthesis tool documenta-
tion to complete this conversion. 

Resource Sharing
Resource sharing is an optimization technique that uses a single func-
tional block (such as an adder or comparator) to implement several 
operators in the HDL code. Use resource sharing to improve design 
performance by reducing the gate count and the routing congestion. 
If you do not use resource sharing, each HDL operation is built with 
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separate circuitry. However, you may want to disable resource 
sharing for speed critical paths in your design.

The following operators can be shared either with instances of the 
same operator or with an operator on the same line.

*

+ –

> >= < <=

For example, a + operator can be shared with instances of other + 
operators or with – operators. A * operator can be shared only with 
other * operators.

You can implement arithmetic functions (+, –, magnitude compara-
tors) with gates or with your synthesis tool’s module library. The 
library functions use modules that take advantage of the carry logic 
in Spartan-II, Virtex family, and Virtex-II/Pro family CLBs/slices. 
Carry logic and its dedicated routing increase the speed of arithmetic 
functions that are larger than 4-bits. To increase speed, use the 
module library if your design contains arithmetic functions that are 
larger than 4-bits or if your design contains only one arithmetic func-
tion. Resource sharing of the module library automatically occurs in 
most synthesis tools if the arithmetic functions are in the same 
process.

Resource sharing adds additional logic levels to multiplex the inputs 
to implement more than one function. Therefore, you may not want 
to use it for arithmetic functions that are part of your design’s time 
critical path. 

Since resource sharing allows you to reduce the number of design 
resources, the device area required for your design is also decreased. 
The area that is used for a shared resource depends on the type and 
bit width of the shared operation. You should create a shared 
resource to accommodate the largest bit width and to perform all 
operations.

If you use resource sharing in your designs, you may want to use 
multiplexers to transfer values from different sources to a common 
resource input. In designs that have shared operations with the same 
output target, the number of multiplexers is reduced as illustrated in 
the following VHDL and Verilog examples. The HDL example is 
shown implemented with gates in the Figure 3-5.
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• VHDL Example

-- RES_SHARING.VHD
-- May 2001

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity res_sharing is
    port (A1,B1,C1,D1: in STD_LOGIC_VECTOR (7 downto 0);
          COND_1: in STD_LOGIC;
          Z1: out STD_LOGIC_VECTOR (7 downto 0));
end res_sharing;

architecture BEHAV of res_sharing is
begin
P1: process (A1,B1,C1,D1,COND_1)   
    begin
       if (COND_1=’1’) then
           Z1 <= A1 + B1;
       else
           Z1 <= C1 + D1;
       end if;
    end process; -- end P1

end BEHAV;
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• Verilog Example

/* Resource Sharing Example
 * RES_SHARING.V
 * May 2001                                   
*/

module res_sharing (A1, B1, C1, D1, COND_1, Z1);

input       COND_1;
input  [7:0] A1, B1, C1, D1;
output [7:0] Z1;

reg [7:0] Z1;

    always @(A1 or B1 or C1 or D1 or COND_1)   
    begin
           if (COND_1)
               Z1 <= A1 + B1;
           else
              Z1 <= C1 + D1;
    end 

endmodule

If you disable resource sharing or if you code the design with the 
adders in separate processes, the design is implemented using 
two separate modules as shown in the “Implementation without 
Resource Sharing” figure. 
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Figure 3-5  Implementation of Resource Sharing
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Figure 3-6  Implementation without Resource Sharing

Note Refer to the appropriate reference manual for more infor-
mation on resource sharing.
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logic to reduce function generator logic and improve routing and 
speed performance. Further gate reduction can occur with synthesis 
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Using Preset Pin or Clear Pin
Xilinx FPGAs consist of CLBs that contain function generators and 
flip-flops. Spartan-II and Virtex/Virtex-E/Virtex-II/Virtex-II Pro 
registers can be configured to have either or both preset and clear 
pins. 

Register Inference

The following VHDL and Verilog designs show how to describe a 
register with a clock enable and either an asynchronous preset or a 
clear.

• VHDL Example

-- FF_EXAMPLE.VHD

-- May 2001

-- Example of Implementing Registers

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ff_example is

 port ( RESET, CLOCK, ENABLE: in STD_LOGIC;

 D_IN: in STD_LOGIC_VECTOR (7 downto 0);

 A_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 B_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 C_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 D_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0));

end ff_example;
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architecture BEHAV of ff_example is

begin

    -- D flip-flop

    FF: process (CLOCK)

    begin

        if (CLOCK’event and CLOCK=’1’) then

            A_Q_OUT <= D_IN;

        end if;

    end process; -- End FF

    -- Flip-flop with asynchronous reset

    FF_ASYNC_RESET: process (RESET, CLOCK)

    begin 

        if (RESET = ’1’) then

            B_Q_OUT <= “00000000”;

        elsif (CLOCK'event and CLOCK='1') then

            B_Q_OUT <= D_IN;

        end if;

    end process; -- End FF_ASYNC_RESET

    -- Flip-flop with asynchronous set

    FF_ASYNC_SET: process (RESET, CLOCK) 

    begin

        if (RESET = '1') then

            C_Q_OUT <= “11111111”;

        elsif (CLOCK'event and CLOCK = '1') then

            C_Q_OUT <= D_IN;

        end if;

    end process; -- End FF_ASYNC_SET
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-- Flip-flop with asynchronous reset 

-- and clock enable

    FF_CLOCK_ENABLE: process (ENABLE, RESET, 
CLOCK) 

   begin

        if (RESET = ’1’) then

           D_Q_OUT <= “00000000”;

        elsif (CLOCK'event and CLOCK='1') then

           if (ENABLE='1') then

               D_Q_OUT <= D_IN;

           end if;

       end if;

   end process; -- End FF_CLOCK_ENABLE

-- Flip-flop with asynchronous reset

-- asynchronous set and clock enable

FF_ASR_CLOCK_ENABLE: process (ENABLE, RESET, 
SET, CLOCK)

begin

    if (RESET = '1') then

        E_Q_OUT <= "00000000";

    elsif (SET = '1') then

        E_Q_OUT <= "11111111";

    elsif (CLOCK'event and CLOCK='1') then

        if (ENABLE='1') then

            E_Q_OUT <= D_IN;

        end if;

    end if;

end process; -- End FF_ASR_CLOCK_ENABLE

end BEHAV;
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Using Clock Enable Pin Instead of Gated Clocks

Use the CLB clock enable pin instead of gated clocks in your designs. 
Gated clocks can introduce glitches, increased clock delay, clock skew, 
and other undesirable effects. The first two examples in this section 
(VHDL and Verilog) illustrate a design that uses a gated clock. Figure 
3-7 shows this design implemented with gates. Following these 
examples are VHDL and Verilog designs that show how you can 
modify the gated clock design to use the clock enable pin of the CLB. 
Figure 3-8 shows this design implemented with gates.

• VHDL Example

-------------------------------------------

-- GATE_CLOCK.VHD Version 1.1 --

-- Illustrates clock buffer control --

-- Better implementation is to use --

-- clock enable rather than gated clock --

-- May 2001 --

-------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity gate_clock is

    port (IN1,IN2,DATA,CLK,LOAD: in STD_LOGIC;

          OUT1: out STD_LOGIC);

end gate_clock;
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architecture BEHAVIORAL of gate_clock is

signal GATECLK: STD_LOGIC;

begin

GATECLK <= (IN1 and IN2 and CLK);

    GATE_PR: process (GATECLK,DATA,LOAD) 

    begin

        if (GATECLK’event and GATECLK=’1’) then 

           if (LOAD=’1’) then

                OUT1 <= DATA;

            end if;

        end if;

    end process; --End GATE_PR

end BEHAVIORAL;
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• Verilog Example

//////////////////////////////////////////

// GATE_CLOCK.V Version 1.1 //

// Gated Clock Example //

// Better implementation to use clock  //

// enables than gating the clock //

// May 2001 //

//////////////////////////////////////////

module gate_clock(IN1, IN2, DATA, 
CLK,LOAD,OUT1);

input       IN1 ;

input       IN2 ;

input       DATA ;

input       CLK ;

input       LOAD ;

output      OUT1 ;

reg         OUT1 ;

wire GATECLK ;

assign GATECLK = (IN1 & IN2 & CLK);

always @(posedge GATECLK)

begin

   if (LOAD == 1’b1)

      OUT1 = DATA;

end

endmodule
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Figure 3-7  Implementation of Gated Clock

• VHDL Example

-- CLOCK_ENABLE.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity clock_enable is

    port (IN1,IN2,DATA,CLOCK,LOAD: in STD_LOGIC;

          DOUT: out STD_LOGIC);

end clock_enable;
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architecture BEHAV of clock_enable is

signal ENABLE: STD_LOGIC;

begin

    ENABLE <= IN1 and IN2 and LOAD;

    EN_PR: process (ENABLE,DATA,CLOCK)

    begin

        if (CLOCK’event and CLOCK=’1’) then

            if (ENABLE=’1’) then

                DOUT <= DATA;

            end if;

        end if;

    end process; -- End EN_PR

end BEHAV;
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• Verilog Example

/* Clock enable example

 * CLOCK_ENABLE.V

 * May 2001                                    

*/

module clock_enable (IN1, IN2, DATA, CLK, LOAD, 
DOUT);

input IN1, IN2, DATA;

input CLK, LOAD;

output DOUT;

wire ENABLE;

reg DOUT;

assign ENABLE = IN1 & IN2 & LOAD;

    always @(posedge CLK)

    begin 

            if (ENABLE) 

                 DOUT <= DATA;

    end

endmodule
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Figure 3-8  Implementation of Clock Enable
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Chapter 4

Architecture Specific HDL Coding Styles for 
Spartan-II, Virtex, Virtex-E, Virtex-II, and 
Virtex-II Pro

This chapter includes coding techniques to help you improve 
synthesis results. It includes the following sections.

• “Introduction”

• “Instantiating Components”

• “Using Boundary Scan (JTAG 1149.1)”

• “Using Global Clock Buffers”

• “Using Advanced Clock Management”

• “Using Dedicated Global Set/Reset Resource”

• “Implementing Inputs and Outputs”

• “Encoding State Machines”

• “Implementing Operators and Generate Modules”

• “Implementing Memory”

• “Implementing Shift Register (Virtex/E/II and Spartan-II)”

• “Implementing Multiplexers”

• “Using Pipelining”

• “Design Hierarchy”

Introduction
This chapter highlights the features and synthesis techniques in 
designing with Xilinx Virtex/E/II/II Pro and Spartan-II FPGAs. 
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Virtex/E and Spartan-II devices share many architectural similarities. 
Virtex-II/II Pro provide an architecture that is substantially different 
from Virtex, Virtex-E, and Spartan-II; however, many of the synthesis 
design techniques apply the same way to all these devices. Unless 
otherwise stated, the features and examples in this chapter apply to 
all Virtex/E/II/II Pro and Spartan-II devices. For details specific to 
Virtex-II Pro, see the Virtex II Pro Handbook.

This chapter covers the following FPGA HDL coding features.

• Advanced clock management

• On-chip RAM and ROM

• IEEE 1149.1 — compatible boundary scan logic support

• Flexible I/O with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

• Various drive strength

• Various I/O standards

• Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource 
utilization and enhance the speed of critical paths in your HDL 
designs. The examples in this chapter are provided to help you 
incorporate these system features into your HDL designs. 

Instantiating Components
Xilinx provides a set of libraries that your Synthesis tool can infer 
from your HDL code description. However, architecture specific and 
customized components must be explicitly instantiated as compo-
nents in your design.

Instantiating FPGA Primitives
Architecture specific components that are built in to the implementa-
tion software's library are available for instantiation without the need 
of specifying a definition. These components are marked as primitive 
in the Libraries Guide. Components marked as macro in the Libraries 
Guide are not built into the implementation software's library so they 
cannot be instantiated. The macro components in the Libraries Guide 
define the schematic symbols. When macros are used, the schematic 
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tool decomposes the macros into their primitive elements when the 
schematic tool writes out the netlist. 

FPGA primitives can be instantiated in VHDL and Verilog.

• VHDL Example (declaring component and port map)

library IEEE;
use IEEE.std_logic_1164.all;
-- Add the following two lines if using Synplify:
-- library virtex;
-- use virtex.components.all;
entity flops is port(
di: in std_logic;
ce : in std_logic;
clk: in std_logic;
qo: out std_logic;
rst: in std_logic);
end flops;
-- remove the following component declaration
-- if using Synplify

architecture inst of flops is
component FDCE port( D: in std_logic;

CE: in std_logic;
C: in std_logic;
CLR: in std_logic;
Q: out std_logic);

end component;

begin
U0 : FDCE port map(D => di,

CE=> ce,
C => clk,
CLR => rst,
Q => qo);

end inst;

Note To use this example in Synplify, you need to add the Xilinx 
primitive library and remove the component declarations as 
noted above.
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The Virtex library contains primitives of Virtex and Spartan-II 
architectures. Replace ‘virtex’ with the appropriate device family 
if you are targeting other Xilinx FPGA architecture

If you are designing with a Virtex-E device, use the virtexe 
library. If you are designing with a Virtex-II/II Pro device, use the 
virtex2 library.

• Verilog Example.

module flops (d1, ce, clk, q1, rst);
input d1;
input ce;
input clk;
output q1;
input rst;

FDCE u1 (.D(d1),
.CE(ce),
.C (clk),
.CLR(rst),
.Q (q1));

endmodule

Instantiating CORE Generator Modules
The CORE Generator allows you to generate complex ready-to-use 
functions such as FIFO, Filter, Divider, RAM, and ROM. CORE 
Generator will generate EDIF netlist to describe the functionality and 
a component instantiation template for HDL instantiation. For more 
information on the use and functions created by the CORE Generator, 
see the CORE Generator Guide.
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In VHDL, you can declare the component and port map as shown in 
the “Instantiating FPGA Primitives” section above. Synthesis tools will 
assume a black box for components that do not have a VHDL 
functional description.

In Verilog, an empty module must be declared to get port direction-
ality. Synthesis tools will assume a black box for components that do 
not have a Verilog functional description.

Example of Black Box Directive and Empty Module Declaration.

module r256x16s (
addr,
di,
clk,
we,
en,
rst,
do);

input [7:0] addr;
input [15:0] di;
input clk;
input we;
input en;
input rst;
output [15:0] do;
endmodule

module top (addrp, dip, clkp, wep, enp, rstp, dop);
input [7:0] addrp;
input [15:0] dip;
input clkp;
input wep;
input enp;
input rstp;
output [15:0] dop;
r256x16s U0(

.addr(addrp), .di(dip), 

.clk(clkp), .we(wep), 

.en(enp), .rst(rstp),

.do(dop));
endmodule
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Using Boundary Scan (JTAG 1149.1) 
Virtex/E/II/II Pro and Spartan-II FPGAs contain boundary scan 
facilities that are compatible with IEEE Standard 1149.1.

You can access the built-in boundary scan logic between power-up 
and the start of configuration.

In a configured Virtex/E/II/II Pro and Spartan-II device, basic 
boundary scan operations are always available. BSCAN_VIRTEX, 
BSCAN_VIRTEX2 and BSCAN_SPARTAN2 are instantiated only if 
users want to create internal boundary scan chains in a Virtex/Virtex-
E /Virtex-II /Virtex-II Pro or Spartan-II device.

For specific information on boundary scan for an architecture, refer to 
the Libraries Guide and The Programmable Logic Data Book. For informa-
tion on configuration and readback of Virtex/Virtex-E/Spartan-II 
FPGAs refer to XAPP 139 at http://support.xilinx.com/xapp/
xapp139.pdf.

Using Global Clock Buffers
For designs with global signals, use global clock buffers to take 
advantage of the low-skew, high-drive capabilities of the dedicated 
global buffer tree of the target device. Your synthesis tool automati-
cally inserts a clock buffer whenever an input signal drives a clock 
signal or whenever an internal clock signal reaches a certain fanout. 
The Xilinx implementation software automatically selects the clock 
buffer that is appropriate for your specified design architecture. 

Some synthesis tools also limit global buffer insertions to match the 
number of buffers available on the device. Refer to your synthesis 
tool documentation for detailed information.

You can instantiate the clock buffers if your design requires a special 
architecture-specific buffer or if you want to specify how the clock 
buffer resources should be allocated. 
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Table 5-1 summarizes global buffer (BUFG) resources in Virtex, 
Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-II devices.

Virtex/E/II/II Pro, and Spartan-II devices include two tiers of global 
routing resources referred to as primary global and secondary local 
clock routing resources.

Note In Virtex-II/II Pro, BUFG is available for instantiation, but will 
be implemented with BUFGMUX.

• The primary global routing resources are dedicated global nets 
with dedicated input pins that are designed to distribute high-
fanout clock signals with minimal skew. Each global clock net can 
drive all CLB, IOB, and Block SelectRAM+ clock pins. The 
primary global nets may only be driven by the global buffers 
(BUFG), one for each global net. There are four primary global 
nets in Virtex/E and Spartan-II. There are sixteen in Virtex-II/II 
Pro.

• The secondary local clock routing resources consist of backbone 
lines or longlines. These secondary resources are more flexible 
than the primary resources since they are not restricted to routing 
clock signal only. These backbone lines are accessed differently 
between Virtex/E/Spartan-II and Virtex-II/II Pro devices as 
follows:

♦ In Virtex/E and Spartan-II devices, there are 12 longlines 
across the top of the chip and 12 across bottom. From these 
lines, up to 12 unique signals per column can be distributed 
via the 12 longlines in the column. To use this, you must 
specify the USELOWSKEWLINES constraint in the UCF file. 
For more information on the USELOWSKEWLINES 
constraint syntax, refer to the Constraints Guide.

♦ In Virtex-II, longlines resources are more abundant. There are 
many ways in which the secondary clocks or high fanout 
signals can be routed using a pattern of resources that result 
in low skew. The Xilinx Implementation tools will automati-
cally use these resources based on various constraints in your 

Table 4-1  Global Buffer Resources

Buffer Type Virtex Virtex-E Virtex-II/II Pro Spartan-II

BUFG 4 4 N/A 4

BUFGMUX N/A N/A 16 N/A
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design. Additionally, the USELOWSKEWLINES constraint 
can be applied to access this routing resource. 

Inserting Clock Buffers
Many synthesis tools automatically insert a global buffer (BUFG) 
when an input port drives a register’s clock pin or when an internal 
clock signal reaches a certain fanout. A BUFGP (an IBUFG-BUFG 
connection) is inserted for the external clock whereas a BUFG is 
inserted for an internal clock. Most synthesis tools will also allow you 
to control BUFG insertions manually if you have more clock pins 
than the available BUFGs resources.

FPGA Compiler II will infer up to four clock buffers for pure clock 
nets. FPGA Compiler II will not infer a BUFG on a clock line that only 
drives one flip-flop.You can also instantiate clock buffers or assign 
them via the Express Constraints Editor.

Note Synthesis tools currently insert simple clock buffers, BUFGs, for 
all Virtex/E/II/II Pro and Spartan-II designs. For Virtex-II/II Pro, 
some tools provide an attribute to use BUFGMUX as an enabled clock 
buffer. To use BUFGMUX as a real clock multiplexer in Virtex-II/II 
Pro, it must be instantiated.

LeonardoSpectrum will force clock signals to global buffers when the 
resources are available. The best way to control unnecessary BUFG 
insertions is to turn off global buffer insertion, then use the buffer_sig 
attribute to push BUFGs onto the desired signals. By doing this the 
user will not have to instantiate any BUFG components. As long as 
"chip" options are used to optimize the IBUFs, they will be auto-
inserted for the input.

The following is a syntax example of the buffer_sig attribute.

set_attribute -port clk1 -name buffer_sig -value 
BUFG

set_attribute -port clk2 -name buffer_sig -value 
BUFG

Synplify will assign a BUFG to any input signal that directly drives a 
clock. The maximum number of global buffers is defined as 4. Auto-
insertion of the BUFG for internal clocks occurs with a fanout 
threshold of 16 loads. To turn off automatic clock buffers insertion, 
use the syn_noclockbuf attribute. This attribute can be applied to the 
entire module/architecture or a specific signal. To change the 
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maximum number of global buffer insertion, you may set an attribute 
in the .sdc file as follows.

define_global_attribute xc_global buffers (8)

XST will assign a BUFG to any input signal that directly drives a 
clock. The default number of global buffers for the Virtex, Virtex-E, 
and Spartan-II device is 4. The default number of global buffers for 
the Virtex-II, and Virtex-II Pro device is 8. The number of BUFGs used 
for a design can be modified by the XST option bufg by either 
inserting it in HDL, the XST constraints file or via a command line 
switch. 

Refer to your synthesis tool documentation for a detailed syntax 
information. 

Instantiating Global Clock Buffers
You can instantiate global buffers in your code as described in this 
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout 
ports in your code rather than inferring them from a synthesis tool 
script. If you do instantiate global buffers, verify that the Pad param-
eter is not specified for the buffer.

In Virtex/E/II and Spartan-II designs, synthesis tools insert BUFGP 
for clock signals which access a dedicated clock pin. To have a regular 
input pin to a clock buffer connection, you must use an IBUF-BUFG 
connection. This is done by instantiating BUFG after disabling global 
buffer insertion. 

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your 
code to use the dedicated routing resource if a high-fanout signal is 
sourced from internal flip-flops or logic (such as a clock divider or 
multiplexed clock), or if a clock is driven from a non-dedicated I/O 
pin. If using Virtex/E or Spartan-II devices, the following VHDL and 
Verilog examples instantiate a BUFG for an internal multiplexed 
clock circuit
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Note Synplify will infer a global buffer for a signal that has 16 or 
greater fanouts.

• VHDL Example

-----------------------------------------------

-- CLOCK_MUX_BUFG.VHD Version 1.1  --

-- This is an example of an instantiation of --

-- global buffer (BUFG) from an internally --

-- driven signal, a multiplexed clock.       --

-- March 2001                                --

-----------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

entity clock_mux is

port (DATA, SEL: in STD_LOGIC;

SLOW_CLOCK, FAST_CLOCK: in  STD_LOGIC;

DOUT: out STD_LOGIC);

end clock_mux;

architecture XILINX of clock_mux is

signal CLOCK: STD_LOGIC;

signal CLOCK_GBUF: STD_LOGIC;

component BUFG

    port (I: in  STD_LOGIC; 

          O: out STD_LOGIC);

end component;
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begin

Clock_MUX: process (SEL, FAST_CLOCK, SLOW_CLOCK)

    begin

       if (SEL = ’1’) then 

CLOCK <= FAST_CLOCK;

        else

CLOCK <= SLOW_CLOCK;

end if;

    end process;

GBUF_FOR_MUX_CLOCK: BUFG

   port map (I => CLOCK,

 O => CLOCK_GBUF);

Data_Path: process (CLOCK_GBUF)

 begin

 if (CLOCK_GBUF’event and CLOCK_GBUF=’1’)then

 DOUT <= DATA;

 end if;

 end process;

end XILINX;
Synthesis and Simulation Design Guide 4-11



Synthesis and Simulation Design Guide
• Verilog Example

 //////////////////////////////////////////////

 // CLOCK_MUX_BUFG.V Version 1.1 //

 // This is an example of an instantiation of//

 // global buffer (BUFG) from an internally  //

 // driven signal, a multiplied clock. //

 // March 2001 //

///////////////////////////////////////////////

module clock_mux(DATA,SEL,SLOW_CLOCK,FAST_CLOCK,
DOUT);

 input  DATA, SEL;

   input  SLOW_CLOCK, FAST_CLOCK;

   output DOUT;

    reg   CLOCK;

    wire   CLOCK_GBUF;

    reg    DOUT;

always @ (SEL or FAST_CLOCK or SLOW_CLOCK)

begin

        if (SEL == 1’b1)

            CLOCK <= FAST_CLOCK;

        else

            CLOCK <= SLOW_CLOCK;

end

BUFG GBUF_FOR_MUX_CLOCK (.O(CLOCK_GBUF),

.I(CLOCK));

    always @ (posedge CLOCK_GBUF)

        DOUT = DATA;

endmodule
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If using a Virtex-II device a BUFGMUX can be used to multiplex 
between clocks. The above examples are rewritten for Virtex-II:

• VHDL Example

--------------------------------------------------
-- CLOCK_MUX_BUFG.VHD Version 1.2 --
-- This is an example of an instantiation of --
-- a multiplexing global buffer (BUFGMUX) --
-- from an internally driven signal --
-- May 2002 --
--------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;

entity clock_mux is
  port (DATA, SEL              : in  std_logic;
        SLOW_CLOCK, FAST_CLOCK : in  std_logic;
        DOUT                   : out std_logic);
end clock_mux;

architecture XILINX of clock_mux is
  signal CLOCK_GBUF : std_logic;
  component BUFGMUX
    port (I0 : in  std_logic;
          I1 : in std_logic;
          S  : in std_logic;
          O  : out std_logic);
  end component;

begin
  GBUF_FOR_MUX_CLOCK : BUFGMUX
    port map (I0 => SLOW_CLOCK,
              I1 => FAST_CLOCK,
              S  => SEL,
              O => CLOCK_GBUF);
  Data_Path : process (CLOCK_GBUF)
  begin
    if (CLOCK_GBUF’event and CLOCK_GBUF=’1’)then
      DOUT <= DATA;
    end if;
  end process;
end XILINX;
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• Verilog Example

///////////////////////////////////////////////
// CLOCK_MUX_BUFG.V Version 1.2              //
// This is an example of an instantiation of //
// a multiplexing global buffer (BUFGMUX)    //
// from an internally driven signal          //
// May 2002                                  //
///////////////////////////////////////////////

module clock_mux
  (DATA,SEL,SLOW_CLOCK,FAST_CLOCK,DOUT);

  input DATA, SEL, SLOW_CLOCK, FAST_CLOCK;
  output DOUT;

  reg CLOCK, DOUT;
  wire CLOCK_GBUF;

  BUFGMUX GBUF_FOR_MUX_CLOCK 
    (.O(CLOCK_GBUF), 
 .I0(SLOW_CLOCK), 
 .I1(FAST_CLOCK), 
 .S(SEL));

  always @ (posedge CLOCK_GBUF)
    DOUT <= DATA;

endmodule
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Using Advanced Clock Management
Virtex/E, and Spartan-II devices feature Clock Delay-Locked Loop 
(CLKDLL) for advanced clock management. The CLKDLL can elimi-
nate skew between the clock input pad and internal clock-input pins 
throughout the device. CLKDLL also provides four quadrature 
phases of the source clock. With CLKDLL you can eliminate clock-
distribution delay, double the clock, or divide the clock. The CLKDLL 
also operates as a clock mirror. By driving the output from a DLL off-
chip and then back on again, the CLKDLL can be used to de-skew a 
board level clock among multiple Virtex, Virtex-E, and Spartan-II 
devices. For detailed information on using CLKDLLs, refer to the 
Libraries Guide and application notes, XAPP 132 and XAPP 174 at 
http://www.xilinx.com/apps/xapp.htm.

In Virtex-II devices, the Digital Clock Manager (DCM) is available for 
advanced clock management. The DCM contains four main features 
listed below. For more information on the functionality of these 
features, refer to the Libraries Guide and the Virtex-II Handbook.

• Delay Locked Loop (DLL) — The DLL feature is very similar to 
CLKDLL.

• Digital Phase Shifter (DPS) — The DPS provides a clock shifted by 
a fixed or variable phase skew.

• Digital Frequency Synthesizer (DFS) — The DFS produces a wide 
range of possible clock frequencies related to the input clock.

Using CLKDLL (Virtex/E, Spartan II)
There are four CLKDLLs in each Virtex/Spartan-II device and eight 
in each Virtex-E device. There are also four global clock input buffers 
(IBUFG) in the Virtex/E and Spartan-II devices to bring external 
clocks in to the CLKDLL. The VHDL/Verilog example below shows a 
possible connection and usage of CLKDLL in your design. Cascading 

Table 4-2  CLKDLL and DCM Resources

Virtex/
Spartan-II

Virtex-E
Virtex-II/II 
Pro

CLKDLL 4 8 N/A

DCM N/A N/A 4 - 12
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three CLKDLLs in the Virtex/Spartan-II device is not allowed due to 
excessive jitter. 

Synthesis tools do not infer CLKDLLs. The following examples show 
how to instantiate CLKDLLs in your VHDL and Verilog code.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
  port(
   ACLK                : in  std_logic;
-- off chip feedback, connected to OUTBCLK on the board.
    BCLK                : in  std_logic;
--OUT CLOCK
    OUTBCLK             : out std_logic;
    DIN                 : in  std_logic_vector(1 downto 0);
    RESET               : in  std_logic;
    QOUT                : out std_logic_vector (1 downto 0);
-- CLKDLL lock signal
    BCLK_LOCK           : out std_logic
    );
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
     I : in  std_logic;

O : out std_logic);
  end component;
  component CLKDLL
    port (
CLKIN  : in std_logic;
      CLKFB  : in std_logic;
      RST    : in std_logic;
      CLK0   : out std_logic;
      CLK90  : out std_logic;
      CLK180 : out std_logic;
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      CLK270 : out std_logic;
      CLKDV : out std_logic;
     CLK2X  : out std_logic;

LOCKED : out std_logic);
  end component;
  -- Glock signals
  signal ACLK_ibufg     : std_logic;
  signal BCLK_ibufg     : std_logic;
  signal ACLK_2x        : std_logic;
  signal ACLK_2x_design : std_logic;
  signal ACLK_lock      : std_logic;
begin
  ACLK_ibufg_inst : IBUFG
    port map (
      I => ACLK,
      O => ACLK_ibufg
      );
  BCLK_ibufg_inst : IBUFG
    port map (
      I => BCLK,
      O => BCLK_ibufg
      );
  ACLK_bufg : BUFG
    port map (
      I => ACLK_2x,
      O => ACLK_2x_design
      );
  ACLK_dll : CLKDLL
    port map (
CLKIN      => ACLK_ibufg,
      CLKFB      => ACLK_2x_design,
      RST        => ’0’,
      CLK2X      => ACLK_2x,
      CLK0       => OPEN,
      CLK90      => OPEN,
      CLK180     => OPEN,
      CLK270     => OPEN,
      CLKDV      => OPEN,
     LOCKED     => ACLK_lock
      );
BCLK_dll_out : CLKDLL
     port map (
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       CLKIN     => ACLK_ibufg,
       CLKFB     => BCLK_ibufg,
       RST       => ’0’,
       CLK2X     => OUTBCLK,
       CLK0      => OPEN,
       CLK90     => OPEN,
       CLK180    => OPEN,
       CLK270    => OPEN,
       CLKDV     => OPEN,
      LOCKED    => BCLK_lock
       );
process (ACLK_2x_design, RESET)
begin
 if RESET = ’1’ then
  QOUT <= "00";
 elsif ACLK_2x_design’event and ACLK_2x_design = ’1’ then
  if ACLK_lock = ’1’ then
   QOUT <= DIN;
  end if;
 end if;
end process;
END RTL;

• Verilog Example.

// Verilog Example

// In this example ACLK’s frequency is doubled,

// used inside and outside the chip.

// BCLK and OUTBCLK are connected in the board

// outside the chip.

module clock_test(ACLK, DIN, QOUT, BCLK, 
OUTBCLK, BCLK_LOCK, RESET);

 input   ACLK, BCLK;

 input RESET;

 input [1:0] DIN;

 output [1:0] QOUT;

output OUTBCLK, BCLK_LOCK;
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reg [1:0] QOUT;

IBUFG CLK_ibufg_A

      (.I (ACLK),

      .O(ACLK_ibufg)

      );

BUFG ACLK_bufg

      (.I (ACLK_2x),

       .O (ACLK_2x_design)

     );

IBUFG CLK_ibufg_B

      (.I (BCLK),     // connected to OUTBCLK 
outside

      .O(BCLK_ibufg)

      );

CLKDLL ACLK_dll_2x   // 2x clock

      (.CLKIN(ACLK_ibufg),

      .CLKFB(ACLK_2x_design),

      .RST(1’b0),

      .CLK2X(ACLK_2x),

      .CLK0(),

      .CLK90(),

.CLK180(),

      .CLK270(),

      .CLKDV(),

      .LOCKED(ACLK_lock)

      );

CLKDLL BCLK_dll_OUT // off-chip synchronization

      (.CLKIN(ACLK_ibufg),
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.CLKFB(BCLK_ibufg), // BCLK and OUTBCLK is

 // connected outside the

 // chip.

.RST(1’b0),

.CLK2X(OUTBCLK),  //connected to BCLK outside

.CLK0(),

.CLK90(),

.CLK180(),

.CLK270(),

.CLKDV(),

.LOCKED(BCLK_LOCK)

      );

always @(posedge ACLK_2x_design or posedge 
RESET)

begin

if (RESET)

 QOUT[1:0] <= 2’b00;

else if (ACLK_lock)

 QOUT[1:0] <= DIN[1:0];

end

endmodule
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Using the Additional CLKDLL in Virtex-E
There are eight CLKDLLs in each Virtex-E device, with four located at 
the top and four at the bottom. Refer to the “DLLs in Virtex-E 
Devices” figure below. The basic operations of the DLLs in the Virtex-
E devices remain the same as in the Virtex and Spartan-II devices, but 
the connections may have changed for some configurations.

Figure 4-1  DLLs in Virtex-E Devices

Two DLLs located in the same half-edge (top-left, top-right, bottom-
right, bottom-left) can be connected together, without using a BUFG 
between the CLKDLLs, to generate a 4x clock. Refer to the “DLL 
Generation of 4x Clock in Virtex-E Devices” figure below.
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Figure 4-2  DLL Generation of 4x Clock in Virtex-E Devices

Below are examples of coding a CLKDLL in both VHDL and Verilog.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
  port(
ACLK : in  std_logic;
DIN : in  std_logic_vector(1 downto 0);
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RESET : in  std_logic;
QOUT : out std_logic_vector (1 downto 0);
    -- CLKDLL lock signal
BCLK_LOCK           : out std_logic
    );
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component CLKDLL
    port (
      CLKIN  : in std_logic;
      CLKFB  : in std_logic;
      RST    : in std_logic;
      CLK0   : out std_logic;
      CLK90  : out std_logic;
      CLK180 : out std_logic;
      CLK270 : out std_logic;
      CLKDV : out std_logic;
      CLK2X  : out std_logic;
      LOCKED : out std_logic);
end component;
  -- Clock signals
  signal ACLK_ibufg             : std_logic;
  signal ACLK_2x, BCLK_4x       : std_logic;
  signal BCLK_4x_design         : std_logic;
  signal BCLK_lockin            : std_logic;
begin
  ACLK_ibufginst : IBUFG
    port map (
      I => ACLK,
      O => ACLK_ibufg
      );
  BCLK_bufg: BUFG
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    port map (
      I => BCLK_4x, O => BCLK_4x_design);
  ACLK_dll : CLKDLL
    port map (
      CLKIN      => ACLK_ibufg,
      CLKFB      => ACLK_2x,
      RST        => ’0’,
      CLK2X      => ACLK_2x,
      CLK0       => OPEN,
      CLK90      => OPEN,
      CLK180     => OPEN,
      CLK270     => OPEN,
      CLKDV      => OPEN,
      LOCKED     => OPEN
      );
   BCLK_dll : CLKDLL
     port map (
       CLKIN     => ACLK_2x,
       CLKFB     => BCLK_4x_design,
       RST       => ’0’,
       CLK2X     => BCLK_4x,

CLK0      => OPEN,
       CLK90     => OPEN,
       CLK180    => OPEN,
       CLK270    => OPEN,
       CLKDV     => OPEN,
       LOCKED    => BCLK_lockin
       );
process (BCLK_4x_design, RESET)
begin
 if RESET = ’1’ then
  QOUT <= "00";
 elsif BCLK_4x_design’event 

and BCLK_4x_design = ’1’ 
then
  if BCLK_lockin = ’1’ then
   QOUT <= DIN;
  end if;
 end if;
end process;
 BCLK_lock <= BCLK_lockin;
END RTL;
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• Verilog Example.

module clock_test(ACLK, DIN, QOUT, BCLK_LOCK, 
RESET);

 input   ACLK;
 input RESET;
 input [1:0] DIN;
 output [1:0] QOUT;
 output BCLK_LOCK;
reg [1:0] QOUT;
IBUFG CLK_ibufg_A
      (.I (ACLK),
      .O(ACLK_ibufg)
      );
BUFG BCLK_bufg
      (.I (BCLK_4x),
       .O (BCLK_4x_design)
      );
CLKDLL ACLK_dll_2x   // 2x clock
      (.CLKIN(ACLK_ibufg),
      .CLKFB(ACLK_2x),
      .RST(1’b0),
      .CLK2X(ACLK_2x),
      .CLK0(),
      .CLK90(),
      .CLK180(),
      .CLK270(),
      .CLKDV(),
      .LOCKED()
      );
CLKDLL BCLK_dll_4x  // 4x clock
      (.CLKIN(ACLK_2x),
      .CLKFB(BCLK_4x_design), // BCLK_4x after bufg
      .RST(1’b0),
      .CLK2X(BCLK_4x),
      .CLK0(),
      .CLK90(),
.CLK180(),
      .CLK270(),
      .CLKDV(),
      .LOCKED(BCLK_LOCK)
      );
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always @(posedge BCLK_4x_design or posedge RESET)
begin
if (RESET)
 QOUT[1:0] <= 2’b00;
else if (BCLK_LOCK)
 QOUT[1:0] <= DIN[1:0];
end
endmodule

Using BUFGDLL
BUFGDLL macro is the simplest way to provide zero propagation 
delay for a high-fanout on-chip clock from the external input. This 
macro uses the IBUFG, CLKDLL and BUFG primitive to implement 
the most basic DLL application. Refer to the “BUFGDLL Schematic” 
figure below.

Figure 4-3  BUFGDLL Schematic

In FPGA Compiler II, use the Constraints Editor to change the global 
buffer insertion to BUFGDLL.

In LeonardoSpectrum, set the following attribute in the command 
line or TCL script.

X9222

CLK0
CLK90

CLK180
CLK270

CLK2X

CLKDV
LOCKED

CLKIN

CLKFB

RST

CLKDLL
BUFGIBUFG

OIOI
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set_attribute -port <CLOCK_PORT> -name PAD -value 
BUFGDLL

LeonardoSpectrum supports implementation of BUFGDLL with the 
CLKDLLHF component. To use this implementation, set the 
following attribute.

set_attribute -port <CLOCK_PORT> -name PAD -value 
BUFGDLLHF

In Synplify, set the following attribute in the SDC file.

define_attribute <port_name> xc_clockbuftype {BUFGDLL}

This attribute can be applied to the clock port in HDL code as well.

In XST, the BUFGDLL can be used by the ‘clock_buffer’ constraint 
entered in either HDL or the XST constraints file. For more 
information on using XST specific constraints see the XST User Guide.

CLKDLL Attributes
To specify how the signal on the CLKDIV pin is frequency divided 
with respect to the CLK0 pin, the CLKDV_DIVIDE property can be 
set. The values allowed for this property are 1.5, 2, 2.5, 3, 4, 5, 8, or 16. 
The default is 2.

In HDL code, the CLKDV_DIVIDE property is set as an attribute to 
the CLKDLL instance.

The following are VHDL and Verilog coding examples of CLKDLL 
attributes.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
  port(
    ACLK                : in  std_logic;
    DIN : in  std_logic_vector(1 downto 0);
    RESET               : in  std_logic;
    QOUT : out std_logic_vector (1 downto 0)
    );
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
  component IBUFG
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    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component CLKDLL
    port (
      CLKIN  : in std_logic;
      CLKFB  : in std_logic;
      RST    : in std_logic;
      CLK0   : out std_logic;
      CLK90  : out std_logic;
      CLK180 : out std_logic;
      CLK270 : out std_logic;
      CLKDV : out std_logic;
      CLK2X  : out std_logic;
      LOCKED : out std_logic);
end component;
  -- Clock signals
signal ACLK_ibufg             : std_logic;
signal div_2, div_2_design    : std_logic;
signal ACLK0, ACLK0bufg       : std_logic;
signal logic_0                : std_logic;

attribute CLKDV_DIVIDE: string;
attribute CLKDV_DIVIDE of ACLK_dll : label is "2";

logic_0 <= ‘0’;

begin
  ACLK_ibufginst : IBUFG
    port map (
      I => ACLK,
      O => ACLK_ibufg
      );
  ACLK_bufg: BUFG
    port map (
      I => ACLK0, O => ACLK0bufg);
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  DIV_bufg: BUFG
    port map (
      I => div_2, O => div_2_design);
  ACLK_dll : CLKDLL
    port map (
      CLKIN      => ACLK_ibufg,
      CLKFB      => ACLK0bufg,
      RST        => logic_0,
      CLK2X      => OPEN,
      CLK0       => ACLK0,
      CLK90      => OPEN,
      CLK180     => OPEN,
      CLK270     => OPEN,
      CLKDV      => div_2,
      LOCKED     => OPEN
      );
process (div_2_design, RESET)
begin
if RESET = ’1’ then
  QOUT <= "00";
 elsif div_2_design’event and div_2_design = ’1’ 

then
   QOUT <= DIN;
 end if;
end process;
END RTL;

• Verilog Example.

module clock_test(ACLK, DIN, QOUT, RESET);
 input   ACLK;
 input RESET;
 input [1:0] DIN;
 output [1:0] QOUT;
reg [1:0] QOUT;
IBUFG CLK_ibufg_A
      (.I (ACLK),
      .O(ACLK_ibufg)
      );
BUFG div_CLK_bufg
      (.I (div_2),
       .O (div_2_design)
      );
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BUFG clk0_bufg ( .I(clk0), .O(clk_bufg));
CLKDLL ACLK_div_2   // div by 2
      (.CLKIN(ACLK_ibufg),
      .CLKFB(clk_bufg),
      .RST(1’b0),
      .CLK2X(),
      .CLK0(clk0),
      .CLK90(),
      .CLK180(),
      .CLK270(),
      .CLKDV(div_2),
      .LOCKED()
); 

//exemplar attribute ACLK_div_2 CLKDV_DIVIDE 2
//synopsys attribute CLKDV_DIVIDE “2”
//synthesis attribute CLKDV_DIVIDE of ACLK_div_2 is 

“2”
always @(posedge div_2_design or posedge RESET)
begin
if (RESET)
 QOUT[1:0] <= 2’b00;
else
 QOUT[1:0] <= DIN[1:0];
end
endmodule

Using DCM In Virtex-II/II Pro
Using the DCM in your Virtex-II design will improve routability 
between clock pads and global buffers. Most synthesis tools currently 
do not automatically infer the DCM. Hence, the DCM has to be 
instantiated in your VHDL and Verilog designs. 

To more easily set up the DCM, use the DCM Wizard. See 
“Architecture Wizard” section of the “Understanding High-Density 
Design Flow” chapter for details on the DCM Wizard.

Please refer to the Design Considerations Chapter of the Virtex-II 
Handbook or the Virtex-II Pro Handbook, respectively, for information 
on the various features in the DCM. This book can be found on the 
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Xilinx website at
http://www.xilinx.com.

The following examples show how to instantiate DCM and apply a 
DCM attribute in VHDL and Verilog. 

Note For more information on passing attributes in the HDL code to 
different synthesis vendors, refer to the “General HDL Coding 
Styles” chapter.

VHDL Example
-- Using a DCM for Virtex-II (VHDL)
--
-- This code uses the phased clock output CLK0 of
-- the DCM
-- The Spread Spectrum option is enabled using the
-- attribute DSS_MODE set to SPREAD_8
--
-- The following code passes the attribute for
-- the synthesis tools Synplify, FPGA Compiler II
-- LeonardoSpectrum and XST.
library IEEE;
use IEEE.std_logic_1164.all;
entity clock_block is
  port (

CLK_PAD             : in  std_logic;
SPREAD_SPECTRUM_YES : in  std_logic;
RST_DLL             : in  std_logic;
CLK_out             : out std_logic;
LOCKED              : out std_logic

    );
end clock_block;
architecture STRUCT of clock_block is
  signal CLK, CLK_int, CLK_dcm : std_logic;
  attribute CLKIN_PERIOD : string;
  attribute CLKIN_PERIOD of U2: label is "10";
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
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      I : in  std_logic;
      O : out std_logic);
  end component;
  component DCM is
 port (
                    CLKFB    : in  std_logic;
                    CLKIN    : in  std_logic;
               DSSEN    : in  std_logic;
                    PSCLK    : in  std_logic;
                    PSEN     : in  std_logic;
                    PSINCDEC : in  std_logic;
                    RST      : in  std_logic;
                  CLK0     : out std_logic;
                    CLK90    : out std_logic;
                    CLK180   : out std_logic;
                    CLK270   : out std_logic;
                    CLK2X    : out std_logic;
                    CLK2X180 : out std_logic;
                    CLKDV    : out std_logic;
                    CLKFX    : out std_logic;
                    CLKFX180 : out std_logic;
                    LOCKED   : out std_logic;
                    PSDONE   : out std_logic;

STATUS   : out std_logic_vector
 (7 downto 0));
  end component;

signal logic_0 : std_logic;

begin

logic_0 <= ‘0’;

U1 : IBUFG port map ( I => CLK_PAD, O => CLK_int);
  U2 : DCM port map (
    CLKFB    => CLK,
    CLKIN    => CLK_int,
    DSSEN    => logic_0,
    PSCLK    => logic_0,
    PSEN     => logic_0,
    PSINCDEC => logic_0,
    RST      => RST_DLL,
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    CLK0     => CLK_dcm,
    LOCKED   => LOCKED);
  U3 : BUFG port map (I => CLK_dcm, O => CLK);
  CLK_out <= CLK;
end architecture STRUCT;

• Verilog Example

// Using a DCM for Virtex-II (Verilog)
//
// This code uses the phased clock output CLK0 of
// the DCM
// The Spread Spectrum option is enabled using the 
// attribute DSS_MODE set to SPREAD_8
//
// The following code passes the attribute for the 
// synthesis tools Synplify, FPGA Compiler II,
// LeonardoSpectrum and XST.
module clock_top (clk_pad,rst_dll, clk_out,locked);
input    clk_pad, spread_spectrum_yes, rst_dll;
output   clk_out, locked;
wire     clk, clk_int, clk_dcm;
IBUFG u1 (.I (clk_pad), .O (clk_int));
DCM u2 (.CLKFB    (clk),

   .CLKIN    (clk_int),
   .DSSEN    (spread_spectrum_yes),
   .PSCLK    (1’b0),
   .PSEN     (1’b0),
   .PSINCDEC (1’b0),
   .RST      (rst_dll),
   .CLK0     (clk_dcm),
   .LOCKED   (locked)) 

/* synthesis CLKIN_PERIOD = "10" */;
// synopsys attribute CLKIN_PERIOD 10
// exemplar attribute u2 CLKIN_PERIOD 10
// synthesis attribute CLKIN_PERIOD of u2 is "10"

BUFG u3(.I (clk_dcm), .O (clk));
assign clk_out = clk;

endmodule // clock_top
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Attaching Multiple Attributes to CLKDLL and DCM
CLKDLLs and DCMs can be configured to various modes by 
attaching attributes during instantiation. In some cases, multiple 
attributes must be attached to get the desired configuration. The 
following HDL coding examples show how to attach multiple 
attributes to DCM components. The same method can be used to 
attach attributes to CLKDLL components.

See the Libraries Guide for available attributes for Virtex/Virtex-E 
CLKDLL. See the Virtex-II Handbook for the available attributes for 
Virtex-II DCM.

• VHDL Example for Synplify

This example attaches multiple attributes to DCM components 
using the Synplify ‘xc_prop’ attribute. 

Note Do not insert carriage returns between the values assigned 
to xc_props. A carriage return could cause Synplify to attach only 
part of the attributes.
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-- VHDL code begin --
library IEEE; 
library virtex2;
use IEEE.std_logic_1164.all; 
use virtex2.components.all;

entity DCM_TOP is 
    port ( 
           clock_in : in std_logic; 
           clock_out : out std_logic; 
           clock_with_ps_out : out std_logic; 
           reset : out std_logic 
           ); 
end DCM_TOP; 

architecture XILINX of DCM_TOP is 
signal low, high : std_logic; 
signal dcm0_locked: std_logic;
signal dcm1_locked: std_logic;
signal clock : std_logic;
signal clk0: std_logic;
signal clk1: std_logic;
signal clock_with_ps : std_logic;
signal clock_out_int : std_logic;

attribute xc_props : string; 
attribute xc_props of dcm0: label is 

"DLL_FREQUENCY_MODE = LOW,DUTY_CYCLE_CORRECTION 
= TRUE,STARTUP_WAIT = TRUE,DFS_FREQUENCY_MODE = 
LOW,CLKFX_DIVIDE = 1,CLKFX_MULTIPLY = 
1,CLK_FEEDBACK = 1X,CLKOUT_PHASE_SHIFT = 
NONE,PHASE_SHIFT = 0";  

-- Do not insert any carriage return between the 
-- lines above.
attribute xc_props of dcm1: label is 

"DLL_FREQUENCY_MODE =LOW,DUTY_CYCLE_CORRECTION = 
TRUE,STARTUP_WAIT = TRUE,DFS_FREQUENCY_MODE = 
LOW,CLKFX_DIVIDE = 1,CLKFX_MULTIPLY = 
1,CLK_FEEDBACK = 1X,CLKOUT_PHASE_SHIFT = 
FIXED,PHASE_SHIFT = 0"; 

-- Do not insert any carriage return between the
-- the lines above.
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begin 
low <= ’0’;
high <= ’1’;
reset <= not(dcm0_locked and dcm1_locked);
clock_with_ps_out <= clock_with_ps;  
clock_out <= clock_out_int;

U1 : IBUFG port map ( I => clock_in, O => clock); 

dcm0 : DCM port map ( 
 CLKFB => clock_out_int, 

CLKIN => clock, 
DSSEN => low, 
PSCLK => low, 
PSEN => low, 
PSINCDEC => low, 
RST => low,
CLK0 => clk0,
LOCKED => dcm0_locked);

clk_buf0 : BUFG port map (I => clk0, O => 
clock_out_int); 

dcm1: DCM port map  (
CLKFB => clock_with_ps,
CLKIN => clock,
DSSEN => low,
PSCLK   => low,
PSEN  => low,
PSINCDEC => low,
RST=> low,
CLK0 => clk1,
LOCKED => dcm1_locked

); 
clk_buf1: BUFG port map(

    I => clk1,
    O => clock_with_ps
);

end XILINX; 
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• Verilog Example for Synplify

This example attaches multiple attributes to DCM components 
using the Synplify ‘xc_prop’ attribute. 

Note Do not insert carriage returns between the values assigned 
to xc_props. A carriage return could cause Synplify to attach only 
part of the attributes.

//Verilog code begin
‘include “/path_to/virtex2.v”
module DCM_TOP(

clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wire high;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1'b0;
assign high = 1'b1;
assign reset = !(dcm0_locked & dcm1_locked);
IBUFG CLOCK_IN (

.I(clock_in), 

.O(clock)
);
Synthesis and Simulation Design Guide 4-37



Synthesis and Simulation Design Guide
DCM DCM0 (
.CLKFB(clock_out), 
.CLKIN(clock), 
.DSSEN(low), 
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk0), 
.CLK90(), 
.CLK180(), 
.CLK270(), 
.CLK2X(), 
.CLK2X180(),
.CLKDV(), 
.CLKFX(), 
.CLKFX180(), 
.LOCKED(dcm0_locked), 
.PSDONE(), 
.STATUS()

)
/*synthesis xc_props="DLL_FREQUENCY_MODE = 

LOW,DUTY_CYCLE_CORRECTION = TRUE,STARTUP_WAIT = 
TRUE,DFS_FREQUENCY_MODE = LOW,CLKFX_DIVIDE = 
1,CLKFX_MULTIPLY = 1,CLK_FEEDBACK = 
1X,CLKOUT_PHASE_SHIFT = NONE,PHASE_SHIFT = 0" */
;

//Do not insert any carriage return between the 
//lines above.

BUFG CLK_BUF0(
.O(clock_out), 
.I(clk0)
);
4-38 Xilinx Development System



Architecture Specific Coding Style for Virtex
DCM DCM1 (
.CLKFB(clock_with_ps_out), 
.CLKIN(clock), 
.DSSEN(low),
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk1), 
.CLK90(), 
.CLK180(), 
.CLK270(), 
.CLK2X(), 
.CLK2X180(),
.CLKDV(), 
.CLKFX(), 
.CLKFX180(), 
.LOCKED(dcm1_locked), 
.PSDONE(), 
.STATUS()

)
/*synthesis xc_props="DLL_FREQUENCY_MODE 

=LOW,DUTY_CYCLE_CORRECTION = TRUE,STARTUP_WAIT = 
TRUE,DFS_FREQUENCY_MODE = LOW,CLKFX_DIVIDE = 
1,CLKFX_MULTIPLY = 1,CLK_FEEDBACK = 
1X,CLKOUT_PHASE_SHIFT = FIXED,PHASE_SHIFT = 0"  
*/;

//Do not insert any carriage return between the 
//lines above.

BUFG CLK_BUF1(
.O(clock_with_ps_out), 
.I(clk1)
);
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//synthesis translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";

defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//synthesis translate_on
endmodule // DCM_TOP
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• VHDL Example for LeonardoSpectrum

library IEEE; 
use IEEE.std_logic_1164.all; 

entity DCM_TOP is 
    port ( 
           clock_in : in std_logic; 
           clock_out : out std_logic; 
           clock_with_ps_out : out std_logic; 
           reset : out std_logic 
           ); 
end DCM_TOP; 

architecture XILINX of DCM_TOP is 
signal low, high : std_logic; 
signal dcm0_locked: std_logic;
signal dcm1_locked: std_logic;
signal clock : std_logic;
signal clk0: std_logic;
signal clk1: std_logic;
signal clock_with_ps : std_logic;
signal clock_out_int : std_logic;

attribute DLL_FREQUENCY_MODE : string;
attribute DUTY_CYCLE_CORRECTION : string;
attribute STARTUP_WAIT : string;
attribute DFS_FREQUENCY_MODE : string;
attribute CLKFX_DIVIDE : string;
attribute CLKFX_MULTIPLY : string;
attribute CLK_FEEDBACK : string;
attribute CLKOUT_PHASE_SHIFT : string;
attribute PHASE_SHIFT : string;
 
attribute DLL_FREQUENCY_MODE of dcm0: label is 

"LOW";
attribute DUTY_CYCLE_CORRECTION of dcm0: label is 

"TRUE";
attribute STARTUP_WAIT of dcm0: label is "TRUE";
attribute DFS_FREQUENCY_MODE of dcm0: label is 

"LOW";
attribute CLKFX_DIVIDE of dcm0: label is "1";
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attribute CLKFX_MULTIPLY of dcm0: label is "1";
attribute CLK_FEEDBACK of dcm0: label is  "1X";
attribute CLKOUT_PHASE_SHIFT of dcm0  : label is 

"NONE";
attribute PHASE_SHIFT of dcm0: label is  "0";  

attribute DLL_FREQUENCY_MODE of dcm1: label is 
"LOW";

attribute DUTY_CYCLE_CORRECTION of dcm1: label is 
"TRUE";

attribute STARTUP_WAIT of dcm1: label is "TRUE";
attribute DFS_FREQUENCY_MODE of dcm1: label is 

"LOW";
attribute CLKFX_DIVIDE of dcm1: label is "1";
attribute CLKFX_MULTIPLY of dcm1: label is "1";
attribute CLK_FEEDBACK of dcm1: label is  "1X";
attribute CLKOUT_PHASE_SHIFT of dcm1  : label is 

"FIXED";
attribute PHASE_SHIFT of dcm1: label is  "0";

component IBUFG is
port (
 I : in std_logic;
 O : out std_logic
);
end component;

component BUFG is
port (
 I : in std_logic;
 O : out std_logic
);
end component;
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component DCM is 
port ( 

      CLKFB : in std_logic; 
      CLKIN : in std_logic; 
      DSSEN : in std_logic; 
      PSCLK : in std_logic; 
      PSEN : in std_logic; 
      PSINCDEC : in std_logic; 
      RST : in std_logic; 
      CLK0 : out std_logic; 
      CLK90 : out std_logic; 
      CLK180 : out std_logic; 
      CLK270 : out std_logic; 
      CLK2X : out std_logic; 
      CLK2X180 : out std_logic; 
      CLKDV : out std_logic; 
      CLKFX : out std_logic; 
      CLKFX180 : out std_logic;
      LOCKED : out std_logic; 
      PSDONE : out std_logic; 
      STATUS : out std_logic_vector (7 downto 0));
end component; 

begin 
low <= ’0’;
high <= ’1’;
reset <= not(dcm0_locked and dcm1_locked);
clock_with_ps_out <= clock_with_ps;  
clock_out <= clock_out_int;

U1 : IBUFG port map ( I => clock_in, O => clock); 

dcm0 : DCM port map ( 
                    CLKFB => clock_out_int, 
                    CLKIN => clock, 
                    DSSEN => low, 
                    PSCLK => low, 
                    PSEN => low, 
                    PSINCDEC => low, 
                    RST => low,
                    CLK0 => clk0, 
                    LOCKED => dcm0_locked); 
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clk_buf0 : BUFG port map (I => clk0, O => 
clock_out_int); 

dcm1: DCM port map  (
CLKFB => clock_with_ps,
CLKIN => clock,
DSSEN => low,
PSCLK   => low,
PSEN  => low,
PSINCDEC => low,
RST=> low,
CLK0 => clk1,
LOCKED => dcm1_locked

); 

clk_buf1: BUFG port map(
I => clk1,

 O => clock_with_ps
);

end XILINX; 
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• Verilog Example for LeonardoSpectrum

module DCM_TOP(
clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wire high;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !(dcm0_locked & dcm1_locked);

IBUFG CLOCK_IN (
.I(clock_in), 
.O(clock)
);

DCM DCM0 (
.CLKFB(clock_out), 
.CLKIN(clock), 
.DSSEN(low), 
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk0), 
.CLK90(), 
.CLK180(), 
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.CLK270(), 

.CLK2X(), 

.CLK2X180(),

.CLKDV(), 

.CLKFX(), 

.CLKFX180(), 

.LOCKED(dcm0_locked), 

.PSDONE(), 

.STATUS()
);
//exemplar attribute DCM0 DLL_FREQUENCY_MODE LOW
//exemplar attribute DCM0 DUTY_CYCLE_CORRECTION
TRUE
//exemplar attribute DCM0 STARTUP_WAIT TRUE
//exemplar attribute DCM0 DFS_FREQUENCY_MODE LOW
//exemplar attribute DCM0 CLKFX_DIVIDE  1
//exemplar attribute DCM0 CLKFX_MULTIPLY 1
//exemplar attribute DCM0 CLK_FEEDBACK 1X
//exemplar attribute DCM0 CLKOUT_PHASE_SHIFT NONE
//exemplar attribute DCM0 PHASE_SHIFT  0

BUFG CLK_BUF0(
.O(clock_out),
.I(clk0)
);

DCM DCM1 (
.CLKFB(clock_with_ps_out), 
.CLKIN(clock), 
.DSSEN(low),
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk1), 
.CLK90(), 
.CLK180(), 
.CLK270(), 
.CLK2X(), 
.CLK2X180(),
.CLKDV(), 
.CLKFX(), 
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.CLKFX180(), 

.LOCKED(dcm1_locked), 

.PSDONE(), 

.STATUS()
);
//exemplar attribute DCM1 DLL_FREQUENCY_MODE LOW
//exemplar attribute DCM1 DUTY_CYCLE_CORRECTION
TRUE
//exemplar attribute DCM1 STARTUP_WAIT TRUE
//exemplar attribute DCM1 DFS_FREQUENCY_MODE LOW
//exemplar attribute DCM1 CLKFX_DIVIDE  1
//exemplar attribute DCM1 CLKFX_MULTIPLY 1
//exemplar attribute DCM1 CLK_FEEDBACK  1X
//exemplar attribute DCM1 CLKOUT_PHASE_SHIFT FIXED
//exemplar attribute DCM1 PHASE_SHIFT  0

BUFG CLK_BUF1(
.O(clock_with_ps_out), 
.I(clk1)
);

//exemplar translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";
defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//exemplar translate_on
endmodule // DCM_TOP
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• Verilog Example for FPGA Compiler II

module DCM_TOP(
clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wire high;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !(dcm0_locked & dcm1_locked);

IBUFG CLOCK_IN (
.I(clock_in), 
.O(clock)
);

DCM DCM0 (
.CLKFB(clock_out), 
.CLKIN(clock), 
.DSSEN(low), 
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk0), 
.CLK90(), 
.CLK180(), 
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.CLK270(), 

.CLK2X(), 

.CLK2X180(),

.CLKDV(), 

.CLKFX(), 

.CLKFX180(), 

.LOCKED(dcm0_locked), 

.PSDONE(), 

.STATUS()
);
/*synopsys attribute DLL_FREQUENCY_MODE “LOW” 

DUTY_CYCLE_CORRECTION “TRUE” STARTUP_WAIT “TRUE” 
DFS_FREQUENCY_MODE “LOW” CLKFX_DIVIDE  “1” 
CLKFX_MULTIPLY “1” CLK_FEEDBACK “1X” 
CLKOUT_PHASE_SHIFT “NONE” PHASE_SHIFT  “0” */

BUFG CLK_BUF0(
.O(clock_out), 
.I(clk0)
);

DCM DCM1 (
.CLKFB(clock_with_ps_out), 
.CLKIN(clock), 
.DSSEN(low),
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk1), 
.CLK90(), 
.CLK180(), 
.CLK270(), 
.CLK2X(), 
.CLK2X180(),
.CLKDV(), 
.CLKFX(), 
.CLKFX180(), 
.LOCKED(dcm1_locked), 
.PSDONE(), 
.STATUS()
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);
/* synopsys attribute DLL_FREQUENCY_MODE “LOW” 

DUTY_CYCLE_CORRECTION “TRUE” STARTUP_WAIT “TRUE” 
DFS_FREQUENCY_MODE “LOW” CLKFX_DIVIDE “1” 
CLKFX_MULTIPLY “1” CLK_FEEDBACK “1X” 
CLKOUT_PHASE_SHIFT “FIXED” PHASE_SHIFT “0” */

BUFG CLK_BUF1(
.O(clock_with_ps_out), 
.I(clk1)
);

//synopsys translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";

defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//synopsys translate_on

endmodule // DCM_TOP
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• Verilog Example for XST

module DCM_TOP(
clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wirehigh;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !(dcm0_locked & dcm1_locked);

IBUFG CLOCK_IN (
.I(clock_in), 
.O(clock)
);
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DCM DCM0 (
.CLKFB(clock_out), 
.CLKIN(clock), 
.DSSEN(low), 
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk0), 
.CLK90(), 
.CLK180(), 
.CLK270(), 
.CLK2X(), 
.CLK2X180(),
.CLKDV(), 
.CLKFX(), 
.CLKFX180(), 
.LOCKED(dcm0_locked),
.PSDONE(), 
.STATUS()
);

BUFG CLK_BUF0(
.O(clock_out), 
.I(clk0)
);
// synthesis attribute DLL_FREQUENCY_MODE of DCM0 

is "LOW" 
// synthesis attribute DUTY_CYCLE_CORRECTION of 

DCM0 is "TRUE" 
// synthesis attribute STARTUP_WAIT of DCM0 is 

"TRUE" 
// synthesis attribute DFS_FREQUENCY_MODE of DCM0 

is "LOW" 
// synthesis attribute CLKFX_DIVIDE of DCM0 is "1" 
// synthesis attribute CLKFX_MULTIPLY of DCM0 is 

"1" 
// synthesis attribute CLK_FEEDBACK of DCM0 is "1X" 
// synthesis attribute CLKOUT_PHASE_SHIFT of DCM0 

is "FIXED" 
// synthesis attribute PHASE_SHIFT of DCM0 is "0"
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DCM DCM1 (
.CLKFB(clock_with_ps_out), 
.CLKIN(clock), 
.DSSEN(low),
.PSCLK(low), 
.PSEN(low), 
.PSINCDEC(low), 
.RST(low),
.CLK0(clk1), 
.CLK90(), 
.CLK180(), 
.CLK270(), 
.CLK2X(), 
.CLK2X180(),
.CLKDV(), 
.CLKFX(), 
.CLKFX180(), 
.LOCKED(dcm1_locked),
.PSDONE(), 
.STATUS()
);
// synthesis attribute DLL_FREQUENCY_MODE of DCM1 

is "LOW" 
// synthesis attribute DUTY_CYCLE_CORRECTION of 

DCM1 is "TRUE" 
// synthesis attribute STARTUP_WAIT of DCM1 is 

"TRUE" 
// synthesis attribute DFS_FREQUENCY_MODE of DCM1 

is "LOW" 
// synthesis attribute CLKFX_DIVIDE of DCM1 is "1" 
// synthesis attribute CLKFX_MULTIPLY of DCM1 is 

"1" 
// synthesis attribute CLK_FEEDBACK of DCM1 is "1X" 
// synthesis attribute CLKOUT_PHASE_SHIFT of DCM1 

is "FIXED" 
// synthesis attribute PHASE_SHIFT of DCM1 is "0"

BUFG CLK_BUF1(
.O(clock_with_ps_out), 
.I(clk1)
);
Synthesis and Simulation Design Guide 4-53



Synthesis and Simulation Design Guide
//synthesis translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";

defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//synthesis translate_on

endmodule // DCM_TOP

Using Dedicated Global Set/Reset Resource
Using Global Set/Reset Resource (GSR) in Virtex/E/II and Spartan-II 
devices must be considered carefully. Synthesis tools will not auto-
matically infer GSRs for these devices; however, STARTUP_VIRTEX, 
STARTUP_VIRTEX2 and STARTUP_SPARTAN2 can be instantiated 
in your code in order to access the GSR resource. Xilinx’s recommen-
dation for Virtex, Virtex-E, and Spartan-II designs is to write the high 
fanout set/reset signal explicitly in the HDL code and not use the 
STARTUP_VIRTEX, STARTUP_VIRTEX2, or STARTUP_SPARTAN2 
blocks. There are two advantages to this method.

1.  This method gives you a faster speed. The set/reset signal will 
be routed onto the secondary longlines in the device, which are 
global lines with minimal skews and high speed. Therefore, the 
reset/set signal on the secondary lines has much faster speed 
than the speed of the GSR net of the STARTUP_VIRTEX block. 
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Since Virtex is rich in routings, placing and routing this signal on 
the global lines can be easily done by our software.

2. The trce program will analyze the delays of the explicitly 
written set/reset signal. You can read the .twr file (report file of 
the trce program) and find out exactly how fast its speed is. The 
trce program does not analyze the delays on the GSR net of the 
STARTUP_VIRTEX, STARTUP_VIRTEX2, or 
STARTUP_SPARTAN2. Hence, using an explicit set/reset signal 
will improve your design accountability.

For Virtex/E/II and Spartan-II devices, the Global Set/Reset (GSR) 
signal is, by default, set to active high (globally resets device when 
logic equals 1). You can change this to active low by inverting the 
GSR signal before connecting it to the GSR input of the STARTUP 
component.

Note See the “Simulating Your Design” chapter for more information 
on simulating the Global Set/Reset.

Startup State
The GSR pin on the STARTUP block or the GSRIN pin on the 
STARTBUF block drives the GSR net and connects to each flip-flop’s 
Preset and Clear pin. When you connect a signal from a pad to the 
STARTUP block’s GSR pin, the GSR net is activated. Because the GSR 
net is built into the silicon it does not appear in the pre-routed netlist 
file. When the GSR signal is asserted High (the default), all flip-flops 
and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.

See the “Simulating Your Design” chapter for more information on 
STARTUP and STARTBUF.

Note The following VHDL and Verilog example shows a 
STARTUP_VIRTEX instantiation using both GSR and GTS pins for 
FPGA Compiler II, LeonardoSpectrum, and XST.
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• VHDL Example.

-- This example uses both GTS and GSR pins. 

-- Unconnected STARTUP pins are omitted from

-- component declaration.

library IEEE;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;        

DIN1 : in STD_LOGIC;

DIN2: in STD_LOGIC;

RESET: in STD_LOGIC;

GTSInput: in STD_LOGIC;

DOUT1: out STD_LOGIC;

DOUT2: out STD_LOGIC;

DOUT3: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is

component STARTUP_VIRTEX

port( GSR, GTS: in std_logic);

end component;

begin             

startup_inst: STARTUP_VIRTEX port map(GSR => 
RESET, GTS => GTSInput);

reset_process: process (CLK, RESET)
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begin

if (RESET = ’1’) then

DOUT1 <= ’0’;

elsif ( CLK’event and CLK =’1’) then

DOUT1  <= DIN1;       

end if;

end process;

gtsprocess:process (GTSInput)

begin

if GTSInput = ’0’ then

DOUT3 <= ’0’;

DOUT2 <= DIN2;

else

DOUT2 <= ’Z’;

DOUT3 <= ’Z’;

end if;

end process;

end RTL;
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• Verilog example.

// This example uses both GTS and GSR pins

// Unused STARTUP pins are omitted from module

// declaration.

module setreset(CLK,DIN1, DIN2,RESET, GTSInput, 

DOUT1,DOUT2,DOUT3);

input CLK;        

input DIN1;

input DIN2;

input RESET;

input GTSInput;

output DOUT1;

output DOUT2;

output DOUT3;

reg DOUT1;

STARTUP_VIRTEX startup_inst(.GSR(RESET), 
.GTS(GTSInput));

always @(posedge CLK or posedge RESET) 

begin

if (RESET)

DOUT1 = 1’b0;

else

DOUT1 = DIN1;       

end

assign DOUT3 = (GTSInput == 1’b0)? 1’b0: 1’bZ;

assign DOUT2 = (GTSInput == 1’b0)? DIN2: 1’bZ;

endmodule
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The following VHDL/Verilog examples show a STARTUP_VIRTEX 
instantiation using both GSR and GTS pins in Synplify. In the exam-
ples, STARTUP_VIRTEX_GSR and STARTUP_VIRTEX_GTS are 
instantiated together to get the GSR and GTS pins connected. The 
resulting EDIF netlist will have only one STARTUP_VIRTEX block 
with GTS and GSR connections. The CLK pin of the 
STARTUP_VIRTEX will be unconnected. If all pins (GSR, GTS, and 
CLK) in the STARTUP block are needed, use STARTUP_VIRTEX to 
port map the pins. 

• VHDL Example

library IEEE,virtex,synplify;

use synplify.attributes.all;

use virtex.components.all;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;

DIN1 : in STD_LOGIC;

DIN2: in STD_LOGIC;

RESET: in STD_LOGIC;

GTSInput: in STD_LOGIC;

DOUT1: out STD_LOGIC;

DOUT2: out STD_LOGIC;

DOUT3: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is

begin                           

u0: STARTUP_VIRTEX_GSR port map(GSR => RESET);

u1: STARTUP_VIRTEX_GTS port map(GTS => 
GTSInput);

reset_process: process (CLK, RESET)
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begin

if (RESET = ’1’) then

DOUT1 <= ’0’;

elsif ( CLK’event and CLK =’1’) then

DOUT1  <= DIN1;

end if;

end process;

gtsprocess:process (GTSInput)

begin

if GTSInput = ’0’ then

DOUT3 <= ’0’;

DOUT2 <= DIN2;

else

DOUT2 <= ’Z’;

DOUT3 <= ’Z’;

end if;

end process;

end RTL;
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• Verilog example

‘include "path/to/virtex.v"

 module setreset(CLK,DIN1, DIN2,RESET, GTSInput, 

DOUT1,DOUT2,DOUT3);

input CLK;

input DIN1;

input DIN2;

input RESET;

input GTSInput;

output DOUT1;

output DOUT2;

output DOUT3;

reg DOUT1;

STARTUP_VIRTEX_GSR startup_inst(.GSR(RESET));

STARTUP_VIRTEX_GTS startup_2(.GTS(GTSInput));

always @(posedge CLK or posedge RESET)

begin

if (RESET)

DOUT1 = 1’b0;

else

DOUT1 = DIN1; 

end

assign DOUT3 = (GTSInput == 1’b0)? 1’b0: 1’bZ;

assign DOUT2 = (GTSInput == 1’b0)? DIN2: 1’bZ;

endmodule
Synthesis and Simulation Design Guide 4-61



Synthesis and Simulation Design Guide
Preset vs. Clear 
The Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-II family 
flip-flops are configured as either preset (asynchronous set) or clear 
(asynchronous reset) during startup. Automatic assertion of the GSR 
net presets or clears each flip-flop after the FPGA is configured. You 
can assert the GSR pin at any time to produce this global effect. You 
can also preset or clear individual flip-flops with the flip-flop’s dedi-
cated Preset or Clear pin. When a Preset or Clear pin on a flip-flop is 
connected to an active signal, the state of that signal controls the 
startup state of the flip-flop. For example, if you connect an active 
signal to the Preset pin, the flip-flop starts up in the preset state. If 
you do not connect the Clear or Preset pin, the default startup state is 
a clear state. To change the default to preset, assign an INIT=1 to the 
Virtex/E/II or Spartan-II flip-flop.

I/O flip-flops and latches in Virtex, Virtex-E, Virtex-II, Virtex-II Pro, 
and Spartan-II have an SR pin which can be configured as a synchro-
nous Set, a synchronous Reset, an asynchronous Preset, or an asyn-
chronous Clear. The SR pin can be driven by any user logic, but INIT 
will also work for these flip-flops.

Below are examples of setting register INIT using ROCBUF. In the 
HDL code, the instantiated ROCBUF connects the set/reset signal. 
The Xilinx tools will automatically remove the ROCBUF during 
implementation leaving the set/reset signal active only during 
power-up.
4-62 Xilinx Development System



Architecture Specific Coding Style for Virtex
• VHDL Example.

library IEEE;
 use IEEE.std_logic_1164.all;
entity d_register is

port (CLK : in std_logic;
RESET : in std_logic;
D0: in std_logic;
D1: in std_logic;
Q0 : out std_logic;
Q1 : out std_logic);

end d_register;
architecture XILINX of d_register is

signal RESET_int : std_logic;
component ROCBUF is port (I : in STD_LOGIC;

O : out STD_LOGIC);
end component;
begin
U1: ROCBUF port map (I => RESET, O => RESET_int);
process (CLK, RESET_int)
begin

if RESET_int = ’1’ then
Q0 <= ’0’;
Q1 <= ’1’;

elsif rising_edge(CLK) then
Q0 <= D0;
Q1 <= D1; 

end if;
end process;
end XILINX;
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• Verilog example

/* Note: In Synplify, set blackbox attribute for 
ROCBUF as follows:

module ROCBUF(I, O);//synthesis syn_black_box

input I;

output O;

endmodule 

*/

module ROCBUF (I, O); 

input I;

output O;

endmodule

module rocbuf_example (reset, clk, d0, d1, q0, 
q1);

input reset;

input clk ;

input d0;

input d1;

output q0 ;

output q1 ;

reg q0, q1;

wire reset_int;

ROCBUF u1 (.I(reset), .O(reset_int));

always @ (posedge clk or posedge reset_int)

begin

if  (reset_int) begin

q0 = 1’b0;

q1 = 1’b1;

end
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else

begin

q0 = d0;

q1 = d1;

end

end

endmodule 

Implementing Inputs and Outputs
FPGAs have limited logic resources in the user-configurable input/
output blocks (IOB). You can move logic that is normally imple-
mented with CLBs to IOBs. By moving logic from CLBs to IOBs, addi-
tional logic can be implemented in the available CLBs. Using IOBs 
also improves design performance by increasing the number of avail-
able routing resources.

The Virtex/E/II, and Spartan-II IOBs feature SelectI/O inputs and outputs 
that support a wide variety of I/O signaling standards. In addition, each IOB 
provides three storage elements. The following sections discuss IOB features 
in more detail.

I/O Standards
The following table summarizes the I/O standards supported in 
Virtex/E/II and Spartan-II devices. A complete table is available in 
the Libraries Guide.

Table 4-3  I/O Standard in Virtex/E/II and Spartan-II Devices

I/O 
Standard

Virtex/
Spartan-II

Virtex-E Virtex-II/II Pro

LVTTL 
(default)

√ √ √

AGP √ √ √

CTT √ √

GTL √ √ √

GTLP √ √ √
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For Virtex, Virtex-E, and Spartan-II devices, Xilinx provides a set of 
IBUF, IBUFG, IOBUF, and OBUF with its SelectI/O variants. For 

HSTL Class 
I

√ √ √

HSTL Class 
II

√

HSTL Class 
III

√ √ √

HSTL Class 
IV

√ √ √

LVCMOS2 √

LVCMOS15 √

LVCMOS18 √ √

LVCMOS25, 
33

√

LVCZ_15, 
18, 25, 33

√

LVCZ_DV2
_15, 18, 25, 
33

√

LVDS √ √

LVPECL √ √

PCI33_5

PCI33_3, 
PCI66_3

√ √ √

PCIX √

SSTL2 Class 
I and Class 
II

√ √ √

SSTL3 Class 
I and Class 
II

√ √ √

Table 4-3  I/O Standard in Virtex/E/II and Spartan-II Devices

I/O 
Standard

Virtex/
Spartan-II

Virtex-E Virtex-II/II Pro
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example, IBUF_GTL, IBUFG_PCI66_3, IOBUF_HSTL_IV, 
OBUF_LVCMOS2. Alternatively, an IOSTANDARD attribute can be 
set to a specific I/O standard and attached to an IBUF, IBUFG, 
IOBUF, and OBUF. The IOSTANDARD attribute can be set in the user 
constraint file (UCF) or in the netlist by the synthesis tool.

The Virtex-II library includes certain SelectI/O components for 
compatibility with other architectures. However, the recommended 
method for using SelectI/O components for Virtex-II is to attach an 
IOSTANDARD attribute to IBUF/IBUFG/IOBUF/OBUF. For 
example, attach IOSTANDARD=GTLP to an IBUF instead of using 
the IBUF_GTLP. 

The default for the IOSTANDARD attribute is LVTTL. For all Virtex/
E/II and Spartan-II devices, you must specify IBUF, IBUFG, IOBUF 
or OBUF on the IOSTANDARD attribute if LVTTL is not desired.

For more information on I/O standards and components, please refer 
to the Libraries Guide.

Inputs
Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-II inputs can be 
configured to the I/O standards listed above. 

In FPGA Compiler II, these special IOB components exist in the 
synthesis library and can be instantiated in your HDL code or 
selected from the FPGA Compiler II constraints GUI. A complete list 
of components understood by FPGA Compiler II can be found in the 
lib\virtex directory under the FPGA Compiler II tree 
(%XILINX%\synth for ISE users). FPGA Compiler II will understand 
these components and will not attempt to place any I/O logic on 
these ports. Users will be alerted by this warning:

Warning: Existing pad cell ’/ver1-Optimized/U1’ is 
connected to the port ’clk’ - no pads cells inserted 
at this port. (FPGA-PADMAP-1)

In LeonardoSpectrum, insert appropriate buffers on selected ports in 
the constraints editor. Alternatively, you can set the following 
attribute in TCL script after the read but before the optimize 
options.

PAD  <IO_standard>  <portname>
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The following is an example of setting an I/O standard in Leonar-
doSpectrum.

PAD IBUF_AGP data (7:0) 

In Synplify, users can set xc_padtype attribute in SCOPE (Synplify’s 
constraint editor) or in HDL code as shown below:

• VHDL Example.

library ieee, synplify;
use ieee.std_logic_1164.all;
use synplify.attributes.all;
entity test_padtype is

port( a : in std_logic_vector(3 downto 0);
b : in std_logic_vector(3 downto 0);
clk, rst, en : in std_logic;
bidir : inout std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

attribute xc_padtype of a : signal is 
"IBUF_SSTL3_I";

attribute xc_padtype of bidir : signal is 
"IOBUF_HSTL_III";

attribute xc_padtype of q : signal is "OBUF_S_8";
end entity;

• Verilog Example

module test_padtype (a, b, clk, rst, en, bidir, q);
input [3:0] a /* synthesis xc_padtype = "IBUF_AGP" 

*/;
input [3:0] b;
input clk, rst, en;
inout [3:0] bidir /* synthesis xc_padtype = 

"IOBUF_CTT" */;
output [3:0] q /* synthesis xc_padtype = 

"OBUF_F_12" */;

Note Refer to IBUF_selectIO in the Libraries Guide for a list of avail-
able IBUF_selectIO values.

Outputs
Virtex/E/II and Spartan-II outputs can also be configured to any of 
I/O standards listed in the I/O standards section. An OBUF that uses 
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the LVTTL, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33 
signaling standards has selectable drive and slew rates using the 
DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 
mA and SLOW slew.

In addition, you can control the slew rate and drive power for LVTTL 
outputs using OBUF_<slew>_<drive_power>. 

Refer to OBUF_selectIO in the Libraries Guide for a list of available 
OBUF_selectIO values. You can use the examples in the Inputs 
section to configure OBUF to an I/O standard.

Using IOB Register and Latch
Virtex, Virtex-E, and Spartan-II IOBs contain three storage elements. 
The three IOB storage elements function either as edge-triggered D-
type flip-flops or as level sensitive latches. Each IOB has a clock 
(CLK) signal shared by the three flip-flops and independent clock 
enable (CE) signals for each flip-flop. 

In addition to the CLK and CE control signals, the three flip-flops 
share a Set/Reset (SR). However, each flip-flop can be independently 
configured as a synchronous set, a synchronous reset, an asynchro-
nous preset, or an asynchronous clear. FDCP (asynchronous reset and 
set) and FDRS (synchronous reset and set) register configurations are 
not available in IOBs.

Virtex-II IOBs also contain three storage elements with an option to 
configure them as FDCP, FDRS, and Dual-Data Rate (DDR) registers. 
Each register has an independent CE signal. The OTCLK1 and 
OTCLK2 clock pins are shared between the output and tristate enable 
register. A separate clock (ICLK1 and ICLK2) drives the input 
register. The set and reset signals (SR and REV) are shared by the 
three registers.

Virtex, Virtex-E, Virtex-II, and Spartan-II devices no longer have 
primitives that correspond to the synchronous elements in the IOBs. 
There are a few ways to infer usage of these FFs if the rules for 
pulling them into the IOB are followed. The following rules apply.

• All FFs that are to be pulled into the IOB must have a fanout of 1. 
This applies to output and tristate enable registers. For example, 
if there is a 32 bit bidirectional bus, then the tristate enable signal 
must be replicated in the original design so that it will have a 
fanout of 1. 
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• In Virtex/E and Spartan-II devices, all FFs must share the same 
clock and reset signal. They can have independent clock enables.

• In Virtex-II devices, output and tristate enable registers must 
share the same clock. All FFs must share the same set and reset 
signals.

One way you can pull FFs into the IOB is to use the IOB=TRUE 
setting. Another way is to pull FFs into the IOB using the map -pr 
command, which will be discussed in a later section. Some synthesis 
tools will apply the IOB=TRUE attribute and allow you to merge an 
FF to an IOB by setting an attribute. Refer to your synthesis tool docu-
mentation for the correct attribute and settings.

In FPGA Compiler II, you can set the attribute through the FPGA 
Compiler II constraints editor for each port into which a flip-flop 
should be merged. For tristate enable flip-flops, the default value for 
’Use I/O Reg’ will need to be set to TRUE. This will cause the 
IOB=TRUE constraint to be written on every flip-flop in the design.

LeonardoSpectrum, through ISE, can push registers into IOBs. Right 
click on the Synthesize process, select Properties, select the 
Architecture Options tab and enable the Map to IOB registers setting.

In standalone LeonardoSpectrum, you can select MAP IOB Registers 
from the Technology tab in the GUI or set the following attribute in 
your TCL script:

set virtex_map_iob_registers TRUE

In Synplify, attach the syn_useioff attribute to the module or 
architecture of top-level in one of these ways: 

• Add the attribute in SCOPE. The constraint file syntax looks like 
this:

define_global_attribute syn_useioff 1 

• Add the attribute in the VHDL/Verilog top-level source code as 
follows:
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♦ VHDL Example

architecture rtl of test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture 
is true;

♦ Verilog example

module test(d, clk, q) 
/* synthesis syn_useioff = 1 */;

In XST, you can use the map -pr option, the -iob option or the IOB 
constraint in your HDL code or the UCF to place the flip-flops in the 
IOBs. 

In XST, right click on the Synthesis process, select Properties, select 
the Xilinx Specific Options tab, then select either Auto or Yes for Pack 
I/O Registers into IOBs. To insert the IOB constraint in the HDL code, 
refer to the Constraints Guide.

Using Dual Data Rate IOB Registers
The following VHDL and Verilog examples show how to infer dual 
data rate registers for inputs only. See the Using IOB Register and 
Latch section for an attribute to enable I/O register inference in your 
synthesis tool. The dual data rate register primitives (the 
synchronous set/reset with clock enable FDDRRSE, and 
asynchronous set/reset with clock enable FDDRCPE) must be 
instantiated in order to utilize the dual data rate registers in the 
outputs. Please refer to the Instantiating Components section for 
information on instantiating primitives.

• VHDL Example

library ieee;
use ieee.std_logic_1164.all;

entity ddr_input is

port (clk : in std_logic;
d : in std_logic;
rst : in std_logic;
q1 : out std_logic;
q2 : out std_logic);

end ddr_input;
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architecture behavioral of ddr_input is

begin

q1reg : process (clk, rst)

begin

if rst=’1’ then
q1 <= ’0’;
elsif clk’event and clk=’1’ then
q1 <= d;

end if;

end process;

q2reg : process (clk, rst)

begin

if rst=’1’ then
q2 <= ’0’;
elsif clk’event and clk=’0’ then
q2 <= d;

end if;

end process;

end behavioral;

• Verilog Example

module ddr_input (data_in, data_out, clk, rst);

input data_in, clk, rst;
output data_out;
reg q1, q2;

always @ (posedge clk or posedge rst)
begin

if (rst)
q1=1’b0;
else
q1 = data_in;

end
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always @ (negedge clk or posedge rst)
begin

if (rst)
q2=1’b0;
else
q2 = data_in;

end

assign data_out = q1 & q2;

end module

Using Output Enable IOB Register

The following VHDL and Verilog examples illustrate how to infer an 
output enable register. See the above section for an attribute to turn 
I/O register inference in synthesis tools. 

Note If using FPGA Compiler II to synthesize the examples below, 
open up FPGA Compiler II’s constraints editor, select the Ports tab 
and change the default Use I/O Reg option from NONE to TRUE. 
Doing so will place an IOB=TRUE constraint on every flip-flop in the 
design. There is no option to specify only the output enable registers.
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• VHDL Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity tri_state is
Port ( data_in_p : in std_logic_vector(7 downto 0);

clk : in std_logic;
tri_state_a: in std_logic;
tri_state_b :in std_logic;

data_out : out std_logic_vector(7 downto 0));
end tri_state;
architecture behavioral of tri_state is
signal data_in : std_logic_vector(7 downto 0);
signal data_in_r :std_logic_vector(7 downto 0);
signal tri_state_cntrl:std_logic_vector(7 downto 

0);
signal temp_tri_state:std_logic_vector(7 downto 0);
begin

G1:  for I in 0 to 7 generate
temp_tri_state(I) <= tri_state_a AND 

tri_state_b;   -- create duplicate input signal
end generate;

process (tri_state_cntrl, data_in_r) begin
 G2:  for J in 0 to 7 loop

if (tri_state_cntrl(J) = ’0’) then  
-- tri-state data_out

data_out(J) <= data_in_r(J);

else data_out(J) <= ’Z’;
end if;

end loop;
end process;

process(clk) begin
if clk’event and clk=’1’ then 

data_in <= data_in_p;-- register for input
data_in_r <= data_in;-- register for output
for I in 0 to 7 loop
tri_state_cntrl(I) <= temp_tri_state(I);
-- register tri-state
end loop;

end if;
end process;

end behavioral;
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• Verilog Example

////////////////////////////////////////////////
// Inferring output enable register //
// October 2000 //
////////////////////////////////////////////////
module tri_state (data_in_p, clk, tri_state_a, 
tri_state_b, data_out);
   input[7:0] data_in_p; 
   input clk; 
   input tri_state_a; 
   input tri_state_b; 
   output[7:0] data_out; 
   reg[7:0] data_out;
   reg[7:0] data_in; 
   reg[7:0] data_in_r; 
   reg[7:0] tri_state_cntrl; 
   wire[7:0] temp_tri_state; 
   assign temp_tri_state[0] = tri_state_a & 
tri_state_b ; // create duplicate input signal
   assign temp_tri_state[1] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[2] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[3] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[4] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[5] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[6] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[7] = tri_state_a & 
tri_state_b ; 
// exemplar attribute temp_tri_state 
preserve_signal TRUE
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   always @(tri_state_cntrl or data_in_r)
   begin
      begin : xhdl_1
         integer J;
         for(J = 0; J <= 7; J = J + 1)
         begin : G2
            if (!(tri_state_cntrl[J]))
            begin
               data_out[J] <= data_in_r[J] ; 
         end
            else // tri-state data_out
            begin
               data_out[J] <= 1’bz ; 
            end 
         end
      end 
   end 
   always @(posedge clk)
   begin
         data_in <= data_in_p ; 

// register for input
         data_in_r <= data_in ; 

// register for output
tri_state_cntrl[0] <= temp_tri_state[0] ;
tri_state_cntrl[1] <= temp_tri_state[1] ;
tri_state_cntrl[2] <= temp_tri_state[2] ;
tri_state_cntrl[3] <= temp_tri_state[3] ;
tri_state_cntrl[4] <= temp_tri_state[4] ;
tri_state_cntrl[5] <= temp_tri_state[5] ;
tri_state_cntrl[6] <= temp_tri_state[6] ;
tri_state_cntrl[7] <= temp_tri_state[7] ;

      end 
endmodule

Using -pr Option with MAP

Use the –pr (pack registers) option when running MAP. The –pr {i | o 
|  b} (input | output | both) option specifies to the MAP program to 
move registers into IOBs when possible. For example: map -pr b 
<design_name.ngd>
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Virtex-E IOBs
Virtex-E has the same IOB structure and features as Virtex and 
Spartan-II devices except for the available I/O standards.

Additional I/O Standards

Virtex-E devices have two additional I/O standards: LVPECL and 
LVDS. 

Because LVDS and LVPECL require two signal lines to transmit one 
data bit, it is handled differently from any other I/O standards. A 
UCF or an NGC file with complete pin loc information must be 
created to ensure that the I/O banking rules are not violated. If a UCF 
or NGC file is not used, PAR will issue errors. 

The input buffer of these two I/O standards may be placed in a wide 
number of IOB locations. The exact locations are dependent on the 
package that is used. The Virtex-E package information lists the 
possible locations as IO_L#P for the P-side and IO_L#N for the N-side 
where # is the pair number. Only one input buffer is required to be 
instantiated in the design and placed on the correct IO_L#P location. 
The N-side of the buffer will be reserved and no other IOB will be 
allowed to be placed on this location.

The output buffer may be placed in a wide number of IOB locations. 
The exact locations are dependent on the package that is used. The 
Virtex-E package information lists the possible locations as IO_L#P 
for the P-side and IO_L#N for the N-side where # is the pair number. 
However, both output buffers are required to be instantiated in the 
design and placed on the correct IO_L#P and IO_L#N locations. In 
addition, the output (O) pins must be inverted with respect to each 
other. (one HIGH and one LOW). Failure to follow these rules will 
lead to DRC errors in the software.

The following examples show VHDL and Verilog coding for LVDS I/
O standards targeting a V50ECS144 device. An AUCF example is also 
provided.

• VHDL Example.

library IEEE;

use IEEE.std_logic_1164.all;

entity LVDSIO is
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port (CLK, DATA, Tin: in STD_LOGIC; 

IODATA_p, IODATA_n: inout STD_LOGIC;

Q_p, Q_n : out STD_LOGIC

);

end LVDSIO;

architecture BEHAV of LVDSIO is

component IBUF_LVDS is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component OBUF_LVDS is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component IOBUF_LVDS is port (I : in STD_LOGIC;

T : in STD_LOGIC;

IO : inout STD_LOGIC;

O : out STD_LOGIC);

end component;

component INV is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component; 

component IBUFG_LVDS is port(I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component BUFG is port(I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

signal iodata_in : std_logic;

signal iodata_n_out: std_logic;
4-78 Xilinx Development System



Architecture Specific Coding Style for Virtex
signal iodata_out: std_logic;

signal DATA_int : std_logic;

signal Q_p_int  : std_logic;

signal Q_n_int  : std_logic;

signal CLK_int : std_logic;

signal CLK_ibufgout : std_logic;

signal Tin_int   : std_logic;

begin

UI1: IBUF_LVDS port map ( I => DATA, O => 
DATA_int);

UI2: IBUF_LVDS port map (I => Tin, O => 
Tin_int);

UO_p: OBUF_LVDS port map ( I => Q_p_int, O => 
Q_p);

UO_n: OBUF_LVDS port map ( I => Q_n_int, O => 
Q_n);

UIO_p: IOBUF_LVDS port map ( I => iodata_out, T 
=> Tin_int, IO => iodata_p, 

O => iodata_in);  

UIO_n: IOBUF_LVDS port map ( I => iodata_n_out, 
T => Tin_int, IO => iodata_n,

O => open);

UINV: INV port map ( I => iodata_out, O => 

iodata_n_out);

UIBUFG : IBUFG_LVDS port map ( I => CLK, O => 

CLK_ibufgout);

UBUFG : BUFG port map (I => CLK_ibufgout, O => 

CLK_int);

My_D_Reg: process (CLK_int, DATA_int)
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begin

if (CLK_int’event and CLK_int=’1’) then

Q_p_int <= DATA_int;

end if;

end process; -- End My_D_Reg

iodata_out <= DATA_int and iodata_in;

Q_n_int <= not Q_p_int;

end BEHAV;

• Verilog Example.

module LVDSIOinst (CLK, DATA, Tin, 

IODATA_p, IODATA_n, Q_p, Q_n) ;

input    CLK, DATA, Tin; 

inout    IODATA_p, IODATA_n;

output  Q_p, Q_n;

wire iodata_in;

wire iodata_n_out;

wire iodata_out;

wire DATA_int;

reg Q_p_int;

wire Q_n_int;

wire CLK_int;

wire CLK_ibufgout;

wire Tin_int;

IBUF_LVDS UI1 ( .I(DATA), .O( DATA_int));

IBUF_LVDS UI2 (.I(Tin), .O (Tin_int));

OBUF_LVDS UO_p ( .I(Q_p_int), .O(Q_p));
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OBUF_LVDS UO_n ( .I(Q_n_int), .O(Q_n));

IOBUF_LVDS UIO_p ( .I(iodata_out),.T(Tin_int), 
.IO(IODATA_p),.O (iodata_in));  

IOBUF_LVDS UIO_n ( .I (iodata_n_out), 
.T(Tin_int),.IO(IODATA_n),.O ());

INV UINV ( .I(iodata_out), .O(iodata_n_out));

IBUFG_LVDS UIBUFG ( .I(CLK), .O(CLK_ibufgout));

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)

begin

Q_p_int <= DATA_int;

end

assign iodata_out = DATA_int && iodata_in;

assign Q_n_int = ~Q_p_int;

endmodule

• UCF example targeting V50ECS144

NET CLK LOC = A6;       #GCLK3

NET DATA LOC = A4;      #IO_L0P_YY

NET Q_p LOC = A5;       #IO_L1P_YY

NET Q_n LOC = B5;       #IO_L1N_YY

NET iodata_p LOC = D8;  #IO_L3P_yy

NET iodata_n LOC = C8;  #IO_L3N_yy

NET Tin LOC = F13;  #IO_L10P
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The following examples use the IOSTANDARD attribute on I/O 
buffers as a work around for LVDS buffers. This example can also be 
used with other synthesis tools to configure I/O standards with the 
IOSTANDARD attribute.

• VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

entity flip_flop is

port(d: in std_logic;

clk : in std_logic;

q : out std_logic;

q_n : out std_logic);

end flip_flop;

architecture flip_flop_arch of flip_flop is

component IBUF

port(I: in std_logic;

O: out std_logic);

end component;

component OBUF

port(I: in std_logic;

O: out std_logic);

end component;

attribute IOSTANDARD : string;

attribute LOC : string;

attribute IOSTANDARD of u1 : label is "LVDS";

attribute IOSTANDARD of u2 : label is "LVDS";

attribute IOSTANDARD of u3 : label is "LVDS";
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------------------------------------------------

-- Pin location A5 on the cs144

-- package represents the 

-- ’positive’ LVDS pin.

-- Pin location D8 represents the

-- ’positive’ LVDS pin.

-- Pin location C8 represents the

-- ’negative’ LVDS pin.

------------------------------------------------

attribute LOC of u1 : label is "A5";

attribute LOC of u2 : label is "D8";

attribute LOC of u3 : label is "C8";

signal d_lvds, q_lvds, q_lvds_n : std_logic;

begin

u1: IBUF port map (d,d_lvds);

u2: OBUF port map (q_lvds,q);

u3: OBUF port map (q_lvds_n,q_n);

process (clk) begin

if clk’event and clk = ’1’ then

q_lvds <= d_lvds;

end if;

end process;

q_lvds_n <= not(q_lvds);

end flip_flop_arch;
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• Verilog Example.

module flip_flop (d, clk, q, q_n);

/*********************************/

// Pin location A5 on the cs144

// package represents the 

// ’positive’ LVDS pin.

// Pin location D8 represents the

// ’positive’ LVDS pin.

// Pin location C8 represents the

// ’negative’ LVDS pin.

/*********************************/

input d;//synopsys attribute LOC "A5"

input clk;

output q;//synopsys attribute LOC "D8"

output q_n;//synopsys attribute LOC "C8"

wire d,clk,d_lvds,q;

reg q_lvds;

IBUF u1 (.I(d), .O(d_lvds));

//synopsys attribute IOSTANDARD "LVDS"

OBUF u2 (.I(q_lvds), .O(q));

//synopsys attribute IOSTANDARD "LVDS"

OBUF u3 (.I(q_lvds_n), .O(q_n));

//synopsys attribute IOSTANDARD "LVDS"

always @(posedge clk) q_lvds=d_lvds;

assign q_lvds_n=~q_lvds;

endmodule

Reference Xilinx Answer Database in http://support.xilinx.com for 
more information.
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In LeonardoSpectrum and Synplify, you can instantiate the selectI/O 
components or use the attribute discussed in the “Inputs” section, but 
make sure that the output and its inversion are declared and config-
ured properly.

Virtex-II IOBs
Virtex-II offers more Select I/O configuration than Virtex/E and 
Spartan-II as shown in Table 5-3. IOSTANDARD and synthesis tools’ 
specific attributes can be used to configure the Select I/O.

Additionally, Virtex-II provides digitally controlled impedance (DCI) 
I/Os which are useful in improving signal integrity and avoiding the 
use of external resistors. This option is only available for most of the 
single ended I/O standards. To access this option you can instantiate 
the 'DCI' suffixed I/Os from the library such as HSTL_IV_DCI.

For low-voltage differential signaling, additional IBUFDS, OBUFDS, 
OBUFTDS, and IOBUFDS components are available. These compo-
nents simplify the task of instantiating the differential signaling stan-
dard.

Differential Signaling in Virtex-II

Differential signaling in Virtex-II can be configured using IBUFDS, 
OBUFDS, and OBUFTDS. The IBUFDS is a two-input one-output 
buffer. The OBUFDS is a one-input two-output buffer. Refer to the 
Libraries Guide for the component diagram and description.

LVDS_25, LVDS_33, LVDSEXT_33, and LVPECL_33 are valid 
IOSTANDARD values to attach to differential signaling buffers. If no 
IOSTANDARD is attached, the default is LVDS_33.

The following is the VHDL and Verilog example of instantiating 
differential signaling buffers.
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• VHDL Example

--------------------------------------------

-- LVDS_33_IO.VHD Version 1.0             --

-- Example of a behavioral description of --

-- differential signal I/O standard using --

-- LeonardoSpectrum attribute.--

-- HDL Synthesis Design Guide for FPGAs   --

-- October  2000                          --

--------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

--use exemplar.exemplar_1164.all;

entity LVDS_33_IO is

port (CLK_p, CLK_n, DATA_p, DATA_n, Tin_p,

Tin_n: in STD_LOGIC;

datain2_p, datain2_n  : in STD_LOGIC; 

ODATA_p, ODATA_n: out STD_LOGIC;

Q_p, Q_n : out STD_LOGIC);

end LVDS_33_IO;

architecture BEHAV of LVDS_33_IO is

component IBUFDS is port (I : in STD_LOGIC;

IB: in STD_LOGIC;

O : out STD_LOGIC);

end component;

component OBUFDS is port (I : in STD_LOGIC;

O : out STD_LOGIC;

OB : out STD_LOGIC);

end component;
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component OBUFTDS is port (I : in STD_LOGIC;

T : in STD_LOGIC;

O : out STD_LOGIC;

OB: out STD_LOGIC);

end component;

component IBUFGDS is port(I : in STD_LOGIC;

IB: in STD_LOGIC;

O : out STD_LOGIC);

end component;

component BUFG is port(I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

signal datain2 : std_logic;

signal odata_out: std_logic;

signal DATA_int : std_logic;

signal Q_int  : std_logic;

signal CLK_int : std_logic;

signal CLK_ibufgout : std_logic;

signal Tin_int   : std_logic;

begin

UI1: IBUFDS port map ( I => DATA_p, IB => DATA_n, 
O => DATA_int);

UI2: IBUFDS port map ( I => datain2_p, 
IB => datain2_n, O => datain2);

UI3: IBUFDS port map (I => Tin_p, IB => Tin_n, 
O => Tin_int);

UO1: OBUFDS port map ( I => Q_int, O => Q_p, 
OB => Q_n);

UO2: OBUFTDS port map ( I => odata_out, 
T => Tin_int, O => odata_p, OB => odata_n);  
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UIBUFG : IBUFGDS port map ( I => CLK_p, 
IB => CLK_n, O => CLK_ibufgout);

UBUFG : BUFG port map (I => CLK_ibufgout, 
O => CLK_int);

My_D_Reg: process (CLK_int, DATA_int)

begin

if (CLK_int’event and CLK_int=’1’) then

Q_int <= DATA_int;

end if;

end process; -- End My_D_Reg

odata_out <= DATA_int and datain2;

end BEHAV;
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• Verilog Example

//------------------------------------------

// LVDS_33_IO.v Version 1.0               --

// Example of a behavioral description of --

// differential signal I/O standard       --

// HDL Synthesis Design Guide for FPGAs   --

// October 2000                           --

//------------------------------------------

module LVDS_33_IO (CLK_p, CLK_n, DATA_p, DATA_n, 

DATAIN2_p, DATAIN2_n, Tin_p, Tin_n, ODATA_p, 

ODATA_n, Q_p, Q_n) ;

input    CLK_p, CLK_n, DATA_p, DATA_n,

DATAIN2_p, DATAIN2_n, Tin_p, Tin_n; 

output    ODATA_p, ODATA_n;

output Q_p, Q_n;

wire datain2;

wire odata_in;

wire odata_out;

wire DATA_int;

reg Q_int;

wire CLK_int;

wire CLK_ibufgout;

wire Tin_int;

IBUFDS UI1 ( .I(DATA_p), .IB(DATA_n), 
.O( DATA_int));

IBUFDS UI2 (.I(Tin_p), .IB(Tin_n), 
.O (Tin_int));

IBUFDS UI3 (.I(DATAIN2_p), .IB(DATAIN2_n), 
.O(datain2));
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OBUFDS UO1 ( .I(Q_int), .O(Q_p), .OB(Q_n));

OBUFTDS UO2 ( .I(odata_out), .T(Tin_int), 
.O(ODATA_p),.OB(ODATA_n)); 

IBUFGDS UIBUFG ( .I(CLK_p), .IB(CLK_n), 
.O(CLK_ibufgout));

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)

begin

Q_int <= DATA_int;

end

assign odata_out = DATA_int && datain2;

endmodule

Encoding State Machines
The traditional methods used to generate state machine logic result in 
highly-encoded states. State machines with highly-encoded state 
variables typically have a minimum number of flip-flops and wide 
combinatorial functions. These characteristics are acceptable for PAL 
and gate array architectures. However, because FPGAs have many 
flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and 
density.

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create 
state machines with one flip-flop per state and decreased width of 
combinatorial logic. One-hot encoding is usually the preferred 
method for large FPGA-based state machine implementation. For 
small state machines (fewer than 8 states), binary encoding may be 
more efficient. To improve design performance, you can divide large 
(greater than 32 states) state machines into several small state 
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the 
three coding methods (binary, enumerated type, and one-hot) you 
can use to create state machines. All three examples contain the same 
Case statement. To conserve space, the complete Case statement is 
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only included in the binary encoded state machine example; refer to 
this example when reviewing the enumerated type and one-hot 
examples. 

Some synthesis tools allow you to add an attribute, such as 
type_encoding_style, to your VHDL code to set the encoding style. 
This is a synthesis vendor attribute (not a Xilinx attribute). Refer to 
your synthesis tool documentation for information on attribute-
driven state machine synthesis.

Using Binary Encoding
The state machine bubble diagram in the following figure shows the 
operation of a seven-state machine that reacts to inputs A through E 
as well as previous-state conditions. The binary encoded method of 
coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a 
design that has been previously encoded (for example, binary 
encoded) and synthesize it to the appropriate decoding logic and 
registers. These designs use three flip-flops to implement seven 
states.

Figure 4-4  State Machine Bubble Diagram
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Binary Encoded State Machine VHDL Example

The following is a binary encoded state machine VHDL example.

-------------------------------------------------
-- BINARY.VHD Version 1.0                      --
-- Example of a binary encoded state machine   --
-- May 2001                                    --
-------------------------------------------------
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity binary is
 port (CLOCK, RESET : in STD_LOGIC;
 A, B, C, D, E: in BOOLEAN;

SINGLE, MULTI, CONTIG: out STD_LOGIC);
end binary;

architecture BEHV of binary is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE:type is "001 010 011 100 101
110 111";

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
  begin
     if (RESET=’1’) then
 CS <= S1;
 elsif (CLOCK’event and CLOCK = ’1’) then
 CS <= NS;

end if;
end process; --End REG_PROC

COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI  <= ’0’;
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CONTIG <= ’0’;
SINGLE <= ’0’;
if (A and not B and C) then

NS <= S2;
elsif (A and B and not C) then

NS <= S4;
else

NS <= S1;
end if;

when S2 =>
   MULTI  <= ’1’;

CONTIG <= ’0’;
SINGLE <= ’0’;
if (not D) then

NS <= S3;
else

NS <= S4;
end if;

  when S3 =>
MULTI  <= ’0’;
CONTIG <= ’1’;
SINGLE <= ’0’;
if (A or D) then

NS <= S4;
else

NS <= S3;
end if;

when S4 =>
MULTI  <= ’1’;
CONTIG <= ’1’;
SINGLE <= ’0’;
if (A and B and not C) then

NS <= S5;
else

NS <= S4;
end if;

 when S5 =>
MULTI  <= ’1’;
CONTIG <= ’0’;
SINGLE <= ’0’;
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NS <= S6;
when S6 =>

MULTI  <= ’0’;
CONTIG <= ’1’;
SINGLE <= ’1’;
if (not E) then

NS <= S7;
else 

NS <= S6;
  end if;

when S7 =>
MULTI  <= ’0’;
CONTIG <= ’1’;
SINGLE <= ’0’;
if (E) then

NS <= S1;
else

NS <= S7;
end if;

end case;
  end process; -- End COMB_PROC
end BEHV;
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 Binary Encoded State Machine Verilog Example

/////////////////////////////////////////////////
// BINARY.V Version 1.0                        //
// Example of a binary encoded state machine   //
// May 2001                                    //
/////////////////////////////////////////////////
module binary (CLOCK, RESET, A, B, C, D, E, SINGLE, MULTI, CONTIG);

input    CLOCK, RESET;
input    A, B, C, D, E;
output   SINGLE, MULTI, CONTIG;

reg      SINGLE, MULTI, CONTIG;
// Declare the symbolic names for states
parameter [2:0]

S1 = 3’b001,
S2 = 3’b010,
S3 = 3’b011,
S4 = 3’b100,
S5 = 3’b101,
S6 = 3’b110,
S7 = 3’b111;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1’b1)
CS = S1;

else
CS = NS;

end
always @ (CS or A or B or C or D or D or E)
begin
case (CS)

S1 :
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begin
MULTI  = 1’b0;
CONTIG = 1’b0;
SINGLE = 1’b0;

if (A && ~B && C)
NS = S2;

else if (A && B && ~C)
NS = S4;

else
NS = S1;

end 
S2 :
begin

MULTI  = 1’b1;
CONTIG = 1’b0;
SINGLE = 1’b0;

if (!D)
NS = S3;

else
NS = S4;

end 
S3 :

 begin
MULTI  = 1’b0;
CONTIG = 1’b1;
SINGLE = 1’b0;
if (A || D) 

NS = S4;
else

NS = S3;
end 

        
S4 :
begin

MULTI  = 1’b1;
CONTIG = 1’b1;
SINGLE = 1’b0;
if (A && B && ~C)

NS = S5;
else

NS = S4;
end
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S5 :
begin

MULTI  = 1’b1;
CONTIG = 1’b0;
SINGLE = 1’b0;
NS = S6;
end

S6 :
begin

MULTI  = 1’b0; 
CONTIG = 1’b1;
SINGLE = 1’b1;
if (!E)

NS = S7;
else

NS = S6;
end 
S7 :
begin

MULTI  = 1’b0;
CONTIG = 1’b1;
SINGLE = 1’b0;
if (E) 

NS = S1;
else 

NS = S7;
end 

endcase
end

endmodule

Using Enumerated Type Encoding
The recommended encoding style for state machines depends on 
which synthesis tool you are using. Some synthesis tools encode 
better than others depending on the device architecture and the size 
of the decode logic. You can explicitly declare state vectors or you can 
allow your synthesis tool to determine the vectors. Xilinx recom-
mends that you use enumerated type encoding to specify the states 
and use the Finite State Machine (FSM) extraction commands to 
extract and encode the state machine as well as to perform state mini-
mization and optimization algorithms. The enumerated type method 
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of encoding the seven-state machine is shown in the following VHDL 
and Verilog examples. The encoding style is not defined in the code, 
but can be specified later with the FSM extraction commands. Alter-
natively, you can allow your compiler to select the encoding style that 
results in the lowest gate count when the design is synthesized. Some 
synthesis tools automatically find finite state machines and compile 
without the need for specification.

Note Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code.

Enumerated Type Encoded State Machine VHDL 
Example 

Library IEEE;
use IEEE.std_logic_1164.all;
entity enum is

port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end enum;

architecture BEHV of enum is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
 begin
 if (RESET=’1’) then
 CS <= S1;
 elsif (CLOCK’event and CLOCK = ’1’) then
 CS <= NS;
 end if;
 end process; --End SYNC_PROC
 COMB_PROC: process (CS, A, B, C, D, E)
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begin
 case CS is
 when S1 =>
 MULTI  <= ’0’;
 CONTIG <= ’0’;
 SINGLE <= ’0’; 
. 
. 
.

Enumerated Type Encoded State Machine Verilog 
Example

///////////////////////////////////////////////////
// ENUM.V Version 1.0 //
// Example of an enumerated encoded state machine//
// May 2001                                      //
///////////////////////////////////////////////////

module enum (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG);

input  CLOCK, RESET;
input  A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg    SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0]

S1 = 3’b000,
S2 = 3’b001,
S3 = 3’b010,
S4 = 3’b011,

 S5 = 3’b100,
    S6 = 3’b101,

S7 = 3’b110;

// Declare current state and next state variables
reg [2:0] CS;
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reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1’b1)
     CS = S1;
 else
 CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin
case (CS)
     S1 :
     begin
     MULTI  = 1’b0;
     CONTIG = 1’b0;
     SINGLE = 1’b0;
     if (A && ~B && C) 
         NS = S2;
     else if (A && B && ~C)
         NS = S4;
     else
         NS = S1;
     end
.
.
.
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Using One-Hot Encoding
One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. One-hot 
encoding is usually the preferred method for large FPGA-based state 
machine implementation.

The following examples show a one-hot encoded state machine. Use 
this method to control the state vector specification or when you 
want to specify the names of the state registers. These examples use 
one flip-flop for each of the seven states. If you are using FPGA 
Compiler II, use enumerated type, and avoid using the “when 
others” construct in the VHDL Case statement. This construct can 
result in a very large state machine.

Note Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code. 

One-hot Encoded State Machine VHDL Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
port (CLOCK, RESET : in STD_LOGIC;

A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end one_hot;

architecture BEHV of one_hot is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is 
"0000001 0000010 0000100 0001000 0010000 0100000 1000000 ";

signal CS, NS: STATE_TYPE;

begin 
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SYNC_PROC: process (CLOCK, RESET)
begin

if (RESET=’1’) then
CS <= S1;

elsif (CLOCK’event and CLOCK = ’1’) then
CS <= NS;
end if;

end process; --End SYNC_PROC
COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI  <= ’0’;
CONTIG <= ’0’;
SINGLE <= ’0’;

if (A and not B and C) then
NS <= S2;

elsif (A and B and not C) then
NS <= S4;

else
NS <= S1;

end if;
.
.
.
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One-hot Encoded State Machine Verilog Example

 /////////////////////////////////////////////////
// ONE_HOT.V Version 1.0 //
// Example of a one-hot encoded state machine‘ //
// Xilinx HDL Synthesis Design Guide for FPGAs  //
// May 2001 //
//////////////////////////////////////////////////

module one_hot (CLOCK, RESET, A, B, C, D, E,
              SINGLE, MULTI, CONTIG);

input   CLOCK, RESET;
input   A, B, C, D, E;
output  SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [6:0]

S1 = 7'b0000001,
S2 = 7'b0000010,
S3 = 7'b0000100,
S4 = 7'b0001000,
S5 = 7'b0010000,
S6 = 7'b0100000,
S7 = 7'b1000000;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS
 
 always @ (posedge CLOCK or posedge RESET) 
 begin
 if (RESET == 1'b1)
 CS = S1;
 else
 CS = NS;
end
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always @ (CS or A or B or C or D or D or E)
begin

case (CS)
     S1 :
         begin
 MULTI  = 1’b0;
 CONTIG = 1’b0;
 SINGLE = 1’b0;
 if (A && ~B && C) 
 NS = S2;
 else if (A && B && ~C)
 NS = S4;
 else
 NS = S1; 
end
 .
 .
 .

Accelerating FPGA Macros with One-Hot Approach
Most synthesis tools provide a setting for finite state machine (FSM) 
encoding. This setting will prompt synthesis tools to automatically 
extract state machines in your design and perform special optimiza-
tions to achieve better performance. The default option for FSM 
encoding is “One-Hot” for most synthesis tools. However, this setting 
can be changed to other encoding such as binary, gray, sequential, etc.

In FPGA Compiler II, FSM encoding is set to “One-Hot” by default. 
To change this setting, select Synthesis-> Options -> Project Tab. 
Available options are: One-Hot, Binary, and Zero One-Hot.

In LeonardoSpectrum, FSM encoding is set to “Auto” by default, 
which differs depending on the Bit Width of your state machine. To 
change this setting to a specific value, select the Input tab. Available 
options are: Binary, One-Hot, Random, Gray, and Auto.

In Synplify, the Symbolic FSM Complier option can be accessed from 
the main GUI. When set, the FSM Compiler extracts the state 
machines as symbolic graphs, and then optimizes them by re-
encoding the state representations and generating a better logic opti-
mization starting point for the state machines. This usually results in 
one-hot encoding. However, you may override the default on a 
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register by register basis with the syn_encoding directive/attribute. 
Available options are: One-Hot, Gray, Sequential, and Safe.

In XST, FSM encoding is set to Auto by default. Available options are: 
Auto, One-Hot, Compact, Gray, Johnson, Sequential, and User. 

Note XST will only recognize enumerated encoding if the encoding 
option is set to User.

Summary of Encoding Styles 
In the three previous examples, the state machine’s possible states are 
defined by an enumeration type. Use the following syntax to define 
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal} );

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows.

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;

The state machine described in the three previous examples has 
seven states. The possible values of the signals CS (Current_State) 
and NS (Next_State) are S1, S2, ... , S6, S7. 

To select an encoding style for a state machine, specify the state 
vectors. Alternatively, you can specify the encoding style when the 
state machine is compiled. Xilinx recommends that you specify an 
encoding style. If you do not specify a style, your compiler selects a 
style that minimizes the gate count. For the state machine shown in 
the three previous examples, the compiler selected the binary 
encoded style: S1=“000”, S2=”001”, S3=”010”, S4=”011”, S5=”100”, 
S6=”101”, and S7=”110”. 

You can use the FSM extraction tool to change the encoding style of a 
state machine. For example, use this tool to convert a binary-encoded 
state machine to a one-hot encoded state machine.

Note Refer to your synthesis tool documentation for instructions on 
how to extract the state machine and change the encoding style.
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Initializing the State Machine
When creating a state machine, especially when you use one-hot 
encoding, add the following lines of code to your design to ensure 
that the FPGA is initialized to a Set state.

• VHDL Example

SYNC_PROC: process (CLOCK, RESET)

begin

    if (RESET=’1’) then

CS <= s1;

• Verilog Example

always @ (posedge CLOCK or posedge RESET)

begin

if (RESET == 1’b 1)

CS = S1;

Alternatively, you can assign an INIT=S attribute to the initial 
state register to specify the initial state. Refer to your synthesis 
tool documentation for information on assigning this attribute.

In the Binary Encode State Machine example, the RESET signal 
forces the S1 flip-flop to be preset (initialized to 1) while the other 
flip-flops are cleared (initialized to 0).

Implementing Operators and Generate Modules
Xilinx FPGAs feature carry logic elements that can be used for 
optimal implementation of operators and generate modules. 
Synthesis tools infer the carry logic automatically when a specific 
coding style or operator is used.

Adder and Subtracter
Synthesis tools will infer carry logic in Virtex/E/II and Spartan-II 
devices when an adder and Subtracter is described (+ or - operator). 
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Multiplier
Synthesis tools will utilize the carry logic by inferring XORCY, 
MUXCY, and MULT_AND for Virtex, Virtex-E and Spartan-II when a 
multiplier is described.  

When a Virtex-II/II Pro part is being targeted an embedded 18x18 
two’s complement multiplier primitive called a MULT18X18 will be 
inferred by the synthesis tools. For synchronous multiplications, 
LeonardoSpectrum, Synplify, and XST will infer a MULT18X18S 
primitive.

LeonardoSpectrum features a pipeline multiplier that involves 
putting levels of registers in the logic to introduce parallelism and, as 
a result, improve speed. A certain construct in the input RTL source 
code description is required to allow the pipelined multiplier feature 
to take effect. This construct will infer XORCY, MUXCY, and 
MULT_AND primitives for Virtex, Virtex-E, Spartan-II, Virtex-II, and 
Virtex-II Pro.  The following example shows this construct.

• VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity multiply is
generic (size :integer := 16; level:integer:=4);

port (
clk : in std_logic;
Ain : in std_logic_vector (size-1 downto 0);
Bin : in std_logic_vector (size-1 downto 0);
Qout : out std_logic_vector (2*size-1 downto 0));
end multiply;
architecture RTL of multiply is
type levels_of_registers is array (level-1 downto 

0) of unsigned (2*size-1 downto 0);
signal reg_bank :levels_of_registers;
signal a, b : unsigned (size-1 downto 0);

begin
Qout <= std_logic_vector (reg_bank (level-1));
process
begin

wait until clk’event and clk = ’1’;
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a <= unsigned(Ain);
b <= unsigned(Bin);
reg_bank (0) <= a * b;
for i in 1 to level-1 loop

reg_bank (i) <= reg_bank (i-1);
end loop;

end process;
end architecture RTL;

The following is a Synchronous Multiplier VHDL Example coded for 
Synplify and XST:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity xcv2_mult18x18s is
Port (a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);
clk : in std_logic;
prod : out std_logic_vector(15 downto 0));

end xcv2_mult18x18s;

architecture arch_ xcv2_mult18x18s of 
xcv2_mult18x18s is

begin
process(clk) is begin
if clk’event and clk = ’1’ then

prod <= a*b;
end if;

end process;
end arch_ xcv2_mult18x18s;
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The following is a Synchronous Multiplier VHDL Example coded for 
LeonardoSpectrum:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity xcv2_mult18x18s is
  port(clk: in std_logic;
       a: in std_logic_vector(7 downto 0);
       b: in std_logic_vector(7 downto 0);
       prod: out std_logic_vector(15 downto 0));
end  xcv2_mult18x18s;

architecture arch_ xcv2_mult18x18s of 
xcv2_mult18x18 is

 signal reg_prod : std_logic_vector(15 downto 0);
begin
process(clk)
begin
if(rising_edge(clk))then

reg_prod <= a * b;
prod <= reg_prod;

end if;
end process;
end arch_ xcv2_mult18x18s;
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• Verilog Example.

module multiply (clk, ain, bin, q);
parameter size = 16;
parameter level = 4;
input     clk;
input [size-1:0] ain, bin;
output [2*size-1:0] q;
reg [size-1:0]      a, b;
reg [2*size-1:0]    reg_bank [level-1:0];
integer             i;
always @(posedge clk)

begin
a <= ain;
b <= bin;

end
always @(posedge clk)

reg_bank[0] <= a * b;
always @(posedge clk)

for (i = 1;i < level; i=i+1)
reg_bank[i] <= reg_bank[i-1];

assign q = reg_bank[level-1];
endmodule // multiply

The following is a Synchronous Multiplier Verilog Example coded for 
Synplify and XST:

module mult_sync(a,b,clk,prod);
    input [7:0] a;
    input [7:0] b;
    input clk;
    output [15:0] prod;
    reg [15:0] prod;

    always @(posedge clk) prod <= a*b;
endmodule
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The following is a Synchronous Multiplier Verilog Example coded for 
LeonardoSpectrum:

module xcv2_mult18x18s (a,b,clk,prod);
    input [7:0] a;
    input [7:0] b;
    input clk;
    output [15:0] prod;
    reg [15:0] reg_prod, prod;

    always @(posedge clk) begin
    reg_prod <= a*b;
    prod <= reg_prod;
endmodule

Counters
When describing a counter in HDL, the arithmetic operator ’+’ will 
infer the carry chain. The synthesis tools will then infer the MUXCY 
element for the counter.

count <= count + 1; -- This will infer MUXCY 

This implementation will provide a very effective solution especially 
for all purpose counters.

Below is an example of a loadable binary counter:
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• VHDL Example

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

port (d : in std_logic_vector (7 downto 0);

ld, ce, clk, rst : in std_logic;

q : out std_logic_vector (7 downto 0));

end counter;

architecture behave of counter is

signal count : std_logic_vector (7 downto 0);

begin

 process (clk, rst)

 begin

if rst = ’1’ then

count <= (others => ’0’);

elsif rising_edge(clk) then

if ld = ’1’ then

count <= d;

elsif ce = ’1’ then

count <= count + ’1’;

end if;

end if;

end process;

q <= count;

end behave;
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• Verilog Example

module counter(d, ld, ce, clk, rst, q);
input [7:0]  d;
input ld, ce, clk, rst;
output [7:0] q;
reg [7:0]    count;
always @(posedge clk or posedge rst) 

begin
if (rst)

count <= 0;
else if (ld)

count <= d;
else if (ce)

count <= count + 1;
end

assign q = count;
endmodule

For applications that require faster counters, LFSR can implement 
high performance and area efficient counters. LFSR will require very 
minimal logic (only an XOR or XNOR feedback).

For smaller counters it is also effective to use the Johnson encoded 
counters. This type of counter does not use the carry chain but 
provides a fast performance.

The following is an example of a sequence for a 3 bit johnson counter.

000

001

011

111

110

100
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• VHDL Example

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity johnson is

generic (size : integer := 3);

port (clk:in std_logic;
reset:in std_logic;
qout:out std_logic_vector(size-1 downto 0));

end johnson;

architecture RTL of johnson is

signal q : std_logic_vector(size-1 downto 0);

begin  -- RTL

process(clk, reset)

begin

if reset = ’1’ then

q <= (others => ’0’);

elsif clk’event and clk=’1’ then

for i in 1 to size - 1 loop

q(i) <= q(i-1);

end loop;  -- i

q(0) <= not q(size-1);

end if; 

end process;

qout <= q;

end RTL;
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• Verilog Example

module johnson (clk, reset, q);

parameter size = 4;

input     clk, reset;

output [size-1:0] q;

reg [size-1:0]    q;

integer           i;

always @(posedge clk or posedge reset)

if (reset)

q <= 0;

else

begin

for (i=1;i<size;i=i+1)

q[i] <= q[i-1];

q[0] <= ~q[size-1];

end

endmodule // johnson
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Comparator
Magnitude comparators ’>’ or ’<’ will infer carry chain logic and 
result in fast implementations in Xilinx devices. Equality comparator 
’==’ will be implemented using LUTs.

• VHDL Example

-- Unsigned 8-bit greater or equal comparator.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity compar is

port(A,B : in std_logic_vector(7 downto 0);

  cmp : out std_logic);

end compar;

architecture archi of compar is

begin

cmp <= ’1’ when A >= B else ’0’;

end archi;

• Verilog example

// Unsigned 8-bit greater or equal comparator.

module compar(A, B, cmp);

input [7:0] A;

input [7:0] B;

output cmp;

assign cmp = A >= B ? 1’b1 : 1’b0;

endmodule
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Encoder and Decoders
Synthesis tools might infer MUXF5 and MUXF6 for encoder and 
decoder in Virtex/E/II and Spartan-II devices. Virtex-II devices 
feature additional components, MUXF7 and MUXF8 to use with the 
encoder and decoder. 

LeonardoSpectrum will infer MUXCY when an if-then-else priority 
encoder is described in the code. This will result in a faster encoder.

LeonardoSpectrum Priority Encoding HDL Example

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity prior is

generic (size: integer := 8);
port(
clk: in std_logic;

cond1 : in std_logic_vector(size downto 1);
cond2 : in std_logic_vector(size downto 1);
data  : in std_logic_vector(size downto 1);
q     : out std_logic);

end prior;

architecture RTL of prior is
signal   data_ff, cond1_ff, cond2_ff: std_logic_vector(size

downto 1);
begin

process(clk)
begin
if clk’event and clk= ’1’ then

data_ff <= data;
cond1_ff <= cond1;
cond2_ff <= cond2;

end if;
end process;
process(clk)

begin
if (clk’event and clk = ’1’) then

if (cond1_ff(1)= ’1’ and cond2_ff(1)= ’1’) then
q <= data_ff(1);
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elsif (cond1_ff(2)= ’1’ and cond2_ff(2)= ’1’) then
q <= data_ff(2);

elsif (cond1_ff(3)= ’1’ and cond2_ff(3)=’1’) then
q <= data_ff(3);

elsif (cond1_ff(4)= ’1’ and cond2_ff(4)= ’1’) then
q <= data_ff(4);

elsif (cond1_ff(5)= ’1’ and cond2_ff(5)=’1’) then
q <= data_ff(5);

elsif (cond1_ff(6)= ’1’ and cond2_ff(6)=’1’) then
q <= data_ff(6);

elsif (cond1_ff(7)= ’1’ and cond2_ff(7)= ’1’) then
q <= data_ff(7);

elsif (cond1_ff(8)= ’1’ and cond2_ff(8)=’1’) then
q <= data_ff(8);

else
q <= ’0’;

end if;
end if;

end process;
end RTL;
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• Verilog Example.

module prior(clk, cond1, cond2, data, q);
parameter size = 8;
input clk;
input [1:size] data, cond1, cond2 ;
output q;
reg [1:size]   data_ff, cond1_ff, cond2_ff;
reg q;
always @(posedge clk)
begin

data_ff = data;
cond1_ff = cond1;
cond2_ff = cond2;

end
always @(posedge clk)

if (cond1_ff[1] && cond2_ff[1])
q = data_ff[1];

else if (cond1_ff[2] && cond2_ff[2])
q = data_ff[2];

else if (cond1_ff[3] && cond2_ff[3])
q = data_ff[3];

else if (cond1_ff[4] && cond2_ff[4])
q = data_ff[4];

else if (cond1_ff[5] && cond2_ff[5])
q = data_ff[5];

else if (cond1_ff[6] && cond2_ff[6])
q = data_ff[6];

else if (cond1_ff[7] && cond2_ff[7])
q = data_ff[7];

else if (cond1_ff[8] && cond2_ff[8])
q = data_ff[8];

else q = 1’b0;
endmodule // prior
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Implementing Memory
Virtex/E and Spartan-II FPGAs provide distributed on-chip RAM or 
ROM memory capabilities. CLB function generators can be config-
ured as ROM (ROM16X1, ROM32X1); edge-triggered, single-port 
(RAM16X1S, RAM32X1S) RAM; or dual-port (RAM16x1D) RAM. 
Level sensitive RAMs are not available for the Virtex/E and Spartan-
II families. 

Virtex-II CLB function generators are much larger and can be config-
ured as larger ROM and edge-triggered, single port and dual port 
RAM. Available ROM primitive components in Virtex-II are 
ROM16X1 and ROM32X1. Available single port RAM primitives 
components in Virtex-II are RAM16X1S, RAM16X2S, RAM16X4S, 
RAM16X8S, RAM32X1S, RAM32X2S, RAM32X4S, RAM32X8S, 
RAM64X1S, RAM64X2S, and RAM128X1S. Available dual port RAM 
primitive components in Virtex-II are RAM16X1D, RAM32X1D, and 
RAM64X1D.

In addition to distributed RAM and ROM capabilities, Virtex/E/II 
and Spartan-II FPGAs provide edge-triggered Block SelectRAM+ in 
large blocks. Virtex/E and Spartan-II devices provide 4096(4k) bits: 
RAMB4_Sn and RAMB4_Sm_Sn. Virtex-II devices provide larger 
Block SelectRAM+ in 16384 (16k) bit size: RAMB16_Sn and 
RAMB16_Sm_Sn, where Sm and Sn are configurable port widths. See 
the “Libraries Guide” for more information on these components.

The edge-triggered capability simplifies system timing and provides 
better performance for RAM-based designs. This RAM can be used 
for status registers, index registers, counter storage, constant coeffi-
cient multipliers, distributed shift registers, LIFO stacks, latching, or 
any data storage operation. The dual-port RAM simplifies FIFO 
designs.

Implementing Block SelectRAM+
Virtex/E/II and Spartan-II FPGAs incorporate several large Block 
SelectRAM+ memories. These complement the distributed Selec-
tRAM+ that provide shallow RAM structures implemented in CLBs. 
The Block SelectRAM is a True Dual-Port RAM which allows for 
large, discrete blocks of memory.

Block SelectRAM+ memory blocks are organized in columns. All 
Virtex and Spartan-II devices contain two such columns, one along 
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each vertical edge. In Virtex-E, the Block SelectRAM+ column is 
inserted every 12 CLB columns. In Virtex-EM (Virtex-E with extended 
memory), the Block SelectRAM+ column is inserted every 4 CLB 
columns. In Virtex-II, there are at least four Block SelectRAM+ 
columns and a column is inserted every 12 CLB columns in larger 
devices.

Instantiating Block SelectRAM+

The following coding examples provide VHDL and Verilog coding 
styles for FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.

Instantiating Block SelectRAM+ VHDL Example

• FPGA Compiler II, LeonardoSpectrum, and XST

With FPGA Compiler II, LeonardoSpectrum, and XST you can 
instantiate a RAMB* cell as a blackbox. The INIT_** attribute can 
be passed as a string in the HDL file as well as the script file. The 
VHDL Code Example below shows how to pass INIT in the 
VHDL file. 

♦ LeonardoSpectrum

With LeonardoSpectrum you can pass an INIT string in a 
LeonardoSpectrum command script. The following code 
sample illustrates this method.

set_attribute -instance "inst_ramb4_s4" -name
INIT_00 -type string -value
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100"

library IEEE;
use IEEE.std_logic_1164.all;

entity spblkrams is
port(CLK : in std_logic;
EN : in std_logic;
ST : in std_logic;
WE : in std_logic;
ADDR : in std_logic_vector(11 downto 0);
DI : in std_logic_vector(15 downto 0);
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DORAMB4_S4 : out std_logic_vector(3 downto 0);
DORAMB4_S8 : out std_logic_vector(7 downto 0));

end;
architecture struct of spblkrams is
component RAMB4_S4
port (DI     : in STD_LOGIC_VECTOR (3 downto 0);

EN     : in STD_ULOGIC;
WE     : in STD_ULOGIC;
RST    : in STD_ULOGIC;
CLK    : in STD_ULOGIC;
ADDR   : in STD_LOGIC_VECTOR (9 downto 0);

DO     : out STD_LOGIC_VECTOR (3 downto 0));
end component;
component RAMB4_S8
port (DI     : in STD_LOGIC_VECTOR (7 downto 0);

EN     : in STD_ULOGIC;
WE     : in STD_ULOGIC;
RST    : in STD_ULOGIC;
CLK    : in STD_ULOGIC;
ADDR   : in STD_LOGIC_VECTOR (8 downto 0);

DO     : out STD_LOGIC_VECTOR (7 downto 0));
end component;
attribute INIT_00: string;
attribute INIT_00 of INST_RAMB4_S4: label is
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100";
attribute INIT_00 of INST_RAMB4_S8: label is
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100";
begin

INST_RAMB4_S4 : RAMB4_S4 port map (
DI => DI(3 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(9 downto 0),
DO => DORAMB4_S4
);

INST_RAMB4_S8 : RAMB4_S8 port map (
DI => DI(7 downto 0),
EN => EN,
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WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(8 downto 0),
DO => DORAMB4_S8
);

end struct;

♦ Synplify

With Synplify you can instantiate the RAMB* cells by using 
the Xilinx family library supplied with Synplify. The 
following code example will illustrate instantiation of a 
RAMB* cell.

library IEEE;
use IEEE.std_logic_1164.all;
library virtex;
use virtex.components.all;
library synplify;
use synplify.attributes.all;

entity RAMB4_S8_synp is
generic (INIT_00, INIT_01 : string :=

"0000000000000000000000000000000000000000000000000
00000000000000");

port (WE, EN, RST, CLK : in std_logic;
ADDR : in std_logic_vector(8 downto 0);
DI : in std_logic_vector(7 downto 0);
DO : out std_logic_vector(7 downto 0));

end RAMB4_S8_synp;
architecture XILINX of RAMB4_S8_synp is

component RAMB4_S8
port (WE, EN, RST, CLK: in STD_LOGIC;

ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));

end component;
attribute xc_props of u1 : label is "INIT_00=" & 
INIT_00 & ",INIT_01=" & INIT_01;
begin
U1 : RAMB4_S8
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port map (WE => WE, EN => EN, RST => RST, CLK =>
CLK, ADDR => ADDR, DI => DI, DO => DO);

end XILINX;

library IEEE;
use IEEE.std_logic_1164.all;

entity block_ram_ex is
port (CLK, WE : in std_logic;

ADDR : in std_logic_vector(8 downto 0);
DIN : in std_logic_vector(7 downto 0);
DOUT : out std_logic_vector(7 downto 0));

end block_ram_ex;

architecture XILINX of block_ram_ex is
component RAMB4_S8_synp
generic( INIT_00, INIT_01 : string := 

"0000000000000000000000000000000000000000000000000
00000000000000");
port (WE, EN, RST, CLK: in STD_LOGIC;

ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));

end component;
begin
U1 : RAMB4_S8_synp
generic map (
INIT_00 =>
"0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0
23456789ABCDEF",
INIT_01 =>
"FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210F
DCBA9876543210")
port map (WE => WE, EN => ’1’, RST => ’0’, CLK => 
CLK, ADDR => ADDR, DI => DIN,

DO => DOUT);
end XILINX;
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Instantiating Block SelectRAM+ Verilog Example

Verilog examples of Block SelectRAM+ instantiation are described 
below.

• FPGA Compiler II

With FPGA Compiler II the INIT attribute has to be set in the 
HDL code. See the following example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),
.ADDR(ADDR), .DI(DIN), .DO(DOUT)); 
//synopsys attribute 

INIT_00 “1F1E1D1C1B1A1918171615141312111

00F0E0D0C0B0A0980706050403020100”

endmodule

• LeonardoSpectrum

With LeonardoSpectrum the INIT attribute can be set in the HDL 
code or in the command line. See the following example.

set_attribute -instance "inst_ramb4_s4" -name
INIT_00 -type string value
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080
06050403020100"

• LeonardoSpectrum block_ram_ex Verilog example

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;
RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),
.ADDR(ADDR), .DI(DIN), .DO(DOUT));
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//exemplar attribute U0 INIT_00 
1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A090

80706050403020100

endmodule

• Synplicity block_ram_ex Verilog example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;
// synthesis translate_off
defparam

U0.INIT_00 = 

256’h0123456789ABCDEF0123456789ABCDEF0

123456789ABCDEF0123456789ABCDEF,

U0.INIT_01 = 

256’hFEDCBA9876543210FEDCBA9876543210FED

CBA9876543210FEDCBA9876543210;

// synthesis translate_on

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0), 
.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT)) 

/* synthesis 

xc_props="INIT_00=0123456789ABCDEF0123

456789ABCDEF0123456789ABCDEF0123456789ABCDEF, 

INIT_01=FEDCBA9876543210FEDCBA9876543210FEDCBA

9876543210FEDCBA9876543210"*;

endmodule
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• XST 

With XST, the INIT attribute must set in the HDL code. See the 
following example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT)); 

//synthesis attribute INIT_00 of U0 is
“1F1E1D1C1B1A1918171615141312111
00F0E0D0C0B0A0980706050403020100”
endmodule

Instantiating Block SelectRAM+ in Virtex-II

Virtex-II devices provide 16384-bit data memory and 2048-bit parity 
memory, totaling to 18Mbit memory in each Block SelectRAM+. 
These RAMB16_Sn (single port) and RAMB16_Sm_Sn (dual port) 
blocks are configurable to various width and depth. The Virtex-II 
Handbook provides VHDL and Verilog templates for Virtex-II Block 
SelectRAM+ instantiations. You can also refer to the “Libraries Guide” 
for a more detailed component and attribute description.

Inferring Block SelectRAM+

The following coding examples provide VHDL and Verilog coding 
styles for FPGA Compiler II, LeonardoSpectrum, Synplify, and XST. 
For Virtex/E and Spartan-II devices, the RAMB4_Sn or 
RAMB4_Sm_Sn will be inferred. For Virtex-II devices, RAMB16_Sn 
or RAMB16_Sm_Sn will be inferred.
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Inferring Block SelectRAM VHDL Example

Block SelectRAM+ can be inferred by some synthesis tools. Inferred 
RAM must be initialized in the UCF file. Not all Block SelectRAM+ 
features can be inferred. Those features will be pointed out in this 
section.

• FPGA Compiler II

RAM inference is not supported by FPGA Compiler II.

• LeonardoSpectrum

LeonardoSpectrum can map your memory statements in Verilog or 
VHDL to the Block SelectRAMs on all Virtex devices. The following is 
a list of the details for Block SelectRAM+ in LeonardoSpectrum.

♦ Virtex Block SelectRAMs are completely synchronous - both 
read and write operations are synchronous.

♦ LeonardoSpectrum infers single port RAMs - RAMs with 
both read and write on the same address - and dual port 
RAMs - RAMs with separate read and write addresses.

♦ Virtex Block SelectRAMs support RST (reset) and ENA 
(enable) pins. Currently, LeonardoSpectrum does not infer 
RAMs which use the functionality of the RST and ENA pins.

♦ By default, RAMs will be mapped to Block SelectRAM+ if 
possible. You can disable mapping to Block SelectRAM+ by 
setting the attribute block_ram to false.
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• LeonardoSpectrum VHDL Example.

library ieee, exemplar;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ram_example1 is
generic(data_width: integer:= 8;

address_width:integer := 8;
mem_depth: integer:= 256);

port (
data: in std_logic_vector(data_width-1 downto 0); 
address: in unsigned(address_width-1 downto 0);
we, clk: in std_logic;
q: out std_logic_vector(data_width-1 downto 0)
);

end ram_example1;

architecture ex1 of ram_example1 is 

type mem_type is array (mem_depth-1 downto 0) of 
std_logic_vector (data_width-1 downto 0);

signal mem: mem_type;
signal raddress : unsigned(address_width-1 

downto 0);
begin
l0: process (clk, we, address)
begin
if (clk = ’1’ and clk’event) then

raddress <= address;
if (we = ’1’) then

mem(to_integer(raddress)) <= data;
end if;

end if;
end process;
l1: process (clk, address)
begin
if (clk = ’1’ and clk’event) then

q <= mem(to_integer(address));
end if;

end process;
end ex1;
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• LeonardoSpectrum VHDL Example dual port Block SelectRAM,

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity dualport_ram is
  port (clka : in std_logic;
        clkb : in std_logic;
        wea : in std_logic;
        addra : in std_logic_vector(4 downto 0);
        addrb : in std_logic_vector(4 downto 0);
        dia : in std_logic_vector(3 downto 0);
        dob : out std_logic_vector(3 downto 0));
end dualport_ram;

architecture dualport_ram_arch of dualport_ram is
  type ram_type is array (31 downto 0) of 

std_logic_vector (3 downto 0);
  signal ram : ram_type;

  attribute block_ram : boolean;
  attribute block_ram of RAM : signal is TRUE;

begin
  write: process (clka)
  begin
    if (clka’event and clka = ’1’) then
      if (wea = ’1’) then
        ram(conv_integer(addra)) <= dia;
      end if;
    end if;
  end process write;

  read: process (clkb)
  begin
    if (clkb’event and clkb = ’1’) then
      dob <= ram(conv_integer(addrb));
    end if;
  end process read;

end dualport_ram_arch;
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• Synplify

You can enable the usage of Block SelectRAMs by setting the 
attribute syn_ramstyle to "block_ram". Place the attribute on the 
output signal driven by the inferred RAM. Remember to include 
the range of the output signal (bus) as part of the name.

For example,

define_attribute {a|dout[3:0]} syn_ramstyle
"block_ram"

The following are limitations of inferring Block selectRAMs:

♦ ENA/ENB pins currently are inaccessible. The are always 
tied to “1”.

♦ RSTA/RSTB pins currently are inaccessible. They are always 
inactive.

♦ Automatic inference is not yet supported. The syn_ramstyle 
attribute is required for inferring Block SelectRAMs.

♦ Initialization of RAMs is not supported.

♦ Dual port with Read-Write on a port is not supported.

• Synplify VHDL Example.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_example1 is
generic(data_width: integer:= 8;

address_width:integer := 8;
mem_depth: integer:= 256);

port (data: in std_logic_vector(data_width-1
downto 0);
address: in std_logic_vector(address_width-1
downto 0);

we, clk: in std_logic;
q: out std_logic_vector(data_width-1 downto

0));
end ram_example1;

architecture rtl of ram_example1 is
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type mem_array is array (mem_depth-1 downto 0)
of std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is

"block_ram";
signal raddress :

std_logic_vector(address_width-1 
downto 0);

begin
l0: process (clk)
begin
if (clk = ’1’ and clk’event) then
raddress <= address;

if (we = ’1’) then
mem(CONV_INTEGER(address)) <= data;

end if;
end if;
end process;
q <= mem(CONV_INTEGER(raddress));

end rtl;

• VHDL Example for Synplify 7.0

In Synplify 7.0, the same conditions exist as with the previous 
release except that there is a new coding style for Block Select 
RAM inference in VHDL.
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The following is a Synplify 7.0 VHDL Example.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_example1 is
generic(data_width: integer:= 8;
        address_width:integer := 8;
        mem_depth: integer:= 256);
port (data: in std_logic_vector(data_width-1 downto 

0);
      address: in std_logic_vector(address_width-1 

downto 0);
      en, we, clk: in std_logic;
      q: out std_logic_vector(data_width-1 downto 

0));
end ram_example1;

architecture rtl of ram_example1 is

type mem_array is array (mem_depth-1 downto 0) of 
std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is 

"block_ram";
signal raddress : std_logic_vector(address_width-1 

downto 0);

begin
l0: process (clk) begin

  if (clk = ’1’ and clk’event) then
    if (we = ’1’) then
      mem(CONV_INTEGER(address)) <= data;
      q <= mem(CONV_INTEGER(address));
    end if;
  end if;
end process;
end rtl;
Add after the first Synplify example:
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• Verilog Example for Synplify 7.0

In Synplify 7.0, the same conditions exist as with the previous 
release except that there is a new coding style for Block Select 
RAM inference in Verilog.

The following is a Synplify 7.0 VHDL Example.

module sp_ram(din, addr, we, clk, dout);

parameter data_width=16,address_width=10,
mem_elements=600;

input [data_width-1:0] din;
input [address_width-1:0] addr;
input rst, we, clk;
output [data_width-1:0] dout;

reg [data_width-1:0] mem[mem_elements-1:0] 
/*synthesis syn_ramstyle = "block_ram" */;

reg [data_width-1:0] dout;

always @(posedge clk)
begin
if (we)

mem[addr] <= din;
dout <= mem[addr];

end
endmodule
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• XST

XST can infer both dual and single port Block Select RAM+.

♦ Single Port Block Memory Inference:

XST does not infer single port block memory if a reset pin has 
been used, or an enable pin has been used.

The following is an XST single port Block Select RAM+ 
VHDL example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ram_example1 is
generic(data_width: integer:= 8;
        address_width:integer := 9;
        mem_depth: integer:= 512);
port (data: in std_logic_vector(data_width-1 downto 0);
      address: in unsigned(address_width-1 downto 0);
      we, clk: in std_logic;
      q: out std_logic_vector(data_width-1 downto 0));
end ram_example1;
architecture ex1 of ram_example1 is
type mem_type is array (mem_depth-1 downto 0) of std_logic_vector 
(data_width-1 downto 0);
signal mem: mem_type;
signal raddress : unsigned(address_width-1 downto 0);

begin
l0: process (clk, we, address)
  begin
    if (clk’event and clk = ’1’) then
      raddress <= address;
        if (we = ’1’) then
          mem(to_integer(address)) <= data;
        end if;
    end if;
end process;

q <= mem(to_integer(raddress));
end ex1;
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♦ Dual Port Block Memory Inference :

XST infers some functions of Dual Port Block SelectRAM. In 
general, XST does not infer Block SelectRAMs if aspect ratios 
of port A and port B are different; if independent clocks have 
been used for port A and port B; if an enable pin or a reset pin 
has been used in the memory blocks; or if a write enable pin 
is used in both the ports. 

The following is an XST dual port Block Select RAM+ VHDL 
example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_ram_example1 is
generic (data_width : integer := 48;
         address_width : integer := 8;
         mem_depth : integer := 256);
port (dia: in std_logic_vector(data_width-1 downto 0);
      address_a, address_b: in unsigned(address_width-1 downto 0);
      we, clk: in std_logic;
      doa : out std_logic_vector(data_width-1 downto 0);
      dob : out std_logic_vector(data_width-1 downto 0));
end dual_port_ram_example1;
architecture ex1 of dual_port_ram_example1 is
type mem_type is array (mem_depth-1 downto 0) of

std_logic_vector(data_width-1 downto 0);
signal mem : mem_type;
signal raddress_a : unsigned(address_width-1 downto 0);
signal raddress_b : unsigned(address_width-1 downto 0);
begin
process (clk)
  begin
    if (clk’event and clk = ’1’) then
      raddress_a <= address_a;
      raddress_b <= address_b;
        if (we = ’1’) then
          mem(to_integer(address_a)) <= dia;
        end if;
    end if;
  end process;  
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doa <= mem(to_integer(raddress_a));
dob <= mem(to_integer(raddress_b));

end ex1;

Inferring Block SelectRAM Verilog Example

The following coding examples provide Verilog coding styles for 
FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II

FPGA Compiler II does not infer RAMs. All RAMs must be 
instantiated via primitives or cores.

• LeonardoSpectrum

Refer to the VHDL example in the section above for restrictions 
in inferring Block SelectRAM+.

• LeonardoSpectrum Verilog Example

module ram(din, we, addr, clk, dout);
parameter data_width=7,

address_width=6,mem_elements=64;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0];

/* Exemplar attribute mem block_ram FALSE. This
comment sets the block_ram attribute to FALSE on
the signal mem.The block_ram attribute must be
set on the memory signal.*/

reg [address_width - 1:0] addr_reg;
always @(posedge clk)
begin

addr_reg <= addr;
if (we)
mem[addr] <= din;

end
assign dout = mem[addr_reg];

endmodule
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• Synplify Verilog Example

module sp_ram(din, addr, we, clk, dout);
parameter data_width=16,

address_width=10,mem_elements=600;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0] /
*synthesis syn_ramstyle = "block_ram" */;
reg [address_width - 1:0] addr_reg;
always @(posedge clk)
begin

addr_reg <= addr;
if (we)

mem[addr] <= din;
end
assign dout = mem[addr_reg];

endmodule
4-138 Xilinx Development System



Architecture Specific Coding Style for Virtex
• XST

Refer to the VHDL example in the section above for restrictions 
in inferring Block SelectRAM+.

♦ The following is an XST single port Block select RAM+ 
Verilog example:

module ram(din, we, addr, clk, dout);
    parameter data_width=7,
    address_width=6,mem_elements=64;
    input [data_width-1:0] din;
    input [address_width-1:0] addr;
    input we, clk;
    output [data_width-1:0] dout;
    reg [data_width-1:0] mem[mem_elements-1:0];
    reg [address_width - 1:0] addr_reg;

    always @(posedge clk)
    begin
      addr_reg <= addr;
        if (we) mem[addr] <= din;
    end

    assign dout = mem[addr_reg];
endmodule
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♦ The following is an XST Dual port Block Select RAM+ Verilog 
example:

module dp_ram(din, we, addr_a, addr_b, clk, doa, dob);
    parameter data_width=48,
              address_width=8,
              mem_depth=256;
    input [data_width-1:0] din;
    input [address_width-1:0] addr_a, addr_b;
    input we, clk;
    output [data_width-1:0] doa, dob;

    reg [data_width-1:0] mem[mem_depth-1:0];
    reg [address_width - 1:0] addr_reg_a, addr_reg_b;

    always @(posedge clk)
    begin
        addr_reg_a <= addr_a;
        addr_reg_b <= addr_b;
          if (we) mem[addr_a] <= din;
    end

    assign doa = mem[addr_reg_a];
    assign dob = mem[addr_reg_b];
endmodule
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Implementing Distributed SelectRAM+

Distributed SelectRAM+ can either be instantiated or inferred.The 
following sections describe and give examples of both instantiating 
and inferring distributed SelectRAM+.

The following RAM Primitives are available for instantiation.

• Static synchronous single-port RAM (RAM16x1S, RAM32x1S)

Additional single-port RAM available for Virtex-II devices only: 
RAM16X2S, RAM16X4S, RAM16X8S, RAM32X1S, RAM32X2S, 
RAM32X4S, RAM32X8S, RAM64X1S, RAM64X2S, and 
RAM128X1S.

• Static synchronous dual-port RAM (RAM16x1D, RAM32x1D)

Additional dual-port RAM available dual port RAM available for 
Virtex-II devices only: RAM64X1D.

For more information on distributed SelectRAM, refer to the 
“Libraries Guide”.

Instantiating Distributed SelectRAM+ in VHDL

The following coding examples provide VHDL coding hints for 
FPGA Compiler II, LeonardoSpectrum, Synplify and XST.

• FPGA Compiler II and XST

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

--use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));
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end ram_16x4s;

architecture xilinx of ram_16x4s is

component RAM16x1S is 

port (O : out std_logic;

D : in std_logic; 

A3, A2, A1, A0 : in std_logic;

WE, WCLK : in std_logic);

end component;

attribute INIT: string;

attribute INIT of U0: label is "FFFF";

attribute INIT of U1: label is "ABCD";

attribute INIT of U2: label is "BCDE";

attribute INIT of U3: label is "CDEF";

begin

U0 : RAM16x1S 

port map (O => o(0), WE => we, WCLK => clk, D 
=> d(0), A0 => 

a(0), A1 => a(1), A2 => a(2), A3 => a(3));

U1 : RAM16x1S 

port map (O => o(1), WE => we, WCLK => clk, D 

=> d(1), A0 => a(0), A1 => a(1), A2 => a(2), 
A3 => a(3));

U2 : RAM16x1S 

port map (O => o(2), WE => we, WCLK => clk, D 

=> d(2), A0 => a(0), A1 => a(1), A2 => a(2), 
A3 => a(3));

U3 : RAM16x1S 

port map (O => o(3), WE => we, WCLK => clk, D 
=> d(3), A0 => 
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a(0), A1 => a(1), A2 => a(2), A3 => a(3));

end xilinx;

• LeonardoSpectrum

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

entity ram_16x1s is

generic (init_val : string := "0000" );

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0: in std_logic;

WE, CLK : in std_logic);

end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute INIT: string;

attribute INIT of u1 : label is init_val;

component RAM16X1S is port (O : out std_logic;

D : in std_logic;

WE: in std_logic;

WCLK: in std_logic;

A0: in std_logic;

A1: in std_logic;

A2: in std_logic;

A3: in std_logic);

end component; 

begin
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U1 : RAM16X1S port map (O => O,WE => WE,WCLK => 
CLK,D => D,A0 => A0,A1 => A1,A2 => A2,A3 => 
A3);

end xilinx;

library IEEE;

use IEEE.std_logic_1164.all;

--use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is

component ram_16x1s

generic (init_val: string := "0000");

port (O : out std_logic;

D : in std_logic; 

A3, A2, A1, A0 : in std_logic;

WE, CLK : in std_logic);

end component;

begin

U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk, 

D => d(0), A0 => a(0), A1 => a(1),

A2 => a(2),A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")
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port map (O => o(1), WE => we, CLK => clk,

D => d(1), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")

port map (O => o(2), WE => we, CLK => clk, 

D => d(2), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")

port map (O => o(3), WE => we, CLK => clk, 

D => d(3), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

end xilinx;

• Synplify

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

library virtex;

use virtex.components.all;

library synplify;

use synplify.attributes.all;

entity ram_16x1s is

generic (init_val : string := "0000" );

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0: in std_logic;

WE, CLK : in std_logic);
Synthesis and Simulation Design Guide 4-145



Synthesis and Simulation Design Guide
end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute xc_props: string;

attribute xc_props of u1 : label is "INIT=" & 
init_val;

begin

U1 : RAM16X1S port map (O => O, WE => WE,  WCLK 
=>

CLK, D => D, A0 => A0, A1 => A1, A2 => A2, A3 => 
A3);

end xilinx;

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk : in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is
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component ram_16x1s

generic (init_val: string := "0000");

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0 : in std_logic;

WE, CLK : in std_logic);

end component;

begin

U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk,

D =>d(0), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")

port map (O => o(1), WE => we, CLK => clk, 

D => d(1), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")

port map (O => o(2), WE => we, CLK => clk, 

D => d(2), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")

port map (O => o(3), WE => we, CLK => clk,

D => d(3), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

end xilinx;
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Instantiating Distributed SelectRAM+ in Verilog

The following coding provides Verilog coding hints for FPGA 
Compiler II, Synplify, LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation 

// -- the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for 

// Post P&R simulation.

// synopsys translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";

// synopsys translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

// Use the xc_props attribute 

// to pass the INIT property

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D 
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK)) ; 

/* synopsys attribute INIT "5555" */
4-148 Xilinx Development System



Architecture Specific Coding Style for Virtex
RAM16X1S RAM2 (.O (DATA_OUT[2]),
.D (DATA_BUS[2]),.A3 (ADDR[3]), 
.A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "FFFF" */

RAM16X1S RAM1 (.O (DATA_OUT[1]), 
.D (DATA_BUS[1]),.A3 (ADDR[3]), 
.A2 (ADDR[2]), .A1 (ADDR[1]),.A0 (ADDR[0]), 
.WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "AAAA" */

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D 
(DATA_BUS[0]),.A3 (ADDR[3]), .A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE), 
.WCLK (CLK));

/* synopsys attribute INIT "0101" */

endmodule

module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);

output O;

input D;

input A3;

input A2;

input A1;

input A0;

input WE;

input WCLK;

endmodule
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• LeonardoSpectrum

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation 

// -- the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for 

// Post P&R simulation.

// exemplar translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 
RAM2.INIT="FFFF", RAM3.INIT="5555";

// exemplar translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D 
(DATA_BUS[3]),.A3 (ADDR[3]), .A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* exemplar attribute RAM3 INIT 5555 */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D 
(DATA_BUS[2]),.A3 (ADDR[3]), .A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* exemplar attribute RAM2 INIT FFFF */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D 
(DATA_BUS[1]),.A3 (ADDR[3]), .A2 (ADDR[2]), 
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.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),

.WCLK (CLK))

/* exemplar attribute RAM1 INIT AAAA */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D 
(DATA_BUS[0]),.A3 (ADDR[3]), .A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* exemplar attribute RAM0 INIT 0101 */;

endmodule

module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);

output O;

input D;

input A3;

input A2;

input A1;

input A0;

input WE;

input WCLK;

endmodule

• Synplify

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

‘include "virtex.v"

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation 
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// -- the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for 

// Post P&R simulation.

// synthesis translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";

// synthesis translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to pass the INIT 

// property

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D 
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=5555" */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D 
(DATA_BUS[2]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=FFFF" */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D 
(DATA_BUS[1]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=AAAA" */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D 
(DATA_BUS[0]),
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.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=0101" */;

endmodule

• XST

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation -- 

// the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for 

// Post P&R simulation.

// synthesis translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 
RAM2.INIT="FFFF", RAM3.INIT="5555";

// synthesis translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to 

// pass the INIT property

// synthesis attribute INIT of RAM2 is "FFFF"

// synthesis attribute INIT of RAM1 is "AAAA"
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// synthesis attribute INIT of RAM0 is "0101"

RAM16X1S RAM3 (.O (DATA_OUT[3]),
.D (DATA_BUS[3]),.A3 (ADDR[3]),.A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* synthesis xc_props="INIT=5555" */;

RAM16X1S RAM2 (.O (DATA_OUT[2]),
.D (DATA_BUS[2]),.A3 (ADDR[3]),.A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK));

RAM16X1S RAM1 (.O (DATA_OUT[1]),
.D (DATA_BUS[1]),.A3 (ADDR[3]),.A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]),.WE (WE),
.WCLK (CLK));

RAM16X1S RAM0 (.O (DATA_OUT[0]),
.D (DATA_BUS[0]),.A3 (ADDR[3]),.A2 (ADDR[2]), 
.A1 (ADDR[1]),.A0 (ADDR[0]),.WE (WE),
.WCLK (CLK));

endmodule

Inferring Distributed SelectRAM+ in VHDL

The following coding examples provide VHDL and Verilog coding 
styles for FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II

FPGA Compiler II does not infer RAMs.

• LeonardoSpectrum, Synplify, and XST

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, dual-port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
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entity ram_32x8d_infer is
generic( d_width : integer := 8;

addr_width : integer := 5;
mem_depth : integer := 32);

port (o : out STD_LOGIC_VECTOR(d_width - 1
downto 0);

we, clk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1

downto 0);
raddr, waddr : in

STD_LOGIC_VECTOR(addr_width - 1 downto 0));
end ram_32x8d_infer;

architecture xilinx of ram_32x8d_infer is
type mem_type is array (mem_depth - 1 downto

0) of STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
process(clk, we, waddr)
begin

if (rising_edge(clk)) then
if (we = ’1’) then

mem(conv_integer(waddr)) <= d;
end if;
end if;

end process;
process(raddr)
begin

o <= mem(conv_integer(raddr));
end process;

end xilinx;

• The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, single-port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram_32x8s_infer is
generic( d_width : integer := 8;

addr_width : integer := 5;
mem_depth : integer := 32);
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port (o : out STD_LOGIC_VECTOR(d_width - 1
downto 0);

we, wclk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1

downto 0);
addr : in STD_LOGIC_VECTOR(addr_width - 1

downto 0));
end ram_32x8s_infer;

architecture xilinx of ram_32x8s_infer is
type mem_type is array (mem_depth - 1 downto

0) of STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
process(wclk, we, addr)
begin

if (rising_edge(wclk)) then
if (we = ’1’) then
mem(conv_integer(addr)) <= d;
end if;

end if;
end process;
o <= mem(conv_integer(addr));

end xilinx;

Inferring Distributed SelectRAM+ in Verilog

The following coding examples provide Verilog coding hints for 
FPGA Compiler II, Synplify, LeonardoSpectrum, and XST.

• FPGA Compiler II

FPGA Compiler II does not infer RAMs.

• LeonardoSpectrum, Synplify, and XST

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, dual-port RAM example.

module ram_32x8d_infer (o, we, d, raddr, waddr, 
clk);

parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, clk;
input [d_width - 1:0] d;
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input [addr_width - 1:0] raddr, waddr;

reg [d_width - 1:0] o;
reg [d_width - 1:0] mem [(1 << addr_width) 1:0];

always @(posedge clk)
if (we)

mem[waddr] = d;

always @(mem or raddr)
o = mem[raddr];

endmodule

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, single-port RAM example.

module ram_32x8s_infer (o, we, d, addr, wclk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, wclk;
input [d_width - 1:0] d;
input [addr_width - 1:0] addr;

reg [d_width - 1:0] mem [(1 << addr_width) 1:0];

always @(posedge wclk)
if (we)

mem[addr] = d;
assign o = mem[addr];
endmodule

Implementing ROMs
ROMs can be implemented as follows.

• Use RTL descriptions of ROMs

• Instantiate 16x1 and 32x1 ROM primitives

The following examples are RTL VHDL and Verilog ROM coding 
examples.
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RTL Description of a Distributed ROM VHDL Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Compiler II, Synplify, 
and XST.

--
--  Behavioral 16x4 ROM Example
--           rom_rtl.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;

entity rom_rtl is
     port (ADDR: in INTEGER range 0 to 15;
           DATA: out STD_LOGIC_VECTOR (3 downto 0));
end rom_rtl;

architecture XILINX of rom_rtl is
subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’("0000"),
 ROM_WORD’("0001"),
 ROM_WORD’("0010"),
 ROM_WORD’("0100"),
 ROM_WORD’("1000"),
 ROM_WORD’("1100"),
 ROM_WORD’("1010"),
 ROM_WORD’("1001"),
 ROM_WORD’("1001"),
 ROM_WORD’("1010"),
 ROM_WORD’("1100"),
 ROM_WORD’("1001"),
 ROM_WORD’("1001"),
 ROM_WORD’("1101"),
 ROM_WORD’("1011"),
 ROM_WORD’("1111"));
 
begin

DATA <= ROM(ADDR);  -- Read from the ROM
end XILINX;
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RTL Description of a Distributed ROM Verilog 
Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Compiler II, Synplify, 
and XST.

/*
 * ROM_RTL.V
 * Behavioral Example of 16x4 ROM
*/

module rom_rtl(ADDR, DATA) ;
input [3:0] ADDR ;
output [3:0] DATA ;
reg [3:0] DATA ;

// A memory is implemented
// using a case statement

always @(ADDR)
begin

case (ADDR)
4’b0000 : DATA = 4’b0000 ;
4’b0001 : DATA = 4’b0001 ;
4’b0010 : DATA = 4’b0010 ;
4’b0011 : DATA = 4’b0100 ;
4’b0100 : DATA = 4’b1000 ;
4’b0101 : DATA = 4’b1000 ;
4’b0110 : DATA = 4’b1100 ;
4’b0111 : DATA = 4’b1010 ;
4’b1000 : DATA = 4’b1001 ;
4’b1001 : DATA = 4’b1001 ;
4’b1010 : DATA = 4’b1010 ;
4’b1011 : DATA = 4’b1100 ;
4’b1100 : DATA = 4’b1001 ;
4’b1101 : DATA = 4’b1001 ;
4’b1110 : DATA = 4’b1101 ;
4’b1111 : DATA = 4’b1111 ;

endcase
end
endmodule
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With the VHDL and Verilog examples above, synthesis tools create 
ROMs using function generators (LUTs and MUXFs) or the ROM 
primitives.

Another method for implementing ROMs is instantiating the 16x1 or 
32x1 ROM primitives. To define the ROM value, use the Set Attribute 
or equivalent command to set the INIT property on the ROM compo-
nent.

Note Refer to your synthesis tool documentation for the correct 
syntax.

This type of command writes the ROM contents to the netlist file so 
the Xilinx tools can initialize the ROM. The INIT value should be 
specified in hexadecimal values. See the VHDL and Verilog RAM 
examples in the following section for examples of this property using 
a RAM primitive.

Implementing ROMs Using Block SelectRAM
FPGA Compiler II, LeonardoSpectrum and Synplify can infer ROM 
using Block SelectRAM. 

FPGA Compiler II: 

FPGA Compiler II can infer ROMs using Block SelectRAM instead of 
LUTs for Virtex, Virtex-E, Virtex-II, and Virtex-II Pro in the following 
cases:

• The inference is synchronous.

• For Virtex and Virtex-E, Block SelectRAM will be used to infer 
ROM when the address line is at least ten bits, and the data line is 
three bits or greater. Also, Block SelectRAM will be used when 
the address line is 11 or 12 bits; no minimum data width is 
required.

• For Virtex-II and Virtex-II Pro, Block SelectRAM will be used to 
infer ROM if the address line is between 10 and 14 bits; no 
minimum data width is required.

LeonardoSpectrum:

• In LeonardoSpectrum, synchronous ROMs with address widths 
greater than eight bits are automatically mapped to Block 
SelectRAM. 
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• Asynchronous ROMs and synchronous ROMs (with address 
widths less than eight bits) are automatically mapped to 
distributed SelectRAM.

Synplify:

Synplify can infer ROMs using Block SelectRAM instead of LUTs for 
Virtex, Virtex-E, Virtex-II and Virtex-II Pro in the following cases:

• For Virtex/Virtex-E, the address line must be between 8 to 12 bits.

• For Virtex-II/Pro, the address line must be between 9 to 14 bits.

• The address lines must be registered with a simple flip-flop (no 
resets or enables, etc.) or the ROM output can be registered with 
enables or sets/resets. However, not both sets/resets and 
enables. The flip-flops’ sets/resets can be either synchronous or 
asynchronous. In the case where asynchronous sets/resets are 
used, Synplify will create registers with the sets/resets and then 
either AND or OR these registers with the output of the 
BlockRAM.
Synthesis and Simulation Design Guide 4-161



Synthesis and Simulation Design Guide
RTL Description of a ROM VHDL Example Using 
Block SelectRAM

Below is some incomplete VHDL that demonstrates the above 
inference rules.

library IEEE;
use IEEE.std_logic_1164.all;
entity rom_rtl is
port (ADDR: in INTEGER range 0 to 1023;
      CLK : in std_logic;
      DATA: out STD_LOGIC_VECTOR (3 downto 0));
end rom_rtl;

architecture XILINX of rom_rtl is

subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 1023) of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE’(
ROM_WORD’("0000"),
ROM_WORD’("0001"),
ROM_WORD’("0010"),
ROM_WORD’("0100"),
ROM_WORD’("1000"),
ROM_WORD’("1100"),
ROM_WORD’("1010"),
ROM_WORD’("1001"),
ROM_WORD’("1001"),
ROM_WORD’("1010"),
ROM_WORD’("1100"),
ROM_WORD’("1001"),
ROM_WORD’("1001"),
ROM_WORD’("1101"),
ROM_WORD’("1011"),
ROM_WORD’("1111")
   :
   :
   :
);
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begin
process (CLK) begin
if clk’event and clk = ’1’ then
DATA <= ROM(ADDR); -- Read from the ROM
end if;
end process;
end XILINX;

RTL Description of a ROM Verilog Example using 
Block SelectRAM

Below is some incomplete Verilog that demonstrates the above 
inference rules:

/*
* This code is incomplete but demonstrates the
* rules for inferring Block RAM for ROMs
* ROM_RTL.V
* Block RAM ROM Example
*/
module rom_rtl(ADDR, CLK, DATA) ;
  input [9:0] ADDR ;
  input CLK ;
  output [3:0] DATA ;
  reg [3:0] DATA ;
// A memory is implemented
// using a case statement
always @(posedge CLK)
begin
    case (ADDR)
        9’b000000000 : DATA = 4’b0000 ;
        9’b000000001 : DATA = 4’b0001 ;
        9’b000000010 : DATA = 4’b0010 ;
        9’b000000011 : DATA = 4’b0100 ;
        9’b000000100 : DATA = 4’b1000 ;
        9’b000000101 : DATA = 4’b1000 ;
        9’b000000110 : DATA = 4’b1100 ;
        9’b000000111 : DATA = 4’b1010 ;
        9’b000001000 : DATA = 4’b1001 ;
        9’b000001001 : DATA = 4’b1001 ;
        9’b000001010 : DATA = 4’b1010 ;
        9’b000001011 : DATA = 4’b1100 ;
Synthesis and Simulation Design Guide 4-163



Synthesis and Simulation Design Guide
        9’b000001100 : DATA = 4’b1001 ;
        9’b000001101 : DATA = 4’b1001 ;
        9’b000001110 : DATA = 4’b1101 ;
        9’b000001111 : DATA = 4’b1111 ;
          :
          :
          :
    endcase
end
endmodule

Implementing FIFO
FIFO can be implemented with FPGA RAMs. Xilinx provide several 
Application Notes describing the use of FIFO when implementing 
FPGAs. Please refer to the following Xilinx Application Notes for 
more information:

• Xilinx XAPP175: “High Speed FIFOs in Spartan-II FPGAs”, applica-
tion note, v1.0 (11/99) (http://www.xilinx.com/xapp/
xapp175.pdf)

• Xilinx XAPP131: “170MHz FIFOs using the Virtex Block Selec-
tRAM+ Feature”, v 1.2 (9/99) (http://www.xilinx.com/xapp/
xapp131.pdf)

Implementing CAM
Content Addressable Memory (CAM) or associative memory is a 
storage device which can be addressed by its own contents. 

Xilinx provides several Application Notes describing CAM designs 
in Virtex FPGAs. Please refer to the following Xilinx Application 
Notes for more information:

• XAPP201: “An Overview of Multiple CAM Designs in Virtex Family 
Devices” v 1.1(9/99) (http://www.xilinx.com/xapp/
xapp201.pdf)

• XAPP202: “Content Addressable Memory (CAM) in ATM Applica-
tions” v 1.1 (9/99) (http://www.xilinx.com/xapp/xapp202.pdf)

• XAPP203: “Designing Flexible, Fast CAMs with Virtex Family 
FPGAs” v 1.1 (9/99) (http://www.xilinx.com/xapp/
xapp203.pdf)
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• XAPP204: “Using Block SelectRAM+ for High-Performance Read/
Write CAMs” v1.1 (10/99) (http://www.xilinx.com/xapp/
xapp204.pdf)

Using CORE Generator to Implement Memory
If you must instantiate memory, use the CORE Generator to create a 
memory module larger than 32X1 (16X1 for Dual Port). Imple-
menting memory with the CORE Generator is similar to imple-
menting any module with CORE Generator except for defining the 
Memory initialization file. Please reference the memory module 
datasheets that come with every CORE Generator module for specific 
information on the initialization file.

Implementing Shift Register (Virtex/E/II and 
Spartan-II)

The SRL16 is a very efficient way to create shift registers without 
using up flip-flop resources. You can create shift registers that vary in 
length from one to sixteen bits. The SRL16 is a shift register look up 
table (LUT) whose inputs (A3, A2, A1,A0) determine the length of the 
shift register. The shift register may be of a fixed, static length or it 
may be dynamically adjusted. The shift register LUT contents are 
initialized by assigning a four-digit hexadecimal number to an INIT 
attribute. The first, or the left-most, hexadecimal digit is the most 
significant bit. If an INIT value is not specified, it defaults to a value 
of four zeros (0000) so that the shift register LUT is cleared during 
configuration. The data (D) is loaded into the first bit of the shift 
register during the Low-to-High clock (CLK) transition. During 
subsequent Low-to-High clock transitions data is shifted to the next 
highest bit position as new data is loaded. The data appears on the Q 
output when the shift register length determined by the address 
inputs is reached.

The Static Length Mode of SRL16 implements any shift register 
length from 1 to 16 bits in one LUT. Shift register length is (N+1) 
where N is the input address. Synthesis tools will implement longer 
shift registers with multiple SRL16 and additional combinatorial 
logic for multiplexing.

In Virtex-II devices, additional cascading shift register LUTs 
(SRLC16) are available. SRLC16 supports synchronous shift-out 
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output of the last (16th) bit. This output has a dedicated connection to 
the input of the next SRLC16 inside the CLB. With four slices and 
dedicated multiplexers (MUXF5, MUXF6, and so forth) available in 
one Virtex-II CLB, up to a 128-bit shift register can be implemented 
effectively using SRLC16. Synthesis tools, Synplify 7.1, 
LeonardoSpectrum 2002a, and XST can infer the SRLC16. For more 
information, please refer to the Virtex-II Handbook. 

Dynamic Length Mode can be implemented using SRL16 or SRLC16. 
Each time a new address is applied to the 4-input address pins, the 
new bit position value is available on the Q output after the time 
delay to access the LUT. LeonardoSpectrum, Synplify, and XST can 
infer a shift register component. A coding example for a dynamic SRL 
is included following the SRL16 inferencing example.
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Inferring SRL16 in VHDL
• FPGA Compiler II, LeonardoSpectrum, Synplify, and XST

-- VHDL example design of SRL16 
-- inference for Virtex
-- This design infer 16 SRL16 
-- with 16 pipeline delay
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity pipeline_delay is generic (cycle :integer
:= 16;

width :integer := 16);
port (input :in std_logic_vector(width - 1

downto 0);
clk :in std_logic;
output :out std_logic_vector(width - 1 downto

0));
end pipeline_delay;
architecture behav of pipeline_delay is
type my_type is array (0 to cycle -1) of
std_logic_vector(width -1 downto 0);
signal int_sig :my_type;

begin
main :process (clk)
begin

if clk’event and clk = ’1’ then
int_sig <= input & int_sig(0 to cycle - 2);
end if;

end process main;
output <= int_sig(cycle -1);
end behav;
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Inferring SRL16 in Verilog
Use the following coding example for FPGA Compiler II, 
LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II, LeonardoSpectrum, Synplify, and XST

// Verilog Example SRL
//This design infer 3 SRL16 with 4 pipeline delay
module srle_example (clk, enable, data_in,
result);
parameter cycle=4;
parameter width = 3;
input clk, enable;
input [0:width] data_in;
output [0:width] result;
reg [0:width-1] shift [cycle-1:0];
integer i;
always @(posedge clk)
begin

if (enable == 1) begin
for (i = (cycle-1);i >0; i=i-1) shift[i] =

shift[i-1];
shift[0] = data_in;
end

end
assign result = shift[cycle-1];
endmodule
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Inferring Dynamic SRL16 in VHDL
• LeonardoSpectrum, Synplify and XST

library IEEE;
use IEEE.std_logic_1164.all;

entity srltest is
port ( inData: std_logic_vector(7 downto 0);
       clk, en : in std_logic;
       outStage : in integer range 3 downto 0;
       outData: out std_logic_vector(7 downto 0));
end srltest;

architecture rtl of srltest is

type dataAryType is array(3 downto 0) of 
std_logic_vector(7 downto 0);

signal regBank : dataAryType;

begin
outData <= regBank(outStage);
process(clk, inData) begin

if (clk’event and clk = ’1’) then
  if (en=’1’) then
    regBank <= (regBank(2 downto 0) & inData);
  end if;
end if;
end process;
end rtl;
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Inferring Dynamic SRL16 in Verilog
• LeonardoSpectrum, Synplify and XST

module test_srl(clk, enable, dataIn, result, addr);

input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;

reg [3:0] regBank[15:0];
integer i;

always @(posedge clk) begin
  if (enable == 1) begin
    for (i=15; i>0; i=i-1) begin
      regBank[i] <= regBank[i-1];
    end
    regBank[0] <= dataIn;
  end
end
assign result = regBank[addr];
endmodule

Implementing LFSR
The SRL (Shift Register LUT) implements very efficient shift registers 
and can be used to implement Linear Feedback Shift Registers. Xilinx 
Application Note XAPP 210 describes the implementation of Linear 
Feedback Shift Registers (LFSR) using the Virtex SRL macro. One half 
of a CLB can be configured to implement a 15-bit LFSR, one CLB can 
implement a 52-bit LFSR, and with two CLBs a 118-bit LFSR is imple-
mented. 

The XApp 210 can be downloaded from the following Xilinx web site.

http://support.xilinx.com/xapp/xapp210.pdf
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Implementing Multiplexers
A 4-to-1 multiplexer can be efficiently implemented in a single 
Virtex/E/II and Spartan-II family slice. The six input signals (four 
inputs, two select lines) use a combination of two LUTs and MUXF5 
available in every slice. Up to 9 input functions can be implemented 
with this configuration. 

In the Virtex/E and Spartan-II families, larger multiplexers can be 
implemented using two adjacent slices in one CLB with its dedicated 
MUXF5s and a MUXF6. 

Virtex-II slices contain dedicated two-input multiplexers (one 
MUXF5 and one MUXFX per slice). MUXF5 is used to combine two 
LUTs. MUXFX can be used as MUXF6, MUXF7, and MUXF8 to 
combine 4, 8, and 16 LUTs, respectively. Please refer to the Virtex-II 
Handbook for more information on designing large multiplexes in 
Virtex-II. This book can be found on the Xilinx website at
http://www.xilinx.com.

In addition, you can use internal tristate buffers (BUFTs) to 
implement large multiplexers. Large multiplexers built with BUFTs 
have the following advantages.

• Can vary in width with only minimal impact on area and delay

• Can have as many inputs as there are tristate buffers per hori-
zontal longline in the target device

• Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog 
designs of a 5-to-1 multiplexer built with gates. Typically, the gate 
version of this multiplexer has binary encoded selector inputs and 
requires three select inputs (SEL<2:0>). The schematic representation 
of this design is shown in the “5-to-1 MUX Implemented with Gates” 
figure. 

Some synthesis tools include commands that allow you to switch 
between multiplexers with gates or with tristates. Check with your 
synthesis vendor for more information.

The VHDL and Verilog designs provided at the end of this section 
show a 5-to-1 multiplexer built with tristate buffers. The tristate 
buffer version of this multiplexer has one-hot encoded selector inputs 
and requires five select inputs (SEL<4:0>). The schematic representa-
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tion of these designs is shown in the “5-to-1 MUX Implemented with 
Gates” figure.

Mux Implemented with Gates VHDL Example
The following example shows a MUX implemented with Gates.

-- MUX_GATE.VHD
-- 5-to-1 Mux Implemented in Gates
-- May 2001 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is

port (SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC; 

SIG: out STD_LOGIC);
end mux_gate;

architecture RTL of mux_gate is
begin

SEL_PROCESS: process (SEL,A,B,C,D,E)
begin

case SEL is 
when "000"  => SIG <= A; 
when "001"  => SIG <= B; 
when "010"  => SIG <= C; 
when "011"  => SIG <= D; 
when others => SIG <= E; 

end case; 
end process SEL_PROCESS;

end RTL;
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Mux Implemented with Gates Verilog Example
The following example shows a MUX implemented with Gates.

/* MUX_TBUF.V 
* May 2002 */ 
module mux_tbuf (A,B,C,D,E,SEL,SIG); 
input A,B,C,D,E; 
input [4:0] SEL; 
output SIG; 

  assign SIG = (SEL[0]==1’b0) ? A : 1’bz; 
  assign SIG = (SEL[1]==1’b0) ? B : 1’bz; 
  assign SIG = (SEL[2]==1’b0) ? C : 1’bz; 
  assign SIG = (SEL[3]==1’b0) ? D : 1’bz; 
  assign SIG = (SEL[4]==1’b0) ? E : 1’bz; 

endmodule 
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Figure 4-5  5-to-1 MUX Implemented with Gates

Wide MUX Mapped to MUXFs
Synthesis tools will use MUXF5 and MUXF6, and for Virtex-II and 
Virtex-II Pro will use MUXF7 and MUXF8 to implement wide 
multiplexers. These MUXes can, respectively, be used to create a 5, 6, 
7 or 8 input function or a 4-to-1, 8-to-1, 16-to-1 or a 32-to-1 
multiplexer.
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Mux Implemented with BUFTs VHDL Example
The following example shows a MUX implemented with BUFTs.

-- MUX_TBUF.VHD
-- 5-to-1 Mux Implemented in 3-State Buffers
-- May 2001 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD_LOGIC_VECTOR (4 downto 0);
A,B,C,D,E: in STD_LOGIC; 

SIG: out STD_LOGIC);
end mux_tbuf;

architecture RTL of mux_tbuf is
begin
 

SIG <= A when (SEL(0)=’0’) else ’Z’; 
SIG <= B when (SEL(1)=’0’) else ’Z’; 
SIG <= C when (SEL(2)=’0’) else ’Z’; 
SIG <= D when (SEL(3)=’0’) else ’Z’; 
SIG <= E when (SEL(4)=’0’) else ’Z’;

end RTL;

Mux Implemented with BUFTs Verilog Example
The following example shows a MUX implemented with BUFTs.

/* MUX_TBUF.V
 * May 2001 */

module mux_tbuf (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [4:0] SEL;
output SIG;
reg SIG;
 

always @ (SEL or A)
Synthesis and Simulation Design Guide 4-175



Synthesis and Simulation Design Guide
begin
if (SEL[0]==1’b0)

SIG=A;
else

SIG=1’bz;
end

 
always @ (SEL or B)
begin 

if (SEL[1]==1’b0)
SIG=B;

else
SIG=1’bz;

end

always @ (SEL or C)
begin

if (SEL[2]==1’b0)
SIG=C;

else
SIG=1’bz;

end

always @ (SEL or D)
begin

if (SEL[3]==1’b0) 
SIG=D; 

else 
SIG=1’bz;

end

always @ (SEL or E)
begin 

if (SEL[4]==1’b0)
SIG=E;

else
SIG=1’bz;

end
endmodule
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Figure 4-6  5-to-1 MUX Implemented with BUFTs 

Using Pipelining
You can use pipelining to dramatically improve device performance. 
Pipelining increases performance by restructuring long data paths 
with several levels of logic and breaking it up over multiple clock 
cycles. This method allows a faster clock cycle and, as a result, an 
increased data throughput at the expense of added data latency. 
Because the Xilinx FPGA devices are register-rich, this is usually an 
advantageous structure for FPGA designs because the pipeline is 
created at no cost in terms of device resources. Because data is now 
on a multi-cycle path, special considerations must be used for the rest 
of your design to account for the added path latency. You must also 
be careful when defining timing specifications for these paths.
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Some synthesis tools have limited capability for constraining multi-
cycle paths or translating these constraints to Xilinx implementation 
constraints. Check your synthesis tool documentation for information 
on multi-cycle paths. If your tool cannot translate the constraint but 
can synthesize to a multi-cycle path, you can add the constraint to the 
UCF file.

Before Pipelining
In the following example, the clock speed is limited by the clock-to 
out-time of the source flip-flop; the logic delay through four levels of 
logic; the routing associated with the four function generators; and 
the setup time of the destination register.

Figure 4-7  Before Pipelining

After Pipelining
This is an example of the same data path in the previous example 
after pipelining. Because the flip-flop is contained in the same CLB as 
the function generator, the clock speed is limited by the clock-to-out 
time of the source flip-flop; the logic delay through one level of logic; 
one routing delay; and the setup time of the destination register. In 
this example, the system clock runs much faster than in the previous 
example.
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Figure 4-8  After Pipelining

Design Hierarchy
HDL designs can either be synthesized as a flat module or as many 
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of 
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.

• Easier and faster verification/simulation

• Allows several engineers to work on one design at the same time

• Speeds up design compilation

• Reduces design time by allowing design module re-use for this 
and future designs.

• Allows you to produce designs that are easier to understand

• Allows you to efficiently manage the design flow

Disadvantages to building hierarchical designs are as follows.

• Design mapping into the FPGA may not be as optimal across 
hierarchical boundaries; this can cause lesser device utilization 
and decreased design performance

• Design file revision control becomes more difficult

• Designs become more verbose

Most of the disadvantages listed above can be overcome with careful 
design consideration when choosing the design hierarchy.
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 Using Synthesis Tools with Hierarchical Designs
By effectively partitioning your designs, you can significantly reduce 
compile time and improve synthesis results. Here are some recom-
mendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the 
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance 
together to reduce the gate count. However, to increase design speed, 
do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic to Same 
Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to 
allow the synthesis tool to optimize an entire critical path in a single 
operation. Boolean optimization does not operate across hierarchical 
boundaries. Therefore, if a critical path is partitioned across bound-
aries, logic optimization is restricted. In addition, constraining 
modules is difficult if combinatorial logic is not restricted to the same 
level of hierarchy.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with 
different functions at different levels of the hierarchy. Design speed is 
the first priority of optimization algorithms. To achieve a design that 
efficiently utilizes device area, remove timing constraints from design 
modules.

Restrict Combinatorial Logic that Drives a Register to 
Same Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that 
drives a register to the same hierarchical block.
4-180 Xilinx Development System



Architecture Specific Coding Style for Virtex
Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on 
your computer configuration; the time required to complete each 
optimization run; if the design is worked on by a design team; and 
the target FPGA routing resources. Although smaller blocks give you 
more control, you may not always obtain the most efficient design. 
For the final compilation of your design, you may want to compile 
fully from the top down. Check with your synthesis vendor for 
guidelines.

Register All Outputs

Arrange your design hierarchy so that registers drive the module 
output in each hierarchical block. Registering outputs makes your 
design easier to constrain because you only need to constrain the 
clock period and the ClockToSetup of the previous module. If you 
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also, 
registering the outputs of your design hierarchy can eliminate any 
possible problems with logic optimization across hierarchical bound-
aries.

Restrict One Clock to Each Module or to Entire 
Design

By restricting one clock to each module, you only need to describe the 
relationship between the clock at the top level of the design hierarchy 
and each module clock. By restricting one clock to the entire design, 
you only need to describe the clock at the top level of the design hier-
archy.

Note See your synthesis tool documentation for more information on 
optimizing logic across hierarchical boundaries and compiling hierar-
chical designs.
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Chapter 5

Virtex-II Pro Considerations

This chapter includes coding techniques to help you improve 
synthesis results. It includes the following sections.

• “Introduction”

• “Using Smart Models to Simulate Virtex-II Pro Designs”

• “Virtex-II Pro Board Support Package”

• “Debugging Tools for Virtex-II Pro Designs” 

Introduction
This chapter highlights some of the outstanding features of Xilinx 
Virtex-II Pro FPGAs. The Virtex-II Pro family is a platform FPGA for 
designs that are based on IP cores and customized modules. The 
family incorporates multi-gigabit transceivers and PowerPC CPU 
cores in Virtex-II Pro Series FPGA architecture. The intent of this 
chapter is to point the user to the information necessary to take 
advantage of these features.

The programable logic portion of the Virtex-II Pro family is based on 
Virtex-II. While it is not bitstream or pin compatible, it can be 
programmed using the same methods as Virtex-II, and Virtex-II 
designs can be into Virtex-II Pro devices. In general, for details 
specific to Virtex-II Pro, see the Virtex II Pro Handbook and the 
Rocket I/O Transceiver User Guide.
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Summary of Virtex-II Pro Features
• High-performance Platform FPGA solution including

♦ Up to sixteen Rocket I/O embedded multi-gigabit 
transceiver blocks (based on Mindspeed’s SkyRail 
technology)

♦ Up to four IBM® PowerPC® RISC processor blocks

• Based on Virtex-II Platform FPGA technology

♦ Flexible logic resources

♦ SRAM-based in-system configuration

♦ Active Interconnect technology

♦ SelectRAM memory hierarchy

♦ Dedicated 18-bit x 18-bit multiplier blocks

♦ High-performance clock management circuitry

♦ SelectI/O-Ultra technology

♦ Digitally Controlled Impedance (DCI) I/O

Using Smart Models to Simulate Virtex-II Pro 
Designs

Smart Models are an encrypted version to the actual HDL code. 
These models allow the user to simulate with the actual functionality 
without having access to the code itself. The Xilinx Virtex-II Pro 
family of devices gives the designer many new features, such as 
IBM’s PowerPC microprocessor and the GigaBit I/O. However, 
simulation of these new features requires the use of Bus-Functional 
models and Synopsys Smart Models along with the user design. This 
section gives the Virtex-II Pro simulation flow. It is assumed that the 
reader is familiar with the Xilinx FPGA simulation flow. 

Simulation Components
The Virtex-II Pro device consists of several components. Each 
component has it’s own simulation model, and the individual 
simulation models must be correctly interconnected to get the 
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simulation to work as expected. Following are the components that 
need to be simulated:

• FPGA Logic: This consists of either the RTL design constructed 
by the designer, or the back-annotated structural design created 
by the Xilinx implementation tools.

• IBM PowerPC microprocessor: The microprocessor is simulated 
using SWIFT interface.

• IBM CoreConnect bus: This Processor Local Bus (PLB) is 
simulated using HDL simulation models.

• GigaBit I/O: This is simulated using SWIFT interface.

Overview of Virtex-II Pro Simulation Flow
The HDL simulation flow comprising Synopsys Smart Models 
consists of three steps:

1. Instantiate the PowerPC and/or Gigabit I/O wrapper used for 
simulation and synthesis. During synthesis, the transceiver is 
treated as a "black box." This requires that a wrapper be used that 
describes the modules port.

2. Install the Verilog Model Compiler (VMC) Smart Models, if 
needed. See “Installing Smart Models from Xilinx 
Implementation Tools” section for details on installing Smart 
Models. The Smart Models are included in the Virtex-II Pro 
Design Kit and the Xilinx software.

a) The IBM PowerPC and GigaBit I/O Smart models come 
installed with the Virtex-II Pro Design Kit. 

b) The Xilinx software includes the Smart Model image, 
however the Smart Models are not installed. The user must 
install the Smart Models in the Xilinx Software tree in order 
to perform a simulation using the Smart Models. Finally, the 
models must be installed if your simulator is not currently 
supported or if additional Smart Models are needed. 

3. Use the VMC models along with your design in an HDL 
simulator that supports the SWIFT interface.

You can find The Instantiation wrapper files for the PowerPC and 
Gigabit I/O can in the Virtex-II Pro Development Kit, and the Rocket 
I/O User Guide. 
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The flow is shown in Figure 1. 

Figure 5-1  Figure 1: HDL Simulation Flow for Virtex-II Pro 
Devices

Smart Models
The Xilinx Virtex-II Pro simulation flow uses the Synopsys VMC 
models (Smart Models) for simulating the IBM PowerPC 
microprocessor and GigaBit I/O. VMC models are simulator-
independent models that are derived from the actual design and are 
therefore accurate evaluation models. To simulate these models, a 
simulator that supports the SWIFT interface must be used. 

Synopsys Logic Modeling uses the SWIFT interface to deliver models. 
SWIFT is a simulator- and platform-independent API developed by 
Synopsys and adopted by all major simulator vendors, including 
Synopsys, Cadence, Mentor Graphics, Model Technology and others, 
as a way of linking simulation models to design tools. 

When running a back-annotated simulation, the precompiled Smart 
Models support gate-level, pin-to-pin, and back-annotation timing. 
Gate-level timing distributes the delays throughout the design, and 
all internal paths are accurately distributed. Multiple timing versions 
can be provided for different speed parts. Pin-to-pin timing is less 
accurate, but is faster since only a few top-level delays must be 
processed. Back-annotation timing allows the model to accurately 
process the interconnect delays between the model and the rest of the 
design. It can be used with either gate-level or pin-to-pin timing, or 
by itself.
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You can find more details about Smart Models and the SWIFT 
interface in "Design Flow" volume of the Virtex-II Pro Platform FPGA 
Developers Kit, and on the Synopsys web site at
http://www.synopsys.com/products/lm/doc/smartmodel.html.

Supported Simulators
A simulator with Smart Model capability is required to use the Smart 
Models. While any HDL simulator that supports the Synopsys SWIFT 
interface should be able to handle the Virtex-II Pro simulation flow, 
the following HDL simulators are officially supported by Xilinx for 
Virtex-II Pro simulation. 

Solaris

• MTI Modelsim SE (5.5 and newer)

• Cadence NC-Verilog

• Cadence Verilog-XL

• Synopsys VCS

NT or 2000

• MTI Modelsim SE (5.5 and newer)

Required Software
To setup the simulation, install the Xilinx implementation tools and 
the Xilinx Virtex-II Pro Design kit along with the simulator you will 
be using. 

Solaris 2.6/2.7

• Xilinx Implementation Tools

• Xilinx Virtex-II Pro Software Kit. Details are available at http://
www.xilinx.com/virtex2pro

• IBM CoreConnect Software. Details are available at http://
www.xilinx.com/ipcenter/processor_central/
register_coreconnect.htm

• HDL Simulator that can simulate both VHDL/Verilog and SWIFT 
interface. 
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Windows NT, 2000

• Xilinx Implementation Tools

• Xilinx Virtex-II Pro software kit. Details are available at http://
www.xilinx.com/virtex2pro

• IBM CoreConnect Software. Details are available at http://
www.xilinx.com/ipcenter/processor_central/
register_coreconnect.htm

• HDL Simulator that can simulate both VHDL/Verilog and SWIFT 
interface. 

Installing Smart Models from Xilinx Implementation 
Tools

The Smart Models come precompiled with the Xilinx implementation 
tools, but they are not installed. This allows you to install the PPC405 
and GT Smart models with additional Smart Models incorporated in 
the design. Compile all Smart models into a common library for the 
simulator to use.

Note The Smart Models are installed as part of the Virtex-II Pro 
Development Kit. If additional Smart Models are not required, do not 
reinstall the models.

Solaris 2.6/2.7/2.8

STEP 1 - BEGIN SMART MODEL INSTALLATION

Run the sl_admin.csh program from the $XILINX/verilog/
smartmodel/sol/image directory using the following commands:

$ cd $XILINX/verilog/smartmodel/sol/image

$ sl_admin.csh

STEP 2 - SELECT SMART MODELS TO INSTALL

a) The sl_admin GUI and Set Library Directory popup will 
appear. Change the default directory from "image/pcnt" to 
"installed". Click OK. If the directory does not exist, the 
program will ask if you want to create it, click OK.

b) The sl_admin GUI and the Install From... popup will appear. 
Click Open to use the default directory. 
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c) Next, the Select Models to Install popup will appear. Click 
Add All to select all models. Click Continue.

d) Next, the Select Platforms for Installation popup will appear. 
For Platforms, select Sun-4. For EDAV Packages, select 
Other. Click Install.

e) When the words “Install complete" appear, and the status 
line (bottom line of the sl_admin GUI) goes to Ready, 
installation is complete.

At this point the Smart Models have been installed. Exit the GUI by 
using the File->Exit pull down menu, or use the GUI to perform 
other operations such as accessing documentation and running 
checks on your newly installed library.

To properly use the newly compiled models, set the LMC_HOME 
variable to the image directory. For example:

Setenv LMC_HOME $XILINX/verilog/smartmodel/sol/
installed

Windows NT, 2000

STEP 1 - BEGIN SMART MODEL INSTALLATION

Run the sl_admin.exe program from the 
verilog\smartmodel\nt\image\pcnt directory.

STEP 2 - SELECT SMART MODELS TO INSTALL

• The sl_admin GUI and a popup for "Set Library Directory" will 
appear. Change the default directory from "image\pcnt" to 
"installed". Click OK. If the directory does not exist, the program 
will ask if you want to create it, click OK.

• Next, click Install on the left side of the sl_admin window. 
This will allow you choose the models to install. 

• When the Install From... pop up appears, click Browse, and 
select sim_models\xilinx\verilog\smartmodel\nt\image 
directory. Click OK to select that directory

• The Select Models to Install popup will appear. Click Add All, 
then OK
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• Then the Choose Platform window will appear. For Platforms, 
select Wintel. For EDAV Packages, select Other. Click OK to 
install.

• From the sl_admin window, you should see "Loading: gt_swift", 
and "Loading: ppc405_swift". When the words "Install complete" 
appear, installation is complete.

At this point, the smart models have been installed. Exit the GUI 
using the File->Exit menu, or use the GUI to perform other 
operations such as bringing up documentation and running checks 
on your newly installed library.

To properly use the newly compiled models, set the LMC_HOME 
variable to the image directory. For example:

Set LMC_HOME=$Xilinx$\verilog\smartmodel
\nt\installed

For details specific to Virtex-II Pro, see the Virtex II Pro Handbook.

Running Simulation
This section describes how to setup and run simulation on the 
various supported simulators.

MTI Modelsim SE - Solaris 2.6/2.7/2.8

Simulator Setup

Although Modelsim SE supports the SWIFT interface, some 
modifications must be made to the default Modelsim setup to enable 
this feature. The Modelsim install directory contains an initialization 
file called modelsim.ini. In this initialization file, users can edit GUI 
and Simulator settings to default to their preferences. Parts of this 
modelsim.ini file must be edited to work properly along with the 
Virtex-II Pro device simulation models. 

The following changes are needed in the modelsim.ini file. These 
changes can be made to the modelsim.ini file located in the 
$MODEL_TECH directory. An alternative to making these edits is to 
change the MODELSIM environment variable setting in the MTI 
setup script to point to the modelsim.ini file located in the each 
example’s design directory. 
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1. After the lines 

; Simulator resolution

; Set to fs, ps, ns, us, ms, or sec with optional 
prefix of 1, 10, or 100.

Edit the Statement that follows from Resolution = ns to 
Resolution = ps

2. After the lines

; Specify whether paths in simulator commands 
should be described 

; in VHDL or Verilog format. For VHDL, 
PathSeparator = /

; for Verilog, PathSeparator = .

Comment the following statement called PathSeparator = / by 
adding a ";" at the start of the line.

3. After the line 

; List of dynamically loaded objects for Verilog 
PLI applications add the following statement:

Veriuser = $MODEL_TECH/libswiftpli.sl ;;  
$DENALI/mtipli.so

4. After the line

;  Logic Modeling’s SmartModel SWIFT software 
(Sun4 Solaris 2.x)add the following 
statements:

libsm = $MODEL_TECH/libsm.sl

libswift = $LMC_HOME/lib/sun4Solaris.lib/
libswift.so

Note It is important to make the changes in the order in which the 
commands appear in the modelsim.ini. The simulation may not work 
if the order recommended above is not followed.

After editing the modelsim.ini file, add the following Environment 
variable to the MTI Modelsim SE setup script:

setenv MODELSIM /<path_to_modelsim.ini_script>/
modelsim.ini
Synthesis and Simulation Design Guide 5-9



Synthesis and Simulation Design Guide
If the MODELSIM environment variable is not set properly, MTI 
might not use this .ini file, due to which the initialization settings 
required for simulation will not be read by the simulator. Set up the 
MTI SE simulation environment by souring the MTI SE setup script 
from the terminal.

Running Simulation

In the $xilinx/verilog/smartmodel/sol/simulation/mtiverilog 
directory there are several files to help setup and run a simulation 
utilizing the SWIFT interface.

• modelsim.ini - example modelsim.ini file used to setup Modelsim 
for SWIFT interface support. This file contains the changes 
outlined above. We suggest that you make the changes to the 
modelsim.ini file located in the $MODEL_TECH directory, 
because of the library mappings included in this file. 

• Setup - Script used to set the user environment for simulation 
and implementation. Here is an example of the variables set:

setenv XILINX <Xilinx path>

setenv MODEL_TECH <MTI path>

setenv LM_LICENSE_FILE 
<modelsim_license.dat>;$LM_LICENSE_FILE

setenv LMC_HOME ${XILINX}/verilog/smartmodel/
sol/image

setenv PATH ${LMC_HOME}/bin:${LMC_HOME}/lib/
pcnt.lib:${MODEL_TECH}/bin:${XILINX}/bin/
sol:{PATH}

The user is responsible for changing the parameters included <> 
to match the systems configuration.

• Simulate - An example Modelsim simulation script. Illustrates 
which files need to be compiled and loaded for simulation. This 
file can be modified to simulate a design by including the design 
and testbench files appropriately. If the users modelsim.ini file is 
being used, which contains the system mappings, the vmap 
commands can be commented out or deleted from this file.

• run.do - used by the simulate script to run the complete 
simulation.
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Once each of these files has been properly updated, the simulation 
can be run by sourcing the setup and simulate files.

MTI Modelsim SE - Windows NT/2000

Simulator Setup

Although Modelsim SE supports the SWIFT interface, some 
modifications must be made to the default Modelsim setup to enable 
this feature. The Modelsim install directory contains an initialization 
file called modelsim.ini. In this initialization file, users can edit GUI 
and Simulator settings to default to their preferences. Parts of this 
modelsim.ini file must be edited to work properly along with the 
Virtex-II Pro device simulation models. 

The following changes are needed in the modelsim.ini file. These 
changes can be made to the modelsim.ini file located in the 
MODEL_TECH directory. An alternative to making these edits is to 
change the MODELSIM environment variable setting in the MTI 
setup script to point to the modelsim.ini file located in the each 
example’s design directory. 

1. After the lines 

; Simulator resolution
; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10,
or 100.

Change the Statement that follows from: 

Resolution = ns 

to: 

Resolution = ps

2. After the lines:

; Specify whether paths in simulator commands should be described 
; in VHDL or Verilog format. For VHDL, PathSeparator = /
; for Verilog, PathSeparator = .

Comment out the following statement 

PathSeparator = / 

by adding a ";" at the start of the line.

3. After the line: 
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; List of dynamically loaded objects for Verilog PLI applications

Add the following statement:

Veriuser = %MODEL_TECH%/libswiftpli.dll 

4. After the line:

;  Logic Modeling’s SmartModel SWIFT software (Windows NT)

add the following statements:

libsm = %MODEL_TECH%/libsm.dll
libswift = %LMC_HOME%/lib/pcnt.lib/libswift.dll

Note It is important to make these changes in the order in which the 
commands appear in the modelsim.ini. The simulation may not work 
if the order recommended is not followed.

After editing the modelsim.ini file, add the following Environment 
variable to the MTI Modelsim SE setup script:

set MODELSIM=<path_to_modelsim.ini_script>\modelsim.ini

If the MODELSIM environment variable is not set properly, MTI 
might not use this .ini file, due to which the initialization settings 
required for simulation will not be read by the simulator. Set up the 
MTI SE simulation environment by sourcing the MTI SE setup script 
from the terminal.

Running Simulation

In the $XILINX\verilog\smartmodel\sol\simulation\mtiverilog 
directory there are several files to help setup and run a simulation 
utilizing the SWIFT interface.

• modelsim.ini - example modelsim.ini file used to setup Modelsim 
for SWIFT interface support. This file contains the changes 
outlined above. We suggest that you make the changes to the 
modelsim.ini file located in the $MODEL_TECH directory, 
because of the library mappings included in this file. 

• setup - Description of variables, which a user must set for correct 
simulation and implementation. Here is an example of the 
variables set:

set XILINX <Xilinx path>
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set LMC_HOME 
%XILINX%\verilog\smartmodel\sol\image

set MODEL_TECH <MTI path>

set LM_LICENSE_FILE 
<license.dat>;%LM_LICENSE_FILE%

set path 
%LMC_HOME%\bin;%LMC_HOME%\lib\pcnt.lib;%MODEL
_TECH%\bin;%XILINX%\bin\nt;%path%

Note The user is responsible for changing the parameters 
included <> to match the systems configuration.

• simulate.bat - An example Modelsim simulation script. Illustrates 
which files must be compiled and loaded for simulation. This file 
can be modified to simulate a design by including the design and 
testbench files appropriately. If the users modelsim.ini file is 
being used, which contains the system mappings, the vmap 
commands can be commented out or deleted from this file.

• run.do - used by the simulate script to run the complete 
simulation.

Once each of these files has been properly updated, run the 
simulation run by double clicking on simulate.bat.

Cadence Verilog-XL - Solaris 2.6/2.7/2.8

Running Simulation

A Verilog-XL simulation incorporating the SWIFT interface can 
initiated in two ways. 

1. In the $XILINX/verilog/smartmodel/sol/simulation/verilogxl 
directory there are several files to help setup and run a simulation 
utilizing the SWIFT interface.

setup - Description of variables, which a 
user must set for correct simulation and 
implementation. Here is an example of the 
variables set:

setenv XILINX <Xilinx path>

setenv LM_LICENSE_FILE 
<verilogxl_license.dat>:${LM_LICENSE_FILE}
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setenv CDS_INST_DIR <Cadence path>

setenv LD_LIBRARY_PATH ${V2PRO}/source/
sim_models/Xilinx/verilog/smartmodel/sol/
installed/lib/
sun4Solaris.lib:${LD_LIBRARY_PATH}

setenv LMC_CDS_VCONFIG ${CDS_INST_DIR}/
tools.sun4v/verilog/bin/vconfig

setenv LM_LICENSE_FILE 
<license.dat>:${LM_LICENSE_FILE}

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/
tools/bin $PATH

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included 
<> to match the systems configuration. The 
LD_LIBRARY_PATH variable must be pointing to the Smart 
Model installation directory.

♦ simulate - An example Verilog-XL compilation simulation 
script. Illustrates which files need to be compiled and loaded 
for simulation. This file can be modified to simulate a design 
by including the design and testbench files appropriately. 
The user should add +loadpli1=swiftpli:swift_boot a verilog 
directive to the simulate script. For example:

verilog +loadpli1=swiftpli:swift_boot \

Once each of these files has been properly updated, the 
simulation can be run.

2. This flow is requires administrative privileges and is not 
recommended. 

In the $XILINX/verilog/smartmodel/sol/simulation/verilogxl 
directory there are several files to help setup and run a simulation 
utilizing the smart models. A description of each file follows.

♦ readme - Outlines the steps of the secondary flow to utilize 
the SWIFT interface.

a) edit the setup file, as described below, to setup environment 
for Verilog-XL.

source setup
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Note The following step is not required if the models have been 
installed.

b)

cd $XILINX/verilog/smartmodel/sol/image

Enter: sl_admin.csh

c)

Enter: pliwiz

Config Session Name - xilinx

Verilog-XL

Stand Alone

SWIFT Interface

Finish

No

d)

cp -p $CDS_INST_DIR/tools/pliwizard/src/
Makefile.xl.sun4v .

e)

edit Makefile_pliwiz.xl

f)

change $(INSTALL_DIR)/tools/pliwizard/src/
Makefile.xl.sun4v to ./Makefile.xl.sun4v

g)

edit Makefile.xl.sun4v

Change CC = cc to CC = gcc

h)

make all

i) edit the simulate file

source simulate
Synthesis and Simulation Design Guide 5-15



Synthesis and Simulation Design Guide
♦ setup - Description of variables, which a user must set for 
correct simulation and implementation. Here is an example 
of the variables set:

setenv XILINX <Xilinx path>

setenv LM_LICENSE_FILE 
<verilogxl_license.dat>:${LM_LICENSE_FILE}

setenv CDS_INST_DIR <Cadence path>

setenv LD_LIBRARY_PATH ${V2PRO}/source/
sim_models/Xilinx/verilog/smartmodel/sol/
installed/lib/
sun4Solaris.lib:${LD_LIBRARY_PATH}

setenv LMC_CDS_VCONFIG ${CDS_INST_DIR}/
tools.sun4v/verilog/bin/vconfig

setenv LM_LICENSE_FILE 
<license.dat>:${LM_LICENSE_FILE}

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/
tools/bin $PATH

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included 
<> to match the systems configuration. The 
LD_LIBRARY_PATH variable must be pointing to the Smart 
Model installation directory.

♦ ¨ simulate - An example Verilog-XL compilation simulation 
script. Illustrates which files need to be compiled and loaded 
for simulation. This file can be modified to simulate a design 
by including the design and testbench files appropriately. 
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Cadence NC-Verilog - Solaris 2.6/2.7/2.8

Running Simulation

In the $XILINX/verilog/smartmodel/sol/simulation/ncverilog 
directory there are several files to help setup and run a simulation 
utilizing the SWIFT interface.

• Setup - Description of variables, which a user must set for correct 
simulation and implementation. Here is an example of the 
variables set:

setenv XILINX <Xilinx path>

setenv CDS_INST_DIR <Cadence path>

setenv LM_LICENSE_FILE 
<license.dat>:$LM_LICENSE_FILE

setenv LMC_HOME $XILINX/verilog/smartmodel/sol/
image

setenv LMC_CONFIG $LMC_HOME/data/solaris.lmc

setenv LD_LIBRARY_PATH $CDS_INST_DIR/
tools.sun4v/lib:$LD_LIBRARY_PATH

setenv LMC_CDS_VCONFIG $CDS_INST_DIR/
tools.sun4v/verilog/bin/vconfig

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/
tools/bin ${PATH}

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included <> 
to match the systems configuration.

• ¨ Simulate - An example NC-Verilog compilation simulation 
script. Illustrates which files need to be compiled and loaded for 
simulation. This file can be modified to simulate a design by 
including the design and testbench files appropriately. 
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Once each of these files has been properly updated, the 
simulation can be run.

Synopsys VCS - Solaris 2.6/2.7/2.8

Running Simulation

In the $XILINX/verilog/smartmodel/sol/simulation/vcs directory 
there are several files to help setup and run a simulation utilizing the 
SWIFT interface.

• Setup - Description of variables, which a user must set for correct 
simulation and implementation. Here is an example of the 
variables set:

setenv XILINX <Xilinx path>

setenv VCS_HOME <VCS path>

setenv LM_LICENSE_FILE 
<license.dat>:${LM_LICENSE_FILE}

setenv LMC_HOME ${XILINX}/verilog/smartmodel/
sol/image

setenv LMC_CONFIG ${LMC_HOME}/data/solaris.lmc

setenv VCS_CC gcc

setenv PATH ${LMC_HOME}/bin ${VCS_HOME}/bin 
${PATH}

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included <> 
to match the systems configuration.

• Simulate - Example Verilog-XL compilation simulation script. 
Illustrates which files need to be compiled and loaded for 
simulation. This file can be modified to simulate a design by 
including the design and testbench files appropriately. 

Once each of these files has been properly updated, the 
simulation can be run.
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Virtex-II Pro Board Support Package
The Virtex-II Pro Board Support Package (BSP) is located in the 
$V2PRO/source/sw/libs/bsp installation directory. The BSP is a set 
of software modules combined into the bsp.a library. On one hand, 
the BSP offers an interface to peripheral devices and to low-level 
PowerPC core functions. A stand-alone application uses this interface 
to access the hardware. On the other hand, the BSP is required when 
an application is linked with the C library. In this case the BSP 
provides functionality that allows the C library to access the 
hardware.

For details on the BSP, see the "Software IP and Applications" volume 
of the Virtex-II Pro Platform FPGA Developer’s Kit.

Debugging Tools for Virtex-II Pro Designs

Xilinx GNU Embedded Software Tools
Xilinx has created a specific version of the popular GNU compiler/
debugger tool chain for the Virtex-II Pro Platform FPGA. This tool 
technology has world-wide support via the internet, open 
community and the general public license (GPL) process. Xilinx 
supports the general installation of this tool chain. An abundance of 
documentation is available on the web and third party companies can 
offer consulting services for supporting GNU. This strategy allows 
Xilinx to support software design for both the IBM PPC405 hard core 
and Xilinx MicroBlaze soft core processors with one tool chain 
technology. Xilinx provides separate compiler/debugger versions for 
both the PowerPC and for the Xilinx MicroBlaze processor cores 
based on the same GNU technology.

For more information on the GNU Software tools, see the "Software 
Development Tools" volume of the Virtex-II Pro Platform FPGA 
Developer’s Kit. Also, see the GNU Project website at http://
www.gnu.org.

GDB Debugger
GDB, or the GNU Project Debugger, is a source code debugging tool 
for C/C++ language design. The public has access to this technology 
via a general public license process which promotes the advancement 
and improvement of the technology.
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Xilinx has created a specific version of the GDB debugger to be mated 
up with the GCC C/C++ compiler for the Virtex-II Pro Platform 
FPGA with embedded PPC405. This debugger is used with GCC 
designs to start, stop and step through one’s C/C++ program to 
debug its behavior. The debugger provides the user with visibility 
into the program’s execution and helps the engineer identify bugs. 
This tool also allows the user to attempt to correct some types of 
problems without necessarily recompiling all of the code. Without an 
effective debugger, the engineer is left to experiment with the code in 
a trial and error fashion when they encounter a problem. 

The GDB software debugger for the Virtex-II Pro with embedded 
PPC405 will be matched up with a Xilinx version of the GNU GCC 
C/C++ software compiler. Code can be downloaded and debugged 
on an embedded target via the Xilinx Parallel Cable IV.

Xilinx will provide GDB customer support on the installation process 
for those engineers using the Xilinx GDB with the Virtex-II Pro. Broad 
based support for the GNU technology is available at http://
www.gnu.org/. Or, for more general information, try http://
www.fsf.org/software/gdb/gdb.html. More information is also 
available in the "Software Development Tools" volume of the Virtex-II 
Pro Platform FPGA Developer’s Kit.

ChipScope Pro
As the density of FPGA devices increases, so does the impracticality 
of attaching test equipment probes to these devices under test. The 
ChipScope™ Pro tools integrate key logic analyzer hardware 
components with the target design inside the Virtex-II device. The 
ChipScope Pro tools communicate with these components and 
provide the designer with a complete logic analyzer, without the 
need for cumbersome probes or expensive test equipment. For details 
on using the ChipScope Pro tools, see the ChipScope Pro Software 
and Cores User Manual
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Wind River Embedded Tools
Xilinx worked with Wind River Systems to provide a set of software 
tools for targeting the PPC405 in the Platform FPGAs. A specific 
Xilinx-Edition (XE) version of the Wind River tools (compiler, 
software debugger and JTAG run control hardware probe) has been 
created for Xilinx distribution via an OEM agreement.

Wind River provides end-to-end development and debugging 
solutions for IBM PowerPC microprocessors. The WindRiver solution 
includes real-time operating systems, embedded middle-ware, a 
optimized Diab compiler, a SingleStep debug tool suite, Tornado 
Tools 2 and Tornado Tools 3 development environments, high 
performance visionPROBE II and visionICE On-Chip hardware, 
reference design boards, board support packages, visionWARE boot 
services, professional services and integrated vertical market 
solutions.

The Wind River Xilinx Edition includes the leading embedded 
software development tools SingleStep Debugger, Diab C/C++ 
Compiler and the visionPROBE II target connection.

Tool Description

ChipScope Pro Core Generator Provides netlists and instantiation 
templates for the Integrated 
Controller Pro (ICON Pro) core 
and the Integrated Logic Analyzer 
Pro (ILA Pro) core.

ChipScope Pro Analyzer Provides device configuration, 
trigger setup, and trace display for 
the ILA Pro core. The ILA Pro core 
provides the trigger and trace 
capture capability. The ICON Pro 
core communicates to the dedi-
cated Boundary Scan
pins.
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SingleStep Debugger - Xilinx Edition

The SingleStep Debugger - Xilinx Edition provides all the embedded 
IBM Power PC 405 processor SW debugging functionality, including 
a high-level of hardware awareness

SingleStep Debugger with vision, Xilinx Edition, from Wind River is a 
comprehensive hardware/software debugging solution. It includes 
the following features:

• A complete hardware-assisted debugging solution for board 
bring-up, driver/firmware development and C/C++ application 
debugging in control via

• BDM/JTAG port 

• Unique processor specific register interface to enable configuring 
and initializing integrated peripherals 

• On-chip hardware breakpoint support 

• Real-time target control via on-chip debugging technology 

• High-speed binary downloads to target 

• Built in hardware diagnostics 

• Flash memory programming 

• Statistical performance analysis (Full Edition) 

• Support for Diab and gnu compilers 

• Available LA TRACE option provides real-time trace through 
integration with logic analyzers 

• RTOS API kit enables creation of kernel awareness libraries for 
the RTOS of your choice (Full Edition) 

• Off the shelf, kernel awareness libraries available for VxWorks, 
pSOS+ and other third party RTOS (Full Edition) 

• Rich command line interface plus a powerful scripting language 
for automated tests 

• JTAG programming window to debug multiple devices on a scan 
chain 

• Integrated support for task-aware debugging with dedicated 
window per task views enables effective debugging of 
multitasking applications 
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IBM PowerPC 405GP Specific Features 

• Register Definition File to display all IBM PowerPC 405 registers 
in the register window 

• Hardware Breakpoints: Full support for hardware breakpoints as 
implemented by the PPC405GP including 4 hardware instruction 
address, 2 data instruction address and 2 data value breakpoints 

• On-Chip trace: Support for instruction completion, branch taken, 
interrupt, trap, instruction stream exceptions in SingleStep with 
vision 

• Support for instruction completion, branch taken, exception 
taken, trap instruction, unconditional, instruction address 
compare, data address compare, data value compare and 
imprecise debug events 

Other Software Tools
The following are other useful software development/debugging 
tools. Contact the individual tool vendors for information on these 
tools.

• Endeavor Interactive Co-simulation Model for Virtex-II Pro Post-
simulation Environment. More information on Endeavor is 
available at http://www.endeav.com

• Mentor Graphics Seamless Hardware/Software Co-Verification 
Environment. 

Embedded systems rely on an integrated relationship between 
software and hardware. To address this problem, Mentor 
Graphics has developed the Seamless Co-Verification 
Environment (CVE). Seamless CVE enables designers to link 
software execution to the hardware simulation and co-simulate 
the hardware and software. This tool allows software integration 
early in the design cycle, without having to wait for the hardware 
prototype to be built. More information on Seamless is available 
at http://www.mentor.com/seamless/.
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Chapter 6

Simulating Your Design

This chapter describes the basic HDL simulation flow using the 
Alliance software. It includes the following sections.

• “Introduction”

• “Adhering to Industry Standards”

• “Simulation Points”

• “VHDL/Verilog Libraries and Models”

• “Compiling HDL Libraries”

• “Running NGD2VHDL and NGD2VER”

• “Understanding the Global Reset and Tristate for Simulation”

• “Simulating VHDL”

• “Simulating Verilog”

• “RTL Simulation Using Xilinx Libraries”

• “Timing Simulation” 

• “Simulation Flows” 

• “IBIS” 

• “STAMP”

• “Debugging Timing Problems”
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Introduction
Increasing design size and complexity, as well as recent improve-
ments in design synthesis and simulation tools, have made HDL the 
preferred design language of most integrated circuit designers. The 
two leading HDL synthesis and simulation languages today are 
Verilog and VHDL. Both of these languages have been adopted as 
IEEE standards.

The Xilinx implementation tools software is designed to be used with 
several HDL synthesis and simulation tools that provide a solution 
for programmable logic designs from beginning to end. The Xilinx 
software provides libraries, netlist readers, and netlist writers along 
with the powerful place and route software that integrates with your 
HDL design environment on PC and UNIX workstation platforms.

Adhering to Industry Standards
The standards in the following table are supported by the Xilinx 
simulation flow.

The Xilinx Series software currently supports the Verilog IEEE 1364 
2001 Standard, VHDL IEEE Standard 1076-1993 and IEE Standard 
1076.4-2000 for Vital (Vital 2000), and SDF version 3.0.

Note Although the Xilinx HDL netlisters produce IEEE-STD-1076-93 
VHDL code or IEEE-STD-1364-2001 Verilog code, that does not 
restrict the use of newer or older standards for the creation of 
testbenches or other simulation files. If the simulator being used 
supports both older and newer standards, then generally, both 
standards can be used in these simulation files. Be sure to indicate to 
the simulator during code compilation which standard was used for 
the creation of the file.

Table 6-1  Standards Supported by Xilinx Simulation Flow

Description Version

VHDL Language IEEE-STD-1076-1993

VITAL Modeling Standard IEEE-STD-1076.4-2000

Verilog Language IEEE-STD-1364-2001

Standard Delay Format (SDF) OVI 3.0

Std_logic Data Type IEEE-STD-1164-93
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Xilinx currently tests and supports the following simulators for 
VHDL and Verilog simulation:

• VHDL

♦ Model Technology ModelSim

♦ Cadence NC-VHDL

♦ Synopsys Scirocco

• Verilog

♦ Model Technology ModelSim

♦ Cadence Verilog-XL

♦ Cadence NC-Verilog

♦ Synopsys VCS

In general, you should run the most current version of the simulator 
available to you.

Xilinx develops its libraries and simulation netlists using IEEE 
standards so you should be able to use most modern VHDL and 
Verilog simulators. Check with your simulator vendor before you 
start to confirm that the proper standards are supported by your 
simulator, and to verify the proper settings for your simulator.

The Xilinx VHDL libraries are tied to the IEEE-STD-1076.4-2000 
VITAL standard for simulation acceleration. This VITAL 2000 is in 
turn based on the IEEE-STD-1076-93 VHDL language. Because of this 
the Xilinx libraries must be compiled as 1076-93.

VITAL libraries include some additional processing for timing checks 
and back-annotation styles. The UNISIM library turns these timing 
checks off for unit delay functional simulation. The SIMPRIM back-
annotation library keeps these checks on by default to allow accurate 
timing simulations.
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Simulation Points
Xilinx supports functional and timing simulation of HDL designs at 
five points in the HDL design flow. The “Primary Simulation Points 
for HDL Designs” figure below shows the points of the design flow. 
All five points are described in the following section.

1. Register Transfer Level (RTL) simulation, which may include the 
following:

♦ RTL Code

♦ Instantiated UNISIM library components

♦ XilinxCoreLib models (CORE Generator)

2. Post-synthesis functional simulation, which may include one of 
the following (Optional):

♦ Gate-level netlist containing UNISIM library components 
(written by the synthesis tool)

♦ XilinxCoreLib models (CORE Generator)

3. Post-NGDBUILD Simulation (Optional):

♦ Gate-level netlist containing SIMPRIM library components

4. Post-Map with partial back-annotated timing without routing 
delays, which may include the following (Optional):

♦ Gate-level netlist containing SIMPRIM library components

♦ Standard Delay Format (SDF) files

5. Post-Place and Route with full back-annotated timing, which 
may include the following:

♦ Gate-level netlist containing SIMPRIM library components

♦ Standard Delay Format (SDF) files
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Figure 6-1  Primary Simulation Points for HDL Designs
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The Post-NGDBuild and Post-MAP simulations can be used when 
the synthesis tool either cannot write VHDL or Verilog, or if the 
netlist is not in terms of UNISIM components.

These Xilinx simulation points are described in detail in the following 
sections. The libraries required to support the simulation flows are 
described in detail in the ““VHDL/Verilog Libraries and Models” 
section. The flows and libraries now support closer functional equiv-
alence of initialization behavior between functional and timing simu-
lations. 

Different simulation libraries are used to support simulation before 
and after running NGDBuild. Prior to NGDBuild, your design is 
expressed as a UNISIM netlist containing Unified Library compo-
nents that represents the logical view of the design. After NGDBuild, 
your design is a netlist containing SIMPRIMs represents the physical 
view of the design. Although these library changes are fairly trans-
parent, there are two important considerations to keep in mind: first, 
you must specify different simulation libraries for pre- and post-
implementation simulation, and second, there are different gate-level 
cells in pre- and post-implementation netlists.

For Verilog, the Standard Delay Format (SDF) file is automatically 
read when the simulator compiles the Verilog simulation netlist. 
Within the simulation netlist there is the Verilog system task 
$sdf_annotate, which specifies the name of the SDF file to be read.

For VHDL, the user specifies the location of the SDF file and the 
instance to annotate it to. The method for doing so is different 
depending on the simulator being used. Typically, a command line or 
GUI switch is used to read the SDF file.

Table 6-2  Five Simulation Points in HDL Design Flow

Simulation 
UNISIM

XilinxCoreLib 
Models

SIMPRIM SDF

1. RTL X X

2. Post-Synthesis (Optional) X X

3. Functional Post-
NGDBuild (Optional)

X

4. Functional Post-MAP 
(Optional)

X X

5. Post-Route Timing X X
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Register Transfer Level (RTL)
The RTL-level (behavioral) simulation allows the user to verify or 
simulate a description at the system or chip level. This first pass 
simulation is typically performed to verify code syntax and to 
confirm that the code is functioning as intended. At this step, no 
timing information is provided and simulation should be performed 
in unit-delay mode to avoid the possibility of a race condition.

RTL simulation is not architecture-specific unless the design contains 
instantiated UNISIM, or CORE Generator components. To support 
these instantiations, Xilinx provides the UNISIM and XilinxCoreLib 
libraries. The user can instantiate CORE Generator components if the 
user does not want to rely on the module generation capabilities of 
the synthesis tool, or if the design requires larger memory structures.

A general suggestion for the initial design creation is to keep the code 
behavioral. Avoid instantiating specific components unless necessary. 
This allows for more readable code, faster and simpler simulation, 
code portability (the ability to migrate to different device families), 
and code reuse (the ability to use the same code in future designs). 
However, you may find it necessary to instantiate components if the 
component is not inferrable (i.e. DCM, GT, PPC405, etc.), or in order 
to control the mapping, placement or structure of a function.

Post-Synthesis (Pre-NGDBuild) Gate-Level 
Simulation

Most synthesis tools have the ability to write out a post-synthesis 
HDL netlist for a design. If the VHDL or Verilog netlists are written 
for UNISIM library components, you may then use the netlists to 
simulate the design and evaluate the synthesis results. However, 
Xilinx does not support this method if the netlists are written in terms 
of the vendor’s own simulation models.

The instantiated CORE Generator models are used for any post-
synthesis simulation because these modules are processed as a “black 
box” during synthesis. It is important that you maintain the consis-
tency of the initialization behavior with the behavioral model used 
for RTL, post-synthesis simulation, and the structural model used 
after implementation. In addition, the initialization behavior must 
work with the method used for synthesized logic and cores.
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Post-NGDBuild (Pre-Map) Gate-Level Simulation
The post-NGDBuild (pre-map) gate-level functional simulation is 
used when it is not possible to simulate the direct output of the 
synthesis tool. This occurs when the tool cannot write UNISIM-
compatible VHDL or Verilog netlists. In this case, the NGD file 
produced from NGDBUILD is the input into one of the Xilinx simula-
tion netlisters, NGD2VER or NGD2VHDL. NGD2VER and 
NGD2VHDL create a structural simulation netlist based on SIMPRIM 
models. 

Like post-synthesis simulation, pre-NGDBuild simulation allows you 
to verify that your design has been synthesized correctly, and you can 
begin to identify any differences due to the lower level of abstraction. 
Unlike the post-synthesis pre-NGDBuild simulation, there are GSR 
and GTS nets that must be initialized, just as for post-map and post-
par simulation.

Post-Map Partial Timing (CLB and IOB Block Delays)
You may also perform simulation after mapping the design. Post-
Map simulation occurs before placing and routing. This simulation 
will include the block delays for the design but not the routing 
delays. This is generally a good metric to test whether the design is 
meeting the timing requirements before additional time is spent 
running the design through a complete place and route.

As with the post-NGDBuild simulation, NGD2VER or NGD2VHDL 
is used to create the structural simulation netlist based on SIMPRIM 
models.

When you run one of the simulation netlister tools, NGD2VER or 
NGD2VHDL, an SDF file is created. The delays for the design are 
stored in the SDF file which contains all block or logic delays. 
However, it will not contain any of the routing delays for the design 
since the design has not yet been placed and routed.

Timing Simulation Post-Place and Route Full Timing 
(Block and Net Delays)

After your design has completed the place and route process in the 
Xilinx Implementation Tools, a timing simulation netlist can be 
created. It is not until this stage of design implementation that you 
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will start to see how your design will behave in the circuit. The 
overall functionality of the design was defined in the beginning 
stages, but it is not until the design has been placed and routed that 
all of the timing information of the design can be accurately calcu-
lated.

The previous simulations that used NGD2VER or NGD2VHDL 
created a structural netlist based on SIMPRIM models. However, this 
netlist will come from the placed and routed NCD file. This netlist 
has GSR and GTS nets that must be initialized. For more information 
on initializing the GSR and GRTS nets, please refer to the “Under-
standing the Global Reset and Tristate for Simulation” section in this 
chapter.

When you run timing simulation, an SDF file is created as with the 
post-MAP simulation. However, this SDF file contains all block and 
routing delays for the design.

Providing Stimulus
Before simulation is performed, you should create a testbench or test 
fixture to apply the stimulus to the design. A testbench is HDL code 
written for the simulator that will instantiate the design netlist(s), 
initialize the design and then apply stimuli to verify the functionality 
of the design. You can also set up the testbench to display the desired 
simulation output to a file, waveform or screen. 

The testbench has many advantages over interactive simulation 
methods. For one, it allows repeatable simulation throughout the 
design process. It also provides documentation of the test conditions. 

There are several methods to create a testbench and simulate a 
design. A testbench can be very simple in structure and sequentially 
apply stimulus to specific inputs. A testbench may also be very 
complex, including subroutine calls, stimulus read in from external 
files, conditional stimulus or other more complex structures.

The ISE tools will create a template testbench containing the proper 
structure, library references, and design instantiation based on your 
design files from Project Navigator. This greatly eases testbench 
development at the beginning stages of the design. 

Alternately, you may use the HDL Bencher tool in ISE to 
automatically create a testbench by drawing the intended stimulus 
Synthesis and Simulation Design Guide 6-9



Synthesis and Simulation Design Guide
and the expected outputs in a waveform viewer. Please refer to the 
ISE and/or HDL Bencher Online Help for more information. 

With yet another method, you can use NGD2VER and NGD2VHDL 
to create a testbench file. The –tf switch for NGD2VER or –tb switch 
for NGD2VHDL will create the test fixture or testbench template. The 
Verilog test fixture file has a .tv extension, and the VHDL test bench 
file has a .tvhd extension.

Xilinx recommends giving the name testbench to the main module or 
entity name in the testbench file. This name is consistent with the 
default name used by ISE for calling the testbench when it invokes 
the simulator.

VHDL/Verilog Libraries and Models
The five simulation points listed previously require the UNISIM, 
CORE Generator (XilinxCoreLib), and SIMPRIM libraries. 

The first point, RTL simulation, is a behavioral description of your 
design at the register transfer level. RTL simulation is not architec-
ture-specific unless your design contains instantiated UNISIM, or 
CORE Generator components. To support these instantiations, Xilinx 
provides a functional UNISIM library and a CORE Generator Behav-
ioral XilinxCoreLib library. You can also instantiate CORE Generator 
components if you do not want to rely on the module generation 
capabilities of your synthesis tool, or if your design requires larger 
memory structures.

The second simulation point is post-synthesis (pre-NGDBuild) gate-
level simulation. If the UNISIM library and CORE Generator compo-
nents are used, then both the UNISIM and the XilinxCorLIb libraries 
must be used. The synthesis tool must write out the HDL netlist 
using UNISIM primitives. Otherwise, the synthesis vendor will 
provide its own post-synthesis simulation library.
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The third, fourth, and fifth points (post-NGDBuild, post-map, and 
post-route) use the SIMPRIM library. The following table indicates 
what library is required for each of the five simulation points

Locating Library Source Files
The following table provides information on the location of the simu-
lation library source files, as well as the order for a typical compila-
tion.

Table 6-3  Simulation Phase Library Information

Simulation Point Compilation Order of Library Required

RTL UNISIM
XilinxCoreLib

Post-Synthesis UNISIM
XilinxCoreLib

Post-NGDBuild SIMPRIM

Post-MAP SIMPRIM

Post-Route SIMPRIM

Table 6-4  Simulation Library Source Files

 Library

Location of Source Files Compile Order

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL

UNISIM
Spartan-II, 
Spartan-IIE, 
Virtex, 
Virtex-E,
Virtex-II, 
Virtex-II Pro

$XILINX/
verilog/src/
unisims

 $XILINX/
vhdl/src/
unisims

No special 
compilation 
order 
required for 
Verilog 
libraries

Required;
typical compilation order: 
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd

UNISIM
9500,
CoolRunner,
CoolRunner-II

$XILINX/
verilog/src/
uni9000

 $XILINX/
vhdl/src/
unisims

No special 
compilation 
order 
required for 
Verilog 
libraries

Required;
typical compilation order: 
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd
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Using the UNISIM Library 
The UNISIM Library, used for functional simulation only, contains 
default delays of 100 ps for most components. This library includes 
all of the Xilinx Unified Library primitives that are inferred by most 
synthesis tools. In addition, the UNISIM Library includes primitives 
that are commonly instantiated, such as DCMs, BUFGs and GTs. You 
should generally infer most design functionality using behavioral 
RTL code unless the desired component is not inferrable by your 
synthesis tool, or you wish to take manual control of mapping and/
or placement of a function.

UNISIM Library Structure

The UNISIM library directory structure is different for VHDL and 
Verilog. There is only one VHDL library for all Xilinx technologies 
because the implementation differences between architectures are not 
important for unit delay functional simulation. There are only a few 
cases where functional differences occur. 

XilinxCoreLib 
(FPGA 
Families only)

$XILINX/
verilog/src/
XilinxCoreLib

$XILINX/
vhdl/src/
XilinxCoreLib

No special 
compilation 
order 
required for 
Verilog 
libraries

Compilation order 
required;
See the 
vhdl_analyze_order file 
located in $XILINX/
vhdl/src/Xilinx-
CoreLib/ for the required 
compile order

SIMPRIM
(Device
Independent)

$XILINX/
verilog/src/
simprims

 $XILINX/
vhdl/src/
simprims

No special 
compilation 
order 
required for 
Verilog 
libraries

Required;
typical compilation order:
simprim_Vcomponents.v
hd
simprim_Vpackage.vhd
simprim_VITAL.vhd 

Table 6-4  Simulation Library Source Files

 Library

Location of Source Files Compile Order

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL
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For Verilog, each library component is specified in a separate file. The 
reason for this is to allow automatic library expansion within Verilog-
XL using the `uselib compiler directive or the –y library specification 
switch. All Verilog module names and file names are all upper case 
(i.e. module BUFG would be BUFG.v, module IBUF would be 
IBUF.v). Since Verilog is a case-sensitive language, ensure that all 
UNISIM primitive instantiations adhere to this upper-case naming 
convention.

The VHDL UNISIM Library source files are found in $XILINX/vhdl/
src/unisims. The following is a list of VHDL UNISIM Library files.

• unisim_VCOMP.vhd (component declaration file)

• unisim_VPKG.vhd (package file)

• unisim_VITAL.vhd (model file)

The following is a list of Verilog UNISIM Library locations.

• $XILINX/verilog/src/unisims (used for Spartan-II, Spartan-IIE, 
Virtex, Virtex-E, Virtex-II, Virtex-II Pro designs)

• $XILINX/verilog/src/uni9000 (used for CPLDs (9500XL/XV, 
XPLA3, CoolRunner-II))

Using the CORE Generator XilinxCoreLib Library
The Xilinx CORE Generator is a graphical intellectual property 
design tool for creating high-level modules like FIR Filters, FIFOs, 
CAMs as well as other advanced IP. You can customize and pre-
optimize modules to take advantage of the inherent architectural 
features of Xilinx FPGA devices, such as block multipliers, SRLs, fast 
carry logic and on-chip, single-port or dual-port RAM. You can also 
select the appropriate HDL model type as output to integrate into 
your HDL design.

The CORE Generator HDL library models are used for RTL simula-
tion. The models do not use library components for global signals.

CORE Generator Library Structure

The VHDL CORE Generator library source files are found in 
$XILINX/vhdl/src/XilinxCoreLib.

The Verilog CORE Generator library source files are found in 
$XILINX/verilog/src/XilinxCoreLib.
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Using the SIMPRIM Library
The SIMPRIM library is used for post Ngdbuild (gate level func-
tional), post-Map (partial timing), and post-place-and-route (full 
timing) simulations. This library is architecture independent.

SIMPRIM Library Structure

The VHDL SIMPRIM Library source files are found in $XILINX/
vhdl/src/simprims.

The Verilog SIMPRIM Library source files are found in $XILINX/
verilog/src/simprims.

Compiling HDL Libraries
Most simulators require you to compile the HDL libraries before you 
can use them for design simulations. The advantages of compiling 
HDL libraries are speed of execution and economy of memory.

Xilinx provides an application, to specifically compile the HDL 
libraries for all Xilinx-supported simulators. This utility will compile 
the UNISIM, XilinxCoreLib and SIMPRIM libraries for all supported 
device architectures.

Using compxlib
To compile your HDL libraries using compxlib, follow these steps:

1. Set the XILINX environment variable (if not already set), using 
the following command:

Unix:

setenv XILINX path_to_xilinx_software 

Windows:

Open the "System Properties/Environment Variables" dialog box 
and set the  XILINX to 

path_to_XILINX_software

Note Compxlib also supports multiple paths in the XILINX 
variable. The multiple paths can be defined by separating each 
path with a colon ":" as in the following example. 
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2. Add $XILINX/bin/sol to the PATH variable (if not already set) as 
in the following example:

Unix:

set path = ($XILINX/bin/platform $path) 

Note platform can be either sol for 32-bit Solaris, sol64 for 64-bit 
Solaris or nt if using Windows or Linux OS.

Windows:

In the "System Properties/Environment Variables" dialog box, 
add %XILINX%\bin\nt to the PATH variable.

3. Run compxlib by using the following command: 

compxlib -help 

Note The -help option displays a brief description for the options 
available. 

Note Each simulator uses certain environment variables which 
must be set before invoking compxlib. Consult your simulator 
documentation to ensure that the environment is properly set up 
to run your simulator.

4. Run compxlib tool using the following syntax:

compxlib [-h] -s simulator -f [family[:<lib>], 
family[:<lib>], ... | all] [-l <language>] 
[-o output_directory] [-p <simulator_path>] 
[-w]

The following is an example of a command for compiling Xilinx 
libraries for MTI_SE: 

compxlib -s mti_se -f virtex -l verilog -o

This command will compile all Verilog based libraries on 
ModelSim SE for the Virtex family in the current working 
directory. 

The compiled results will be saved in the following directories: 

./unisim_ver 

./XilinxCoreLib_ver

./simprim_ver
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Running NGD2VHDL and NGD2VER
Xilinx provides programs that will create a netlist file from your 
VHDL or Verilog NGD file. You can run either netlist writer from the 
Project Navigator, XFLOW, or the command line. Each method is 
described below.

Creating a Simulation Netlist
You can create a timing simulation netlist from Project Navigator, 
XFLOW, or from the command line, as described in this section.

From Project Navigator

1. Highlight the top level design in the Sources in Project window.

2. In the Processes for Current Source window, click on the “+” 
sign next to the Implement Design process, and then click on the 
“+” sign next to the Place & Route process.

3. Double-click on Generate Post Place & Route Simulation 
Model. Project Navigator will now run through the steps 
required to produce the back-annotated simulation netlist.

4. If any default options need to be changed, right-click on the 
Generate Post Place & Route Simulation Model process and 
select Properties. The following options can be chosen from this 
window:

Note Project Navigator will only show the options that apply to 
your specific design flow (i.e if you have created a Verilog project, 
it will only show you options for creating a Verilog netlist).

♦ Simulation Model Target

The Simulation Model Target property allows you to select 
the target simulator for the simulation netlist. All supported 
simulators are listed as well as a "generic" Verilog netlist for 
other simulators. 

♦ Post Translate/Map/Place & Route Simulation Model Name

The Post Translate Simulation Model Name property allows 
you to designate a name for the generated Simulation netlist. 
This only effects the file name for the written netlist and does 
not effect the entity or module name.
6-16 Xilinx Development System



Simulating Your Design
By default, this field is left blank, and the simulation netlist 
name will be top_level_name_timesim.

♦ Correlate Simulation Data to Input Design

The Correlate Simulation Data to Input Design property uses 
an optional ngm_file file during the back-annotation process. 
This is a design file produced by MAP, that contains 
information about the original design hierarchy specified by 
the KEPP_HIERARCHY constraint.

The By default, this property is set to On (checkbox is 
checked)

♦ Bring Out Global Set/Reset Net as a Port

The Bring Out Global Set/Reset Net as a Port property 
causes ISE to bring out the Global Reset signal (which is 
connected to all flip-flops and latches in the physical design) 
as a port on the top-level entity in the output VHDL file. 
Specifying the port name allows you to match the port name 
you used in the front-end if a ROCBUF component was used. 
This option should only be used if the global set/reset net is 
not driven by a STARTUP/STARTBUF block. For more 
information on this option, refer to the “Understanding the 
Global Reset and Tristate for Simulation” section in this 
manual.

♦ Global Set/Reset Port Name

The Global Set/Reset Port Name property allows you to 
specify a port name to match the port name you used in the 
front-end if a ROCBUF component was used.

♦ Bring Out Global Tristate Net as a Port

The Bring out Global Tristate Net as a Port option causes ISE 
to bring out the global tristate signal (which forces all FPGA 
outputs to the high-impedance state) as a port on the top-
level entity in the output simulation file. Specifying the port 
name allows you to match the port name you used in the 
front-end if being driven by a TOCBUF. This option should 
only be used if the global tristate net is not driven by a 
STARTUP/STARTBUF block. For more information on this 
option, refer to the “Understanding the Global Reset and 
Tristate for Simulation” section in this manual.
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♦ Global Tristate Port Name

The Global Tristate Port Name property allows you to specify 
a port name to match the port name you used in the front-
end if a TOCBUF component was used.

♦ Generate Testbench File (VHDL Only)

The Generate Testbench File property will create a test bench 
file. The file has a .tb extension and will display in the 
"Sources in Project" window.

♦ Generate Testfixture File (Verilog Only)

The Generate Testfixture File property generates a test fixture 
file. The file has a .tv extension, and it is a ready-to-use 
template test fixture Verilog file bases on the input NGD or 
NGA file.

The following options will appear if the Advanced Process Settings 
are enabled in Project Navigator.

♦ Rename Top Level Entity to (VHDL Only)

This option allows you to change the name of the top-level 
entity in the structural VHDL file. By default, the output files 
inherit the top entity name from the input design file.

♦ Rename Top Level Module to (Verilog only)

This option allows you to change the name of the top-level 
module in the structural Verilog file. By default, the output 
files inherit the top module name from the input design file.

♦ Rename Top Level Architecture To (VHDL Only)

This option allows you to rename the architecture name 
generated by ISE. The default architecture name for each 
entity in the netlist is STRUCTURE.

♦ Change Device Speed To

This option allows you to change the targeted speed grade 
for the output simulation netlist without re-running place 
and route. 

♦ Retain Hierarchy

This option, when disabled, will remove all hierarchy in the 
output simulation, and write out a flat design.
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The default for this option is ON.

♦ Rename Design Instance in Testbench File To

This option specifies the name of the top-level design 
instance name appearing within the output testbench file if 
the "Generate Testbench/Testfixture File" option is selected. 
The option allows you to match the top-level instance name 
to the name specified in your RTL testbench file. The default 
name for the testbench instance is UUT.

♦ Reset on Configuration (ROC) Pulse Width (VHDL Only)

This option specifies the pulse width, in nanoseconds, for the 
ROC component in the simulation netlist. You must specify a 
positive integer to stimulate the component properly. This 
option is disabled if you are controlling the global reset via a 
port (using the "Bring Out Global Set/Reset Net as a Port" 
option). For more information on this option, refer to the 
“Understanding the Global Reset and Tristate for 
Simulation” section in this manual. By default, the ROC 
pulse width is set to 100 ns.

♦ Tristate on Configuration (TOC) Pulse Width (VHDL Only)

This option specifies the pulse width, in nanoseconds, for the 
TOC component. You must specify a positive integer to 
stimulate the component properly. This option is disabled if 
you are controlling the global tristate via a port (using the 
"Bring Out Global Tristate Net as a Port" option). For more 
information on this option, refer to the “Understanding the 
Global Reset and Tristate for Simulation” section in this 
manual. By default, the TOC pulse width is set to 0 ns.

♦ Include 'uselib Directive in Verilog File (Verilog Only)

The Include 'uselib Directive in Verilog File property causes 
ISE to write a library path pointing to the SIMPRIM library 
into the output Verilog (.v) file. In general, Xilinx only 
suggests that you use this option with the Verilog-XL 
simulator when simulations will be performed on the same 
network as where the ISE software exists. By default this field 
is set to off (checkbox is blank)

♦ Path Used in $SDF_annotate (Verilog Only)
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This option allows you to specify a path to the SDF file that 
you want written to the $sdf_annotate function in the Verilog 
netlist file. If a full path is not specified, it writes the full path 
of the current work directory and the SDF file name to the 
$sdf_annotate file.

ISE only generates an SDF file if the input is an NGA file, 
which contains timing information. This option is allowed on 
an NGA file but not an NGD file.

The default path for the SDF file is in the same directory in 
which the Verilog simulation netlist resides.

♦ Global Disable of X-generation for Simulation (VHDL Only)

This option is used to disable X-generation by all registers in 
the design when a timing violation occurs. If this option is 
set, all registers in the design will retain their last value when 
a timing violation occurs. For more information on this 
option, refer to the “Disabling ‘X’ Propagation” section in this 
manual. The default value for this option is OFF.

From XFLOW

To display the available options for XFLOW, and for a complete list of 
the XFLOW option files, type "flow" at the prompt without any 
arguments. For complete descriptions of the options and the option 
files, see the Development System Reference Guide. 

1. Open a command terminal and change directory to the project 
directory. 

2. Type the following at the command prompt: 

♦ To create a functional simulation (Post NGD) netlist: 

> xflow -fsim <option_file>.opt <design_name> 

♦ To create a timing simulation (Post PAR) netlist: 

> xflow -tsim <option_file>.opt <design_name> 

XFLOW will run the appropriate programs with the options specified 
in the option file. To change the options, run xflow first with the 
-norun switch to have xflow copy the option file(s) to the project 
directory. Then edit the appropriate option file to modify the run 
parameters for the flow. For more information on running XFLOW, 
see the Development System Reference Guide. 
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From Command Line

♦ Post-NGD simulation

To run a post NGD simulation, perform the following 
command line operations:

ngdbuild options design

For Verilog:

ngd2ver options design.ngd

For VHDL: 

ngd2vhdl options design.ngd

♦ Post MAP simulation

To run a post MAP simulation perform the following 
command-line operations:

ngdbuild options design

map options design.ngd

ngdanno options design.ncd [design.ngm]

For Verilog:

ngd2ver options design.nga

For VHDL: 

ngd2vhdl options design.nga
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♦ Post PAR simulation

To run a post PAR simulation the following command line 
operations should be performed:

ngdbuild options design

map options design.ngd

par options design_map.ncd

ngdanno options design.ncd [design.ngm]

For Verilog:

ngd2ver options design.nga

For VHDL: 

ngd2vhdl options design.nga

Disabling ‘X’ Propagation
During a timing simulation, when a timing violation occurs, the 
default behavior of a latch, register, RAM or other synchronous 
element is to output an ’X’ to the simulator. The reason for this is that 
when a timing violation occurs, it is not known what the actual 
output value should be. The output of the register could retain its 
previous value, update to the new value, or perhaps go metastable in 
which a definite value is not settled upon until sometime after the 
clocking of the synchronous element. Since this value cannot be 
determined, accurate simulation results cannot be guaranteed, and so 
the element will output an ’X’ to represent an unknown value. The ’X’ 
output will remain until the next clock cycle in which the next 
clocked value will update the output if another violation does not 
occur.

Sometimes this situation can have a drastic effect on simulation. For 
example, an ’X’ generated by one register can be propagated to others 
on subsequent clock cycles, causing large portions of the design 
under test to become ’unknown’. If this happens on a synchronous 
path in the design, you can ensure a properly operating circuit by 
analyzing the path, and fixing any timing problems associated with 
this or other paths in the design. If however, this path is an asynchro-
nous path in the design, and you cannot avoid timing violations, you 
can disable the ’X’ propagation on synchronous elements during 
timing violations, so that these elements will not output an ’X’. When 
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’X’ propagation is disabled, the previous value is retained at the 
output of the register. Please understand that in the actual silicon, the 
register may have very well changed to the ’new’ value, and that 
disabling ’X’ propagation may yield simulation results that do not 
match the silicon behavior. Exercise caution when using this option; 
you should only use it when you cannot otherwise avoid timing 
violations.

Using the ASYNC_REG Attribute

ASYNC_REG is a new constraint in the Xilinx software that helps 
identify asynchronous registers in the design and disable ’X’ propaga-
tion for those particular registers. If the attribute ASYNC_REG is 
attached to a register in the front-end design by either an attribute in 
HDL code or by a constraint in the UCF, during timing simulation, 
those registers will retain the previous value, and will not output an 
’X’ to simulation. A timing violation error should still occur, so use 
caution as the new value may have very well been clocked in.

The following are limitations to the ASYNC_REG attribute for this 
release:

• Applies only to Virtex-II and Virtex-II Pro architectures.

• Applies only to CLB and IOB registers and latches. 

• It is invalid on RAMS, SRLs or other synchronous elements.

If clocking in asynchronous data cannot be avoided, it is suggested 
that you only do so on IOB or CLB registers. Clocking in asynchro-
nous signals to RAM or SRL elements has less deterministic results, 
and therefore should be avoided. Refer to the Constraints Guide for 
more information on using the ASYNC_REG constraint. 

Using Global Switches

Use global switches that disable ’X’ propagation for all components in 
the simulation. 

Verilog

For Verilog, use the +no_notifier switch from within your simulator. 
When a timing violation occurs, the simulator puts out a message, 
but the synchronous element will retain its previous value.
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VHDL

For VHDL if the simulator does not have a switch to disable ’X’ 
propagation, NGD2VHDL can create a netlist in which this behavior 
is disabled. By invoking NGD2VHDL with the –xon FALSE switch, 
the previous value should be retained during a timing violation. If 
the simulation netlist is created within the ISE environment, use the 
"Global Disable of X-generation for Simulation" option in the 
advanced process properties options for Generate Post-Map 
Simulation Model.

Use With Care

Xilinx highly recommends that you only disable ‘X’ propagation on 
paths that are truly asynchronous where it is impossible to meet 
synchronous timing requirements. This capability is present for simu-
lation in the event that timing violation cannot be avoided, such as 
when a register must input asynchronous data. Use extreme caution 
when disabling 'X' propagation as simulation results may no longer 
properly reflect what is happening in the silicon. 

MIN/TYP/MAX Simulation
The Standard Delay Format (SDF) file allows you to specify three sets 
of delay values for simulation. These are Minimum, Typical, and 
Maximum (worst case), typically abbreviated as MIN:TYP:MAX. Set 
the appropriate switch in your simulator to specify which set of delay 
values the simulator will use. Consult your simulator's 
documentation to determine the appropriate switch. By default, 
Xilinx uses two sets of delay values generated by NGD2VHDL or 
NGD2VER and written to the SDF files. Xilinx uses the worst case 
values for the speed grade of the target architecture at the maximum 
operating temperature, the minimum voltage, and various process 
variations to populate the MAX and TYP delay sets in the SDF file. 
Use this value set for most timing simulation runs to test circuit 
operation and timing.

The MIN field in the SDF file contains values derived from the 
relative minimums for the device architecture if they are available.

Relative minimum delays are minimum delays calculated for the 
target architecture and speed grade at the specified temperature and 
voltage parameters for the design. By default, the worst case values 
are used in which case the relative minimum reported will be the 
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fastest a particular path can travel when the device is operating at the 
worst case temperature and voltage requirements. If the designer 
specifies pro-rated values for temperature and/or voltage, the 
relative minimum value will adjust accordingly so that it will report 
the minimum delays when operating at the specified voltage and/or 
temperature. Relative minimums are not supported for all 
architectures. 

To check to see if a particular device does support the reporting of 
relative minimums, execute the speedprint utility from a command 
prompt:

speedprint target_device

After running speedprint for the appropriate target device, you 
should see a line like the following if relative minimum data is 
available:

Relative Min data
This speedfile has relative minimum delay data that 

is used to compute external and internal setup 
and hold requirements.

Use the MIN delay values when doing a MIN simulation, as the 
relative MIN delays should give more meaningful results. These 
values should be closer to the practical minimum delays seen in most 
design scenarios. However, MIN values should not be used if 
absolute process minimum values are needed for verification. In that 
case, NGDANNO should be run with the -s min switch. 

When an NGA file is created from NGDANNO using the -s min 
switch, the resulting SDF file produced from NGD2VER or 
NGD2VHDL will have the absolute process minimums in all three 
SDF fields: MIN, TYP and MAX. Absolute process MIN values are the 
absolute fastest delays that a path can run in the target architecture 
given the best operating conditions: lowest temperature, highest 
voltage, best possible silicon. Generally, these process minimum 
delay values are only useful for checking board-level, chip-to-chip 
timing for high-speed data paths in best/worst case conditions.

By default, the worst case delay values are derived from the worst 
temperature, voltage, and silicon process for a particular target 
architecture. If better temperature and voltage characteristics can be 
ensured during the operation of the circuit, you can use prorated 
worst case values in the simulation to gain better performance 
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results. The default would apply worst case timing values over the 
specified TEMPERATURE and VOLTAGE within the operating 
conditions recommended for the device.

Prorating is a linear scaling operation. It applies to existing speed file 
delays, and is applied globally to all delays. The prorating 
constraints, VOLTAGE and TEMPERATURE, provide a method for 
determining timing delay characteristics based on known 
environmental parameters. 

The VOLTAGE constraint provides a means of prorating delay 
characteristics based on the specified voltage applied to the device. 
The UCF syntax is as follows:

VOLTAGE=value[V]

Where value is an integer or real number specifying the voltage and 
units is an optional parameter specifying the unit of measure. 

The TEMPERATURE constraint provides a means of prorating device 
delay characteristics based on the specified junction temperature. The 
UCF syntax is as follows:

TEMPERATURE=value[C|F|K]

Where value is an integer or a real number specifying the 
temperature. C, K, and F are the temperature units: F is degrees 
Fahrenheit, K is degrees Kelvin, and C is degrees Celsius, the default.

The resulting values in the SDF fields when using prorated 
TEMPERATURE and/or VOLTAGE values are prorated, relative 
minimums in the MIN field and prorated worst case values for the 
TYP and MAX fields. 

Refer to the The Programmable Logic Data Book to determine the 
specific range of valid operating temperatures and voltages for the 
target architecture. If the temperature or voltage specified in the 
constraint does not fall within the supported range, the constraint is 
ignored and an architecture specific default value is used instead. Not 
all architectures support prorated timing values. For simulation, the 
VOLTAGE and TEMPERATURE constraints will be processed from 
the UCF file into the PCF file. The PCF file must then be referenced 
when running NGDANNO in order to pass the operating conditions 
to the delay annotator. 

To generate a simulation netlist using prorating, type the following:
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ngdanno -p design.pcf design.ncd

For VHDL, enter the following:

ngd2vhdl [options] design.nga

For Verilog, enter the following:

ngd2ver [options] design.nga

Note Do not combine both minimum timing and prorating (-s min 
and -p). Combining both minimum values would override prorating, 
and result in issuing only absolute process MIN values for the 
simulation SDF file. Prorating may only be available for select FPGA 
families, and it is not intended for military and industrial ranges. It is 
applicable only within the commercial operating ranges.

Understanding the Global Reset and Tristate for 
Simulation

Xilinx FPGAs have dedicated routing and circuitry that connects to 
every register (flip-flops and latches) in the device. The set/reset 
circuitry pulses at the end of the configuration mode. This pulse is 
automatic and does not need to be programmed. All the flip-flops 
and latches receive this pulse through a dedicated global GSR (Global 
Set-Reset) net. The registers either set or reset, depending on how the 
registers are defined.

For some device families, it is important to address the built-in reset 
circuitry behavior in your designs starting with the first simulation to 
ensure that the simulations agree at the three primary points.

Xilinx recommends using a local reset instead of the dedicated GSR 
circuitry. This is because the implementation tools use the high-speed 

NGDANNO Option
MIN:TYP:MAX Field in SDF File 

Produced by NGD2VER or NGD2VHDL

default Relative-MIN:MAX:MAX

-s min Process MIN: Process MIN: Process MIN

Prorated voltage/
temperature in 
UCF/PCF

Prorated Relative MIN: Prorated: MAX: 
Prorated MAX
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backbone routing for Reset signals, thus making them faster and 
easier to analyze than the dedicated global routing that transports the 
GSR signal. 

If GSR behavior is not described, the chip will initialize during 
configuration, and the post-route netlist will include this net that 
must be driven during simulation. This section includes the method-
ology to describe this behavior, as well as the GTS behavior for 
output buffers.

In addition to the set/reset pulse, all output buffers are set to a high 
impedance state during configuration mode with the dedicated 
global output tristate enable (GTS) net. 

The GSR net receives a reset-on-configuration pulse from the initial-
ization controller, as shown in the following figure. 

Figure 6-2  Built-in FPGA Initialization Circuitry

This pulse occurs during the configuration mode of the FPGA. 
However, for ease of simulation, it is usually inserted at time zero of 
the test bench, before logical simulation is initiated. The pulse width 
is device-dependent and can vary widely, depending on process 
voltage and temperature changes. The pulse is guaranteed to be long 
enough to overcome all net delays on the reset special-purpose net. 
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The parameter for the pulse width is TPOR, as described in The 
Programmable Logic Data Book.

The tristate-on-configuration circuit shown in the “Built-in FPGA 
Initialization Circuitry” also occurs during the configuration mode of 
the FPGA. Just as for the reset-on-configuration simulation, it is 
usually inserted at time zero of the test bench before logical simula-
tion is initiated. The pulse drives all outputs to the tristate condition 
they are in during the configuration of the FPGA. All general-
purpose outputs are affected whether they are regular, tristate, or bi-
directional outputs during normal operation. This ensures that the 
outputs do not erroneously drive other devices as the FPGA is being 
configured. The pulse width is device-dependent and can vary 
widely with process and temperature changes. The pulse is guaran-
teed to be long enough to overcome all net delays on the GTS net. The 
generating circuitry is separate from the reset-on-configuration 
circuit. The pulse width parameter is TPOR, as described in The 
Programmable Logic Data Book. Simulation models use this pulse width 
parameter for determining HDL simulation for global reset and 
tristate circuitry.

If a global set/reset is desired for behavioral simulation, it must be 
included in the behavioral code. Any described register in the code 
must have a common signal that will asynchronously set or reset the 
register depending on the desired result. Similarly, if a global tristate-
state is desired for simulation, it should be described in the code as 
well.

Simulating VHDL

Defining Global Signals in VHDL
In VHDL designs, any signals that are stimulated or monitored from 
outside a module must be declared as ports. Global GSR and GTS 
signals are used to initialize the simulation and require access ports if 
controlled from the test bench. However, the addition of these ports 
makes the pre- and post-implementation versions of your design 
different, and your original test bench is no longer applicable to both 
versions of your design. Since the port lists for the two versions of 
your design are different, the socket in the test bench matches only 
one of them. To address this issue, five new cells are provided for 
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VHDL simulation: ROC, ROCBUF, TOC, TOCBUF, and STARTBUF 
architecture.

Verilog can simulate global signals, and these signals can be driven 
directly from the test bench. However, interpretive Verilog (such as 
Verilog-XL) and compiled Verilog (such as MTI, VCS or NC-Verilog) 
require a different approach for handling the libraries.

The VHDL global signal simulation methodology does not incorpo-
rate any ports into designs for simulators to mimic the device’s global 
reset (GSR) or global tristate (GTS) networks. These signals are not 
part of the cell’s pin list, do not appear in the netlist, and are not 
implemented in the resulting design. These global signals are 
mapped into the equivalent signals in the back-end simulation 
model. Using this methodology with schematic designs, you can fully 
simulate the silicon’s built-in global networks and implement your 
design without causing congestion of the general-purpose routing 
resources and degrading the clock speed.

Setting VHDL Global Set/Reset Emulation in 
Functional Simulation

When using the VHDL UNISIM library, it is important to control the 
global signals for reset and output tristate enable. If you do not 
control these signals, your timing simulation results may not match 
your functional simulation results because of initialization differ-
ences.

VHDL simulation does not directly support test bench driven 
internal global signals. If the test bench drives the global signal, a port 
is required. Otherwise, the global net must be driven by a component 
within the architecture.

Also, the register components do not have pins for the global signals 
because you do not want to wire to these special pre-laid nets. 
Instead, you want implementation to use the dedicated network on 
the chip.

The VHDL UNISIM library uses special components to drive the 
local reset and tristate enable signals. These components use the local 
signal connections to emulate the global signal, and also provide the 
implementation directives to ensure that the pre-routed wires are 
used.
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You can instantiate these special components in the RTL description 
to ensure that all functional simulations match the timing simulation 
with respect to global signal initialization. 

For functional simulation, the global reset and output tristate enable 
signals can be emulated in two ways:

• Instantiating the STARTUP architecture library component. This 
component is available for the Virtex, Virtex-E, Virtex-II, Virtex-II 
Pro, and Spartan-II families.

• Using local reset and tristate enable signals in the design. Special 
implementation directives are put on the nets to move them to 
special pre-routed nets for global signals.

Global Signal Considerations (VHDL)
The following are important considerations for VHDL simulation, 
synthesis, and implementation of global signals in FPGAs.

• The global signals have automatically generated pulses that 
always occur even if the behavior is not described in the front-
end description. The back-annotated netlist has these global 
signals, to match the silicon, even if the source design does not.

• Xilinx does not recommend using the GSR circuitry in place of 
the manual reset. This is because the Virtex, Virtex-II and 
Spartan-II device families offer a high-speed backbone routing 
for high fanout signals like system reset.This backbone route is 
faster than the dedicated GSR circuitry.

• The simulation and synthesis models for registers (flip-flops and 
latches) and output buffers do not contain pins for the global 
signals. This is necessary to maintain compatibility with sche-
matic libraries that do not require the pin to model the global 
signal behavior.

• VHDL does not have a standardized method for handling global 
signals that is acceptable within a VITAL-compatible library.

• Intellectual property cores from the CORE Generator are repre-
sented as behavioral models and require a different way to 
handle the global signal, yet still maintain compatibility with the 
method used for general user-defined logic.
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• The design is represented at different levels of abstraction during 
the pre- and post-synthesis and implementation phases of the 
design process. The solutions work for all three levels and give 
consistent results.

• The place and route tools must be given special directives to 
identify the global signals in order to use the built-in circuitry 
instead of the general-purpose logic.

GSR Network Design Cases
When defining a methodology to control a device’s global set/reset 
(GSR) network, you should consider the following three general 
cases.

Note Reset-on-Configuration for FPGAs is similar to Power-on-Reset 
for ASICs except it occurs during power-up and during configuration 
of the FPGA.

Case 1 is defined as follows.

• Automatic pulse generation of the Reset-On-Configuration signal

• No control of GSR through a test bench

• Involves initialization of the sequential elements in a design 
during power-on, or initialization during configuration of the 
device

• Need to define the initial states of a design’s sequential elements, 
and have these states reflected in the implemented and simulated 
design

Table 6-5  GSR Design Cases

Name Description

Case 1

Case 1A

Case 1B

Reset-On-Configuration pulse only; no user control of 
GSR
Simulation model ROC initializes synchronous 
elements
User initializes synchronous elements with ROCBUF 
model and simulation vectors

Case 2 User control of GSR after Power-on-Reset using an 
external port driving GSR

Case 3 Don’t Care
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• Two sub-cases

♦ In Case 1A, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real 
device does when power is first applied). 

♦ In Case 1B, you can control the initializing power-on reset 
pulse from a test bench without a global reset pin on the 
FPGA. This case is applicable when system-level issues make 
your design’s initialization synchronous to an off-chip event. 
In this case, you provide a pulse that initializes your design 
at the start of simulation time, and possibly provide further 
pulses as simulation time progresses (perhaps to simulate 
cycling power to the device). Although you are providing the 
reset pulse to the simulation model, this pulse is not required 
for the implemented device. A reset port is not required on 
the implemented device, however, a reset port is required in 
the behavioral code through which your reset pulse can be 
applied with test vectors during simulation.

Using VHDL Reset-On-Configuration (ROC) Cell 
(Case 1A)

For Case 1A, the ROC (Reset-On-Configuration) instantiated compo-
nent model is used. This model creates a one-shot pulse for the global 
set/reset signal. The pulse width is a generic and can be configured to 
match the device and conditions specified. The ROC cell is in the 
post-routed netlist and, with the same pulse width, it mimics the pre-
route global set/reset net. The following is an example of an ROC 
cell.

The default value for the ROC one-shot pulse is 100 ns. If you wish to 
mimic worst case time for Reset on Configuration, you should change 
the pulse width to match the TPOR parameter for the target device 
from The Programmable Logic Data Book.
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_ROC is

port (CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_ROC;
architecture A of EX_ROC is

signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC

port (O : out std_logic);
end component;

begin
U1 : ROC port map (O => GSR);

UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
begin 

if (GSR = ’1’ OR COUNT_DOWN = "0101") then 
COUNT_DOWN <= "1111"; 

elsif (CLOCK’event AND CLOCK = ’1’) then 
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;
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Using ROC Cell Implementation Model (Case 1A)

Complementary to the previous VHDL model is an implementation 
model that guides the place and route tool to connect the net driven 
by the ROC cell to the special purpose net.

Timing simulation for the ROC cell is automatically created during 
back-annotation if you do not use the –gp or are driving the GSR/
GSRIN pin of an instantiated STARTUP/STARTBUF block in the 
design. The ROC component can be instantiated in the front end to 
match functionality with GSR (in both functional and timing simula-
tion.) During back-annotation, the entity and architecture for the 
ROC cell is placed in your design’s output VHDL file. In the front 
end, the entity and architecture are in the UNISIM Library, requiring 
only a component instantiation. The ROC cell generates a one-time 
initial pulse to drive the GSR net starting at time zero for a specified 
pulse width. You can set the pulse width with a generic in the compo-
nent declaration, instantiation mapping or a configuration statement. 
The default value of the pulse width is 100 ns. The polarity of this 
signal is active high. (Active low resets are handled within the netlist 
itself and need to be inverted before using.) Generally, when using 
the ROC cell you can perform a timing simulation with the same test-
bench that you used in RTL simulation as long as the driving stim-
ulus is held off for the time the ROC pulse is active.

ROC Model in Four Design Phases (Case 1A)

The following figure shows the progression of the ROC model and its 
interpretation in the four main design phases.
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Figure 6-3  ROC Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description 
registers are inferred from the coding style, and the ROC cell can 
be instantiated. If it is not instantiated, the signal is not driven 
during simulation or is driven within the architecture by code 
that cannot be synthesized. Xilinx recommends instantiation of 
the ROC cell during RTL coding because the global signal is 
easily identified. This also ensures that GSR behavior at the RTL 
level matches the behavior of the post-synthesis and implementa-
tion netlists.

• Synthesized Phase—In this phase, inferred registers are mapped to 
a technology and the ROC instantiation is carried from the RTL to 
the implementation tools. As a result, consistent global set/reset 
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behavior is maintained between the RTL and synthesized structural 
descriptions during simulation.

• Implemented Phase—During implementation, the ROC is removed from 
the logical description that is placed and routed as a pre-existing circuit 
on the chip. All set/resets for the registers are automatically assumed to 
be driven by the global set/reset net so data is not lost.

• Back-annotated Phase—In this phase, the Xilinx VHDL netlist program 
assumes all registers are driven by the GSR net and replaces the ROC 
cell if the -gp switch is not used during netlisting. NGD2VHDL rewires 
it to the GSR nets in the back-annotated netlist. The GSR net is a fully 
wired net and the ROC cell is inserted to drive it. You can control the 
ROC pulse width by using the -rpw switch for NGD2VHDL or by using 
a VHDL configuration statement to modify the generic value of the 
instantiated ROC in the simulation netlist.

Using VHDL ROCBUF Cell (Case 1B)

For Case 1B, the ROCBUF (Reset-On-Configuration Buffer) instantiated 
component is used. This component creates a buffer for the global set/reset 
signal, and provides an input port on the buffer to drive the global set reset 
line. This port must be declared in the entity list and driven in RTL simula-
tion. During the place and route process, this port is removed so it is not 
implemented on the chip. ROCBUF does not by default reappear in the 
post-routed netlist unless the -gp switch is used during NGD2VHDL 
netlisting. The nets driven by a ROCBUF must be an active High set/reset.

The following example illustrates how to use the ROCBUF in your designs. 
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;
entity EX_ROCBUF is

port (CLOCK, ENABLE, SRP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_ROCBUF;
architecture A of EX_ROCBUF is

signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF

port (I : in std_logic;
O : out std_logic);

end component;
begin

U1 : ROCBUF port map (I => SRP, O => GSR);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;
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ROCBUF Model in Four Design Phases (Case 1B)

The following figure shows the progression of the ROCBUF model 
and its interpretation in the four main design phases.

Figure 6-4  ROCBUF Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description 
registers are inferred from the coding style, and the ROCBUF cell 
is instantiated. Use the ROCBUF cell instead of the ROC cell 
when you want test bench control of GSR simulation.

• Synthesized Phase—In this phase, inferred registers are mapped to 
a technology and the ROCBUF instantiation is carried from the 
RTL to the implementation tools. As a result, consistent global 
set/reset behavior is maintained between the RTL and synthe-
sized structural descriptions during simulation.
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• Implemented Phase—During implementation, the ROCBUF is 
removed from the logical description of the design and the global 
resources are used for the set/reset function.

• Back-annotated Phase—In this phase, use the NGD2VHDL option, 
-gp to replace the port that was previously occupied by the 
ROCBUF in the RTL description of the design.

Using VHDL STARTBUF_VIRTEX, 
STARTBUF_VIRTEX2 Block or the 
STARTBUF_SPARTAN2 Block (Case 2)

The STARTUP_VIRTEX, STARTUP_VIRTEX2 and 
STARTUP_SPARTAN2 blocks can be instantiated to identify the GSR 
signals for implementation if the global reset or tristate is connected 
to a chip pin. However, these cells cannot be simulated as there is no 
simulation model for them.

Xilinx recommends that you use the local routing for Virtex devices 
as opposed to using the dedicated GSR. If the design resources are 
available, using this method will provide better performance perfor-
mance and more predictable design behavior.

Table 6-6  Virtex/E and Spartan-II STARTBUF/STARTUP Pins

STARTBUF 
Pin Names

Connection 
Points

Virtex/E 
STARTUP 
Pin Names

Spartan-II 
STARTUP 
Pin Names

GSRIN Global Set/
Reset Port 
of Design

GSR GSR

GTSIN Global 
Tristate Port 
of Design

GTS GTS

CLKIN Port or 
Internal 
Logic

CLK CLK

GTSOUT All Output 
Buffers 
Tristate 
Control

N/A N/A
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If you do not plan on bringing the GSR pin out to a device pin, but 
want to have access to it for simulation, Xilinx suggests that you use 
the ROC or ROCBUF.

GTS Network Design Cases
Just as for the global set/reset net there are three cases for using your 
device’s output tristate enable (GTS) network, as shown in the 
following table.

Case A is defined as follows.

• Tristating of output buffers during power-on or configuration of 
the device

• Output buffers are tristated and reflected in the implemented and 
simulated design

•  Two sub-cases

♦ In Case A1, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real 
device does when power is first applied). 

♦ In Case A2, you can control the initializing Tristate-On-
Configuration pulse. This case is applicable when system-
level issues make your design’s configuration synchronous 
with an off-chip event. In this case, you provide a pulse to 
tristate the output buffers, via the testbench file, at the start of 
simulation time, and possibly provide further pulses as simu-

Table 6-7  GTS Design Cases

Name Description

Case A
Case A1

Case A2

Tristate-On-Configuration only; no user control of GTS
Simulation Model TOC tristates output buffers during 
configuration or power-up 
User initializes sequential elements with TOCBUF 
model and simulation vectors

Case B User control of GTS after Tristate-On-Configuration 
external PORT driving GTS

Case C Don’t Care
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lation time progresses (perhaps to simulate cycling power to 
the device). 

Using VHDL Tristate-On-Configuration (TOC)

The timing for the TOC cell is automatically created if you do not use 
NGD2VHDL option –tp or you drive the GTS/GTSIN port of an 
instantiated STARTUP/STARTBUF block. The entity and architecture 
for the TOC cell is placed in the design’s output VHDL file. The TOC 
cell generates a one-time initial pulse to drive the GSR net starting at 
time ‘0’ for a user-defined pulse width. The pulse width can be modi-
fied either by using the -tpw switch for NGD2VHDL or by using a 
configuration statement to modify the WIDTH generic for the instan-
tiated TOC component in the simulation netlist. The default WIDTH 
value is 0 ns, which disables the TOC cell and holds the tristate enable 
low. (Active low tristate enables are handled within the netlist; you 
must invert this signal before using it.) 

The TOC cell enables you to simulate with the same test bench as in 
the RTL simulation, and also allows you to control the width of the 
tristate enable signal in your implemented design.

VHDL TOC Cell (Case A1)

For Case A1, use the TOC (Tristate-On-Configuration) instantiated 
component. This component creates a one-shot pulse for the global 
Tristate-On-Configuration signal. The pulse width is a generic and 
can be selected to match the device and conditions you want. The 
TOC cell is in the post-routed netlist and, with the same pulse width 
set, it mimics the pre-route Tristate-On-Configuration net.

TOC Cell Instantiation (Case A1)

The following is an example of how to use the TOC cell.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_TOC is

port (CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_TOC;
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architecture A of EX_TOC is
signal GSR, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC

port (O : out std_logic);
end component;
component TOC

port (O : out std_logic);
end component;

begin
U1 : ROC port map (O => GSR);
U2 : TOC port map (O => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";

end A;
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TOC Model in Four Design Phases (Case A1)

The following figure shows the progression of the TOC model and its 
interpretation in the four main design phases.

Figure 6-5  TOC Simulation and Implementation
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• Behavioral Phase—In this phase, the behavioral or RTL description 
of the output buffers is inferred from the coding style. The TOC 
cell can be instantiated and connected to all tristate outputs in the 
design. If it is not instantiated, the GTS signal is not driven 
during RTL simulation. Instantiation of the TOC cell in the RTL 
description is recommended if you wish to simulate the pre-
configuration behavior of the device I/Os.

• Synthesized Phase—In this phase, the inferred I/Os are mapped to 
a device, and the TOC instantiation is carried from the RTL to the 
implementation tools. This results in maintaining consistent 
global output tristate enable behavior between the RTL and the 
synthesized structural descriptions during simulation.

• Implemented Phase—During implementation, the TOC is removed 
from the logical description and the global tristate net resource is 
used.

• Back-annotation Phase—In this phase, the VHDL netlist tool re-
inserts a TOC component for simulation purposes. The GTS net is 
a fully wired net and the TOC cell is inserted in the simulation 
netlist. You can use the NGD2VHDL -tpw switch or a configura-
tion statement to set the generic for the pulse width.

Using VHDL TOCBUF (Case A2)

For Case A2, use the TOCBUF (Tristate-On-Configuration Buffer) 
instantiated component model. This model creates a buffer for the 
global output tristate enable signal. You now have an input port on 
the buffer to drive the global tristate line. The implementation model 
directs the place and route tool to remove the port so it is not imple-
mented on the actual chip. The TOCBUF cell does not reappear in the 
post-routed netlist unless the -tp switch is used during NGD2VHDL.

TOCBUF Model Example (Case A2)

The following is an example of the TOCBUF model.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
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entity EX_TOCBUF is
port (CLOCK, ENABLE, SRP, STP : in std_logic; 

CUP, CDOWN : out std_logic_vector (3 downto 0));
end EX_TOCBUF;
architecture A of EX_TOCBUF is

signal GSR, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF

port (I : in std_logic;
O : out std_logic);

end component;
component TOCBUF

port (I : in std_logic;
O : out std_logic);

end component;
begin

U1 : ROCBUF port map (I => SRP, O => GSR);
U2 : TOCBUF port map (I => STP, O => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) the

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";

end A;
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TOCBUF Model in Four Design Phases (Case A2)

The following figure shows the progression of the TOCBUF model 
and its interpretation in the four main design phases. 

Figure 6-6  TOCBUF Simulation and Implementation
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• Behavioral Phase—In this phase, the behavioral or RTL description 
of the output buffers is inferred from the coding style and may be 
inserted. You can instantiate the TOCBUF cell. If it is not instanti-
ated, the GTS signal is not driven during simulation or it is 
driven within the architecture by code that cannot be synthe-
sized.

• Synthesized Phase—In this phase, the inferred output buffers are 
mapped to a device and the TOCBUF instantiation is carried 
from the RTL to the implementation tools. This maintains consis-
tent global output tristate enable behavior between the RTL and 
the synthesized structural descriptions during simulation.

• Implemented Phase—In this phase, the TOCBUF is removed from 
the logical description and the global resources are used for this 
function. 

• Back-annotated Phase—In this phase, the TOCBUF cell does not 
reappear in the post-routed netlist unless the -tp switch is used 
during NGD2VHDL. If the option is not selected, the VHDL 
netlist tool inserts a TOC component for simulation purposes.

Using VHDL STARTBUF_VIRTEX, 
STARTBUF_VIRTEX2 or STARTBUF_SPARTAN2 
Block (Case B)

The STARTUP_VIRTEX, STARTUP_VIRTEX2 and 
STARTUP_SPARTAN2 blocks can be instantiated to identify the GTS 
signal for implementation if the global reset or tristate is connected to 
a chip pin. However, these cells cannot be simulated as there is no 
simulation model for them.

The VHDL STARTBUF_VIRTEX, STARTBUF_VIRTEX2 and 
STARTBUF_SPARTAN2 blocks can do a pre-NGDBuild UNISIM 
simulation of the GTS signal. You can also correctly back-annotate a 
GTS signal by instantiating a STARTUP_VIRTEX, 
STARTBUF_VIRTEX, STARTUP_SPARTAN2, or 
STARTBUF_SPARTAN2 symbol and correctly connect the GTSIN 
input signal of the component.
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See the following table for Virtex, Virtex-II and Spartan-II correspon-
dence of pins between STARTBUF and STARTUP. 

Table 6-8  Virtex/II/E and Spartan-II STARTBUF/STARTUP Pins

STARTBUF 
Pin Names

Connection 
Points

STARTUP Pin 
Names

GSRIN Global Set/
Reset Port of 
Design

GSR

GTSIN Global Tristate 
Port of Design

GTS

CLKIN Port of Internal 
Logic

CLK

GTSOUT All Output 
Buffers Tristate 
Control

N/A
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STARTBUF_VIRTEX Model Example (Case B2)

The following is an example of the STARTBUF_VIRTEX model.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_STARTBUF is

port (CLOCK, ENABLE, RESET, STP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_STARTBUF;

architecture A of EX_STARTBUF is
signal GTS_sig : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
signal ZERO : std_ulogic := ‘0’;

component STARTBUF_VIRTEX
port (GSRIN, GTSIN, CLKIN : in std_logic; 

GSROUT, GTSOUT : out std_logic);
end component;

begin
U1 :STARTBUF_VIRTEX port map (GTSIN=>STP,GSRIN=>ZERO, 

CLKIN=>ZERO
GTSOUT=>GTS_sig);

UP_COUNTER : process (CLOCK, ENABLE, RESET)

begin
if (RESET = '1') then

COUNT_UP <= "0000";
elsif (CLOCK'event AND CLOCK = '1') then

if (ENABLE = '1') then
COUNT_UP <= COUNT_UP + "0001";

end if;
end if;

end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, RESET, COUNT_DOWN)

begin
if (RESET = '1' OR COUNT_DOWN = "0101") then

COUNT_DOWN <= "1111";
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elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS_sig=’0’ AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS_sig = ’0’) else "ZZZZ";

end A;

Simulating Special Components in VHDL
The following section provides a description and examples of using 
special components such as the Block SelectRAM for Virtex.

Simulating CORE Generator Components in VHDL

For CORE Generator model simulation flows see the CORE Generator 
Guide. 

Boundary Scan and Readback

The Boundary Scan and Readback circuitry cannot be simulated at 
this time. Efforts are being made to create models for these compo-
nents.

Differential I/O (LVDS, LVPECL)

When targeting a Virtex-E or Spartan-IIE device, the inputs of the 
differential pair are currently modeled with only the positive side, 
whereas the outputs have both pairs, positive and negative. For 
details, please refer to Xilinx Answer #8187 on 
http://support.xilinx.com for more details. This is not an issue for 
the Virtex-II architecture as the differential buffers for Virtex-II and 
later architectures have been updated to accept both the positive and 
negative inputs.

The following is an example of an instantiated differential I/O in a 
Virtex-E or Spartan-IIE design.
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entity lvds_ex is 
port (data: in std_logic;

data_op: out std_logic;
data_on: out std_logic);

end entity lvds_ex;
architecture lvds_arch of lvds_ex is
signal data_n_int : std_logic;
component OBUF_LVDS port (

I : in std_logic;
O : out std_logic);

end component;
component IBUF_LVDS port (

I : in std_logic;
O : out std_logic);

end component;
begin
--Input side
I0: IBUF_LVDS port map (I => data), O =>data_int);

--Output side
OP0: OBUF_LVDS port map (I => data_int, O => 
data_op);

data_n_int = not(data_int);
ON0: OBUF_LVDS port map (I => data_n_int, O => 
data_on);

end arch_lvds_ex;

Simulating a LUT

The LUT (look-up table) component is initialized for simulation by a 
generic mapping to the INIT attribute. If the synthesis tool being used 
can accept generics in order to pass attributes, then a generic specifi-
cation is all that is needed to specify the INIT value. If the synthesis 
tool cannot pass attributes via generics, then the generic and generic 
map portions of the code must be omitted for synthesis by the use of 
translate_off and translate_on synthesis directives. The INIT values 
must be passed using attribute notation.

The following is an example in which a LUT is initialized. This code 
written with the assumption that the synthesis tool can understand 
and pass the INIT attribute using the generic notation.
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entity lut_ex is
port (LUT1_IN, LUT2_IN : in std_logic_vector(1 downto 0);

LUT1_OUT, LUT2_OUT : out std_logic_vector(1 downto 0));
end entity lut_ex;
architecture lut_arch of lut_ex is 

component LUT1
generic (INIT: std_logic_vector(1 downto 0) := “10”);
port (O : out std_logic;

I0 : in std_logic);
end component;
component LUT2

generic (INIT: std_logic_vector(3 downto 0) := “0000”);
port (O : out std_logic;

I0, I1: in std_logic);
end component;

begin
-- LUT1 used as an inverter

U0: LUT1 generic map (INIT => “01”)
port map (O => LUT1_OUT(0), I0 => LUT1_IN(0));

-- LUT1 used as a buffer
U1: LUT1 generic map (INIT => “10”)
port map (O => LUT1_OUT(1), I0 => LUT1_IN(1));

--LUT2 used as a 2-input AND gate
U2: LUT2 generic map (INIT => “1000”)
port map (O => LUT2_OUT(0), I1 => LUT2_IN(1), I0 => LUT2_IN(0));

--LUT2 used as 2-input NAND gate
3: LUT2 generic map (INIT => “0111”)
port map (O => LUT2_OUT(1), I1 => (LUT2_IN(1), I0 => LUT2_IN(0));

end lut_arch;

Simulating Virtex Block SelectRAM

By default, the Virtex Block SelectRAMs will come up initialized to 
zero in all data locations starting at time zero. For a post-NGDBuild, 
post-MAP, or Post-PAR (timing) simulation the Block SelectRAMs 
will initialize to the value the user specifies in the UCF, or if an 
INIT_XX value was given in the input design file to NGDBuild. For a 
pre-synthesis or post-synthesis (Pre-NGDBuild) functional simula-
tion you must modify the generic in either the component declara-
tion, generic mapping of the instance or use a configuration 
statement to apply a non-zero initial value to the Block SelectRAM.
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If the synthesis tool being used can accept generics in order to pass 
attributes, then a generic specification is all that is needed to specify 
the INIT value. If the synthesis tool cannot pass attributes via 
generics, then the generic and generic map portions of the code must 
be omitted for synthesis by the use of translate_off and translate_on 
synthesis directives and the INIT values must be passed using 
attribute notation.

The following is an example of using a configuration statement to 
apply an initial value to a Block SelectRAM. This code was written 
with the assumption that the synthesis tool can understand and pass 
the INIT attribute using the generic notation.

LIBRARY ieee;
use IEEE.std_logic_1164.all;
Library UNISIM;
use UNISIM.vcomponents.all;
entity ex_blkram is
port(CLK, EN, RST, WE : in std_logic;

ADDR : in std_logic_vector(9 downto 0);
DI : in std_logic_vector(3 downto 0);

DORAMB4_S4  : out std_logic_vector(3 downto 0));
end;

architecture struct of ex_blkram is

component RAMB4_S4
generic (INIT_00, INIT_01,INIT_02 : bit_vector;

INIT_03, INIT_04, INIT_05 : bit_vector;
INIT_06, INIT_07, INIT_08 : bit_vector;
INIT_09, INIT_0A, INIT_0B : bit_vector;
INIT_0C, INIT_0D, INIT_0E : bit_vector;
INIT_0F : bit_vector);

port (DI : in STD_LOGIC_VECTOR (3 downto 0);
EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR (9 downto 0);
DO : out STD_LOGIC_VECTOR (3 downto 0));

end component;

begin
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INST_RAMB4_S4 : RAMB4_S4 
generic map (

INIT_00 => X"new_hex_value",
INIT_01 => X"new_hex_value",
INIT_02 => X"new_hex_value",
INIT_03 => X"new_hex_value",
INIT_04 => X"new_hex_value",
INIT_05 => X"new_hex_value",
INIT_06 => X"new_hex_value",
INIT_07 => X"new_hex_value",
INIT_08 => X"new_hex_value",
INIT_09 => X"new_hex_value",
INIT_0A => X"new_hex_value",
INIT_0B => X"new_hex_value",
INIT_0C => X"new_hex_value",
INIT_0D => X"new_hex_value",
INIT_0E => X"new_hex_value",
INIT_0F => X"new_hex_value");

port map (
DI => DI,
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR,
DO => DORAMB4_S4);

end struct;

Simulating the Virtex Clock DLL

When functionally simulating the Virtex Clock DLL, generic maps are 
used to specify the CLKDV_DIVIDE and 
DUTY_CYCLE_CORRECTION values. By default, the 
CLKDV_DIVIDE is set to 2 and DUTY_CYCLE_CORRECTION is set 
to TRUE. The following example will set the CLKDV_DIVIDE to 4, 
and set the DUTY_CYCLE_CORRECTION to FALSE.

You must use a UCF file to pass the CLKDV_DIVIDE and 
DUTY_CYCLE_CORRECTION values to the Xilinx implementation 
tools. This code was written with the assumption that the synthesis 
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tool can understand and pass the INIT attribute using generic 
notation.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
Library UNISIM;
use UNISIM.vcomponents.all;
entity clkdlls is
 port(CLK_LF, RST_LF : in std_logic;
  CLK90_LF, CLK180_LF : out std_logic;
  CLK270_LF, CLK2X_LF : out std_logic;
  CLKDV_LF, LOCKED_LF : out std_logic;
  LFCount   : out std_logic_vector(3 downto 0));

end;
architecture struct of clkdlls is
component CLKDLL

generic (FACTORY_JF : bit_vector := X"00";
STARTUP_WAIT : boolean := false;             
DUTY_CYCLE_CORRECTION:boolean := TRUE;
CLKDV_DIVIDE : real := 2.0);

port (CLKIN   : in std_logic;
  CLKFB   : in std_logic;

 RST     : in std_logic;
 CLK0    : out std_logic;
  CLK90   : out std_logic;
 CLK180  : out std_logic;
 CLK270  : out std_logic;
 CLK2X   : out std_logic;

 CLKDV   : out std_logic;
 LOCKED  : out std_logic);

end component;
component IBUFG

port (I : in std_logic;
 O : out std_logic);

end component;
component BUFG

port (I : in std_logic;
O : out std_logic);

end component;
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signal COUNT: integer range 0 to 15 := 0;
signal sigCLK_LF, sigCLK0_LF, sigCLKFB_LF, 
CLK0_LF : std_logic;

signal sigLFCount:std_logic_vector (3 downto 0);

begin
INST_IBUFGLF : IBUFG port map (I => CLK_LF, O => 
sigCLK_LF);

INST_BUFGLF : BUFG port map (I => sigCLK0_LF, O => 
sigCLKFB_LF);

INST_CLKDLL : CLKDLL 
generic map (DUTY_CYCLE_CORRECTION => FALSE,

CLKDV_DIVIDE => 4.0)
port map (CLKIN => sigCLK_LF, 

CLKFB => sigCLKFB_LF,
RST   => RST_LF, 
CLK0  => sigCLK0_LF, 
CLK90 => CLK90_LF,
CLK180 => CLK180_LF, 
CLK270 => CLK270_LF, 
CLK2X =>CLK2X_LF,
CLKDV => CLKDV_LF, 
LOCKED => LOCKED_LF);

CLK0_LF <= sigCLK0_LF;

procCLKDLLCount: process (CLK0_LF)

begin
if (CLK0_LF’event and CLK0_LF = ’1’) then

sigLFCount <= sigLFCount + "0001";
end if;

LFCount <= sigLFCount;
end process;

end struct;

Simulating the Virtex-II/ II Pro DCM 

The Virtex-II/ Virtex-II Pro DCM is a super set of the Virtex CLKDLL. 
It provides more clock options, including fine phase shifting and 
digital clock synthesis. The DCM attributes, like all UNISIM 
components, are specified via generics for simulation purposes and 
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some synthesis tools can read in the generics for passing to the 
implementation tools.

Following is an example of the DCM instantiation. Note the 
component declaration of the DCM, as the parameters are defined in 
the “generic” section of the component declaration. In order to use 
some of the DCM features, these generic values must be modified. 

library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity clock_gen is    
port (clkin, rst_dll: in std_logic;

clk, clk_not, locked : out std_logic;
psen, psclk, psincdec : in std_logic;
psdone : out std_logic);

end clock_gen;

architecture structural of clock_gen is
signal clk_ibufg, clk_dcm, clk_dcm_not : 
std_logic;

signal clk0_bufg, clk180_bufg : std_logic;
signal GND : std_logic;

component IBUFG
port (
    I : in  std_logic;
    O : out std_logic);

end component;

component BUFG
port (
    I : in  std_logic;
    O : out std_logic);

end component;
component DCM

generic (DFS_FREQUENCY_MODE : string := "LOW";
DLL_FREQUENCY_MODE : string := "LOW";
DUTY_CYCLE_CORRECTION:boolean := TRUE;
CLKIN_DIVIDE_BY_2 : boolean := FALSE;
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CLK_FEEDBACK : string := "1X";
CLKOUT_PHASE_SHIFT : string := "NONE";
FACTORY_JF : bit_vector := X"00";
STARTUP_WAIT : boolean := FALSE;
DSS_MODE  : string := "NONE";
PHASE_SHIFT  : integer := 0 ;
CLKFX_MULTIPLY : integer  := 4 ;
CLKFX_DIVIDE : integer  := 1;
CLKDV_DIVIDE : real := 2.0;
DESKEW_ADJUST:string:= 
"SYSTEM_SYNCHRONOUS"
 );  

port (CLKIN : in std_ulogic;
CLKFB : in std_ulogic;
DSSEN : in std_ulogic;
PSINCDEC : in std_ulogic;
PSEN : in std_ulogic;
PSCLK : in std_ulogic;
RST : in std_ulogic;
CLK0 : out std_ulogic;
CLK90 : out std_ulogic;
CLK180 : out std_ulogic;
CLK270 : out std_ulogic;
CLK2X : out std_ulogic;
CLK2X180 : out std_ulogic;
CLKDV : out std_ulogic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_ulogic;
PSDONE : out std_ulogic;
STATUS : out std_logic_vector(7 downto 0)
);

end component;

begin
GND <= ’0’;
U1 : IBUFG port map (

I => clkin,
O => clk_ibufg
);
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U2 : DCM 
generic map (

DFS_FREQUENCY_MODE => "LOW",
DLL_FREQUENCY_MODE => "LOW",
DUTY_CYCLE_CORRECTION => TRUE,
CLKIN_DIVIDE_BY_2 => FALSE,
CLK_FEEDBACK => "1X",
CLKOUT_PHASE_SHIFT => "VARIABLE",
FACTORY_JF => X"00",
STARTUP_WAIT => FALSE,
DSS_MODE=> "NONE",
PHASE_SHIFT => 0,
CLKFX_MULTIPLY => 4,
CLKFX_DIVIDE => 1,
CLKDV_DIVIDE => 2.0,
DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS")

port map (
CLKIN    => clk_ibufg,
CLKFB    => clk0_bufg,
DSSEN    => ’0’,
PSINCDEC => psincdec,
PSEN     => psen,
PSCLK    => psclk,
PSDONE   => psdone,
RST      => rst_dll,
CLK0     => clk_dcm,
CLKDV    => open,
CLKFX   => open,
CLK180   => clk_dcm_not,
LOCKED   => locked
);

U3 : BUFG port map (
I => clk_dcm,
O => clk0_bufg
);
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U4 : BUFG port map (
I => clk_dcm_not,
O => clk180_bufg
);

clk     <= clk0_bufg;
clk_not <= clk180_bufg;

end structural;

Simulating SRLs

Most synthesis tools infer the SRL16 from behavioral VHDL. For 
these designs, no special simulation steps are needed for the SRLs. 
However, when the SRL component is instantiated, the INIT attribute 
can be used to initialize the contents of the component. Also, to use 
the select lines of the SRL component, instantiation is generally 
necessary. Refer to the “Implementing Shift Register (Virtex/E/II and 
Spartan-II)” section for more details on inferring SRLs correctly in the 
design.

Following is an example of passing the INIT attribute to the SRL for 
functional simulation:

Note If the synthesis tool being used can accept generics to pass 
attributes, then a generic specification is all that is needed to specify 
the INIT value to the implementation tools. If the synthesis tool 
cannot pass attributes via generics, then the generic and generic map 
portions of the code must be omitted for synthesis by the use of 
translate_off and translate_on synthesis directives and the INIT 
values must be passed using the attribute notation.
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entity design is
- - port list goes here
end entity design;
architecture toplevelof designs
component SRL16
generic (INIT : BIT_VECTOR := X”0000”);
port (D   : in STD_ULOGIC;

CLK : in STD_ULOGIC;
A0  : in STD_ULOGIC;
A1  : in STD_ULOGIC;
A2  : in STD_ULOGIC;
A3  : in STD_ULOGIC;
Q   : out STD_ULOGIC

  ); 
end component;

- - signal declarations go here
begin

U0 : SRL16 generic map (INIT => X”1100”);
port map (CLK => CLK,
- - rest of port maps

);
end toplevel;

In the example above, the INIT attribute is passed down to the 
simulation model through the generic map. 
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Simulating Verilog

Defining Global Signals in Verilog
To specify the global set/reset or global reset, you must first define 
them in the $XILINX/verilog/src/glbl.v module. The VHDL 
UNISIMs library contains the ROC, ROCBUF, TOC, TOCBUF, and 
STARTBUF cells to assist in VITAL VHDL simulation of the global 
set/reset and tristate signals. However, Verilog allows a global signal 
to be modeled as a wire in a global module, and, thus, does not 
contain these cells.

Using the glbl.v Module
The glbl.v module connects the global signals to the design, which is 
why it is necessary to compile this module with the other design files 
and load it along with the design.v file and the testfixture.v file for 
simulation.

The following is the definition of the glbl.v file.

‘timescale 1 ns / 1 ps
module glbl();
wire GR;
wire GSR;
wire GTS;
wire PRLD;
endmodule

Defining GSR/GTS in a Test Bench
There are two cases to consider when defining a GSR or GTS in a test 
bench: designs without a STARTUP block and designs with a 
STARTUP block.

Note The terms “test bench” and “test fixture” are used synony-
mously throughout this manual.

Designs Without a Startup Block

When you use the UNISIM libraries for RTL simulation, you must set 
the value of the appropriate Verilog global signals (glbl.GSR or 
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glbl.GTS) to the name of the GSR or GTS net, qualified by the appro-
priate scope identifiers.

The global set/reset net is present in your implemented design even 
if you do not instantiate the STARTUP block in your design. The 
function of STARTUP is to give you the option to control the global 
reset net from an external pin. The following example should be 
added to your design code and test fixture to set the GSR and GTS 
pin for all FPGA devices:

reg GSR;
assign glbl.GSR = GSR;
reg GTS;
assign glbl.GTS = GTS;
initial begin
GSR = 1; GTS = 1;
#100 GSR = 0; GTS = 0;

end

Example 1: No STARTUP With GSR Defined

The following design shows how to drive the GSR signal in a testfix-
ture file at the beginning of a pre-NGDBuild Unified Library func-
tional simulation.

In the design code, declare the GSR as a Verilog wire. The GSR will 
not be specified in the port list for the module. Describe the GSR to 
reset or set every inferred register or latch in your design. GSR does 
not need to be connected to any instantiated registers or latches, as 
shown in the following example.
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module my_counter (CLK, D, Q, COUT);
input CLK, D;
output Q;
output [3:0] COUT;

wire GSR;
reg [3:0] COUT;

always @(posedge GSR or posedge CLK)
begin

if (GSR == 1’b1)
COUT = 4’h0;

else
COUT = COUT + 1’b1;

end
// GSR is modeled as a wire within a global module.
// So, CLR does not need to be connected to GSR and
// the flop will still be reset with GSR.
FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1'b1), .CLR 

(1’b0));
endmodule

Since GSR is declared as a floating wire and is not in the port list, the 
synthesis tool optimizes the GSR signal out of the design. GSR is 
replaced later by the implementation software for all post-implemen-
tation simulation netlists.

In the test fixture file, set GSR to test.uut.GSR (the name of the global 
set/reset signal, qualified by the name of the design instantiation 
instance name and the test fixture instance name). Since there is no 
STARTUP block, a connection to GSR is made in the testfixture via an 
assign statement. See the following example:
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‘timescale 1 ns / 1 ps
module testbench;
reg CLK, D;
wire Q;
wire [3:0] COUT;
reg GSR;
assign glbl.GSR = GSR;
assign test.uut.GSR = GSR;
my_counter uut (.CLK (CLK), .D (D), .Q (Q), .COUT 
(COUT));

initial begin
$timeformat(-9,1,”ns”,12);
$display(“\t   T C G D Q C”);
$display(“\t   i L S     O”);
$display(“\t   m K R     U”);
$display(“\t   e         T”);
$monitor(“%t %b %b %b %b %h”, $time, CLK, GSR, 
D, Q, COUT);

end
initial begin

CLK = 0;
forever #25 CLK = ~CLK;

end
// Global Ste/Reset of the Design
initial begin

GSR = 1'b1;
#100 GSR = 1'b0;

end
//  Apply Design Stimulus here
initial begin

D = 1'b1;
#100 D = 1'b0;
#200 D = 1'b1;
#100 $finish;

end
endmodule
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Designs with a STARTUP Block

For RTL simulation using the UNISIM libraries, asserting global set/
reset and global tristate when the STARTUP block is specified in the 
design is similar to asserting global set/reset and global tristate 
without a STARTUP block in the design. See the “User-Controlled 
GSR” figure.

Figure 6-7  User-Controlled GSR

To set the GSR pin to set an external input port, the testfixture would 
be written as the following:

reg MYGSR;
initial begin
MYGSR = 1;
#100 MYGSR = 0;

end

There is no need for the assign statement as without the STARTUP 
block since the GSR signal can be pulsed from the external port 
connected to the GSR pin of the STARTUP component. This is 
because a the global signal, glbl.GSR, is defined within the STARTUP 
block to make the connection between the user logic and the global 
GSR net embedded in the UNISIM models for RTL simulation. For 
post-NGDBuild, GSR is connected in the netlist created by 
NGD2VER. Retaining the assign definition causes a possible conflict 
with these connections.
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Example 1: STARTUP with GSR Pin Connector

In the following Verilog code, GSR is listed as a top-level port. 
Synthesis sees a connection of GSR to the STARTUP and as well to the 
behaviorally described counter. Although this is correct in the hard-
ware, it is actually an implicit connection, and GSR is only listed as a 
connection to the STARTUP in the implementation netlist.

module my_counter (MYGSR, CLK, D, Q, COUT);
input MYGSR, CLK, D;
output Q;
output [3:0] COUT;

reg [3:0] COUT;

always @(posedge MYGSR or posedge CLK)
begin

if (MYGSR == 1’b1)
COUT = 4’h0;

else
COUT = COUT + 1’b1;

end
// GSR is modeled as a wire within a global
// module.So, CLR does not need to be connected 
// to GSR and the flop will still be reset with GSR.

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1’b1), 
.CLR (1’b0));
STARTUP U1 (.GSR (MYGSR), .GTS (1’b0), .CLK 
(1’b0));

endmodule

The following is an example of controlling the global set/reset signal 
by driving the external MYGSR input port in a test fixture file at the 
beginning of an RTL or post-synthesis functional simulation when 
there is a STARTUP block. Since the GSR signal is declared as a port, 
it can be treated like a normal port in the testbench only at the begin-
ning of simulation. It should be activated to properly initialize the 
design.
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The global set/reset control signal should be toggled High, then Low 
in an initial block from the testbench file.

reg MYGSR;
initial begin
MYGSR = 1; // To reset/set the device
#100 MYGSR = 0; // To deactivate GSR

end

In addition, the global signal, glbl.GSR, is defined within the 
STARTUP block to make the connection between the user logic and 
the global GSR net embedded in the UNISIM models for RTL simula-
tion. For post-NGDBuild functional simulation, post-Map timing 
simulation, and post-route timing simulation, GSR is connected in the 
Verilog netlist that is created by NGD2VER.

Example 2: STARTUP with GTS Pin Connected

In the following figure, MYGTS is an external user signal that 
controls GTS. 

Figure 6-8  User-Controlled GTS
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The following is an example of controlling the global tristate signal 
by driving the external MYGTS input port in a test fixture file at the 
beginning of an RTL or post-synthesis functional simulation when 
there is a STARTUP block. The global GTS signal is modeled in all 
UNISIM simulation models for output buffers (OBUF, OBUFT) so 
that when these models are instantiated in the code, they will go 
tristate when the glbl.GTS signal is high.

The global tristate control signal should be toggled High, then Low in 
an initial block from the testbench file.

reg MYGTS;
initial begin
MYGTS = 1; // To 3-state the device;
#100 MYGTS = 0; // To deactivate GTS

end

Example 3: STARTUP with GTS Pin Not Connected

A Verilog global signal called glbl.GTS is defined within the 
STARTUP_VIRTEX, STARTUP_VIRTEX2 and STARTUP_SPARTAN2 
blocks to make the connection between the user logic and the global 
GTS net embedded in the Unified models. For post-NGDBuild func-
tional simulation, post-map timing simulation, and post-route timing 
simulation, glbl.GTS is defined in the Verilog netlist that is created by 
NGD2VER.

When using a STARTUP block in the design to control GTS function, 
simply toggle the port connected to the GTS pin of the STARTUP 
block to activate and de-activate the global tristate function.

Simulating Special Components in Verilog
The following section provides a description and examples of simu-
lating special components for Virtex.

Boundary Scan and Readback

The Boundary Scan and Readback circuitry cannot be simulated at 
this time. Efforts are being made to create models for these compo-
nents and should be available in the near future.
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Differential I/O (LVDS, LVPECL)

For Virtex-E and Spartan-IIE families, the inputs of the differential 
pair are currently modeled with only the positive side, whereas the 
outputs have both pairs, positive and negative. For details, please see 
http://support.xilinx.com/techdocs/8187.htm.

This is not an issue for the Virtex-II architecture because the 
differential buffers for Virtex-II and later architectures have been 
updated to accept both the positive and negative inputs.

The following is an example of an instantiated differential I/O in a 
Virtex-E or Spartan-IIE design.

module lvds_ex (data, data_op, data_on);
input data;
output data_op, data_on;

// Input side
IBUF_LVDS I0 (.I (data), .O (data_int));

// Output side
OBUF_LVDS OP0 (.I (data_int), .O (data_op));
wire data_n_int = ~data_int;
OBUF_LVDS ON0 (.I (data_n_int), .O (data_on));

endmodule

LUT

For simulation, the INIT attribute passed by the defparam statement 
is used to initialize contents of the LUT for functional simulation.

The following is an example of the defparam statement being used to 
initialize the contents of a LUT.
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module lut_ex (LUT1_OUT, LUT1_IN);
input  [1:0] LUT1_IN;
output [1:0] LUT1_OUT;

// For RTL simulation only.
// The defparam will not synthesize.

// synthesis translate_off
defparam U0.INIT = 2’b01;
defparam U1.INIT = 2’b10;

// synthesis translate_on

// LUT1 used as an inverter
LUT1 U0 (.O (LUT1_OUT[0]), .I0 (LUT1_IN[0]));

// LUT1 used as a buffer
LUT1 U1 (.O (LUT1_OUT[1]), .I0 (LUT1_IN[1]));

endmodule

However, passing the INIT attribute in this manner does not initialize 
the contents for synthesis. All synthesis tools have their own mecha-
nism for passing attributes to the implementation netlist. For refer-
ences on today’s popular synthesis tools, refer to the LUT Instantiation 
and Initialization for Synthesis table.

Table 6-9  LUT Instantiation and Initialization for Synthesis

Synthesis Tool Information Location

XST http://support.xilinx.com/techdocs/
11069.htm

FPGA Compiler II http://support.xilinx.com/techdocs/
5334.htm

Synplify http://support.xilinx.com/techdocs/
1992.htm

LeonardoSpectrum http://support.xilinx.com/techdocs/
8207.htm
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SRL16

For inferred SRL16s, no attributes need to be passed to the simulator. 
However, if the SRL16 component is being instantiated, and if non-
zero contents are desired for initialization, the INIT attribute passed 
by the defparam statement is used to initialize contents of the SRL16.

The following is an example of the defparam statement being used to 
initialize the contents of a SRL16.

module srl16_ex (CLK, DIN, QOUT);
input CLK, DIN;
output QOUT;

// For RTL simulation only.
// The defparam will not synthesize.

// synthesis translate_off
defparam U0.INIT = 16’hAAAA;

// synthesis translate_on

// Static length - 16-bit SRL
SRL16 U0 (.D (DIN), .Q (QOUT), .CLK (CLK),

  .A0 (1’b1), .A1 (1’b1), .A2 (1’b1), .A3 (1’b1));
endmodule

However, passing the INIT attribute in this manner does not initialize 
the contents for synthesis. Please refer to your synthesis vendor’s 
documentation since all synthesis tools have their own mechanism 
for passing attributes to the implementation netlist.

BlockRAM

For simulation, the INIT_0x attributes passed by the defparam state-
ment are used to initialize contents of the BlockRAM.
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module bram512x4 (CLK, DATA_BUSA, ADDRA, WEA, 
DATA_BUSB, ADDRB, WEB);

input [9:0] ADDRA, ADDRB;
input CLK, WEA, WEB;
inout [3:0] DATA_BUSA, DATA_BUSB;

wire [3:0] DOA, DOB;

assign DATA_BUSA = !WEA ? DOA : 4’hz;
assign DATA_BUSB = !WEB ? DOB : 4’hz;

// For RTL simulation only. The defparam will not 
synthesize.

// synthesis translate_off
defparam

U0.INIT_00 = 256'hnew_hex_value,
U0.INIT_01 = 256'hnew_hex_value,
U0.INIT_02 = 256'hnew_hex_value,
U0.INIT_03 = 256'hnew_hex_value,
U0.INIT_04 = 256'hnew_hex_value,
U0.INIT_05 = 256'hnew_hex_value,
U0.INIT_06 = 256'hnew_hex_value,
U0.INIT_07 = 256'hnew_hex_value,
U0.INIT_08 = 256'hnew_hex_value,
U0.INIT_09 = 256'hnew_hex_value,
U0.INIT_0A = 256'hnew_hex_value,
U0.INIT_0B = 256'hnew_hex_value,
U0.INIT_0C = 256'hnew_hex_value,
U0.INIT_0D = 256'hnew_hex_value,
U0.INIT_0E = 256'hnew_hex_value,
U0.INIT_0F = 256'hnew_hex_value;

// synthesis translate_on

RAMB4_S4_S4 U0 (.DOA (DOA), .DOB (DOB),
  .ADDRA (ADDRA), .DIA (DATA_BUSA), .ENA (1’b1),
  .CLKA (CLK), .WEA (WEA), .RSTA (1’b0),
 .ADDRB (ADDRB), .DIB (DATA_BUSB), .ENB (1’b1),
 .CLKB (CLK), .WEB (WEB), .RSTB (1’b0));
endmodule
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However, passing the INIT_0x attributes in this manner does not 
initialize the memory contents for synthesis since all synthesis tools 
have their own mechanism for passing attributes to the implementa-
tion netlist. For references on today’s synthesis tools, refer to the 
BlockRAM Instantiation and Initialization for Synthesis table.

Another method for passing the INIT_0x attributes to the Alliance 
tools is through the use of a UCF file. For example, the following 
statement defines the initialization string for the code example above.

INST U0 INIT_00 = 
5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;

INST U0 INIT_01 = 
5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;

The value of the INIT_0x string is a hexadecimal number that defines 
the initialization string.

CLKDLL

The duty cycle of the CLK0 output is 50-50 unless the 
DUTY_CYCLE_CORRECTION attribute is set to FALSE, in which 
case the duty cycle is the same as that of the CLKIN.

The frequency of CLKDV is determined by the value assigned to the 
CLKDV_DIVIDE attribute. The default is 2.

The STARTUP_WAIT is not implemented in the model. To hold off 
simulation until the DLL is locked, this example will monitor the 
LOCK signal and use it to trigger the release of the GSR signal.

Table 6-10  BlockRAM Instantiation and Initialization for 
Synthesis

Synthesis Information Location

XST http://support.xilinx.com/techdocs/
10695.htm

FPGA Compiler II http://support.xilinx.com/techdocs/4392.htm

Synplify http://support.xilinx.com/techdocs/2022.htm

LeonardoSpectrum http://support.xilinx.com/techdocs/7947.htm
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module clkdll_ex (CLKIN_P, RST_P, CLK0_P, CLK90_P,
CLK180_P,CLK270_P,CLK2X_CLKDV_P,
LOCKED_P);

input CLKIN_P, RST_P;
output  CLK0_P, CLK90_P, CLK180_P, CLK270_P, 
CLK2X_P;

output  CLKDV_P;
// Active high indication that DLL is 
// LOCKED to CLKIN
output  LOCKED_P;
wire CLKIN, CLK0;

// Input buffer on the clock
IBUFG U0 (.I (CLKIN_P), .O (CLKIN));

// GLOBAL CLOCK BUFFER on the 
// delay compensated output
BUFG U2 (.I (CLK0), .O (CLK0_P));

// For RTL simulation only. 
// The defparam will not synthesize.
// synthesis translate_off
// CLK0 divided by 
// 1.5 2.0 2.5 3.0 4.0 5.0 8.0 or 16.0
defparam DLL0.CLKDV_DIVIDE = 4.0;
defparam DLL0.DUTY_CYCLE_CORRECTION = "FALSE";

// synthesis translate_on

// Instantiate the DLL primitive cell
CLKDLL DLL0 (.CLKIN (CLKIN), .CLKFB(CLK0_P), 

.RST (RST_P), .CLK0 (CLK0),
.CLK90 (CLK90_P), .CLK180 (CLK180_P),

 .CLK270 (CLK270_P), .CLK2X (CLK2X_P),
.CLKDV (CLKDV_P),.LOCKED (LOCKED_P));

endmodule
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However, passing the CLKDLL attributes in this manner does not 
initialize the contents for synthesis. Please refer to your synthesis 
vendor’s documentation since all synthesis tools have their own 
mechanism for passing attributes to the implementation netlist.

Another method for passing the CLKDLL attributes to the Alliance 
tools is through the use of an UCF file. For example, the following 
statement defines the initialization string for the code example above.

INST DLL0 CLKDV_DIVIDE = 4;
INST DLL0 DUTY_CYCLE_CORRECTION = FALSE;

DCM

The DCM (Digital Clock Management) component, available in 
Virtex-II and Virtex-II Pro, is an enhancement over the Virtex-E 
CLKDLL. The following example shows how to pass the attributes to 
the DCM component using the defparam statement in Verilog.

module DCM_TEST( clock_in, clock_out, clock_with_ps_out, 
reset ); 

input clock_in; 
output clock_out; 
output clock_with_ps_out; 
output reset; 

wire low, high, dcm0_locked, reset, clk0; 

assign low = 1’b0; 
assign high = 1’b1; 
assign reset = !dcm0_locked; 

IBUFG CLOCK_IN ( .I(clock_in), .O(clock) ); 

DCM DCM0 ( 
.CLKFB(clock_out), .CLKIN(clock), .DSSEN(low), .PSCLK(low), 
.PSEN(low), .PSINCDEC(low), .RST(low), .CLK0(clk0), .CLK90(), 
.CLK180(), .CLK270(), .CLK2X(), .CLK2X180(),.CLKDV(), .CLKFX(),
.CLKFX180(), .LOCKED(dcm0_locked), .PSDONE(), .STATUS() ); 

BUFG CLK_BUF0( .O(clock_out), .I(clk0) ); 
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//synthesis translate_off 
defparam DCM0.DLL_FREQUENCY_MODE = "LOW"; 
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE"; 
defparam DCM0.STARTUP_WAIT = "TRUE"; 
defparam DCM0.DFS_FREQUENCY_MODE = "LOW"; 
defparam DCM0.CLKFX_DIVIDE = 1; 
defparam DCM0.CLKFX_MULTIPLY = 1; 
defparam DCM0.CLK_FEEDBACK = "1X"; 
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE"; 
defparam DCM0.PHASE_SHIFT = "0"; 
defparam DCM0.CLK_FEEDBACK = "1X"; 
defparam DCM0.CLKIN_DIVIDE_BY_2 = FALSE; 
defparam DCM0.CLKIN_PERIOD = 0.0; 
defparam DCM0.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS"; 
defparam DCM0.DFS_FREQUENCY = "LOW"; 
defparam DCM0.DLL_FREQUENCY = "LOW"; 

//synthesis translate_on 

endmodule // DCM_TEST 

Simulation CORE Generator Components

The simulation flow for CORE Generator models is described in the 
CORE Generator Guide.

Design Hierarchy and Simulation
Most FPGA designs are partitioned into levels of hierarchy for many 
advantageous reasons. A few of the reasons hierarchy makes the 
design easier to read, easier to re-use, allows partitioning for a multi-
engineer team, and improves verification. To improve design 
utilization and performance, many times the synthesis tool or the 
Xilinx implementation tools will flatten or modify the design 
hierarchy. After this flattening and restructuring of the design 
hierarchy in synthesis and implementation, the hierarchy can be 
reconstructed during back annotation and final gate-level simulation 
netlisting. Many times this reconstruction will cause a flattened or 
somewhat distorted view of the original design hierarchy for back-
end timing verification. Because of this distortion, much of the 
advantage of using the original design hierarchy in RTL verification 
is lost in back-end verification. The distortion decreases the visibility 
into the structural design netlist, and increases the difficulty of 
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verifying the end function of the design. In an effort to improve 
visibility of the design for back-end simulation, retention of the 
original design hierarchy has been improved in the Xilinx design 
flow. 

To allow preservation of the design hierarchy through the 
implementation process with little or no degradation in performance 
or increase in design resources, stricter design rules should be 
followed so that optimization is not necessary across the design 
hierarchy. 

Some good design practices to follow are:

• Register all outputs exiting a preserved entity or module.

• Do not allow critical timing paths to span multiple entities or 
modules.

• Keep related or possibly shared logic in the same entity or 
module.

• Place all logic that is to be placed/merged into the I/O (IOB 
registers, three state buffers, instantiated I/O buffers, etc.) in the 
top-level module or entity for the design. This includes double-
data rate registers used in the I/O.

• Manually duplicate high-fanout registers at hierarchy boundaries 
if improved timing is necessary.

Generally, it is good practice to follow the guidelines in the FPGA 
Reuse Field Guide. 

To maintain the entire hierarchy or specified parts of the hierarchy 
during synthesis, the synthesis tool must first be instructed to 
preserve hierarchy for all levels or each selected level of hierarchy. 
This may be done with a global switch, compiler directive in the 
source files, or a synthesis command. Consult your synthesis tool 
documentation for details on how to retain hierarchy. After taking the 
necessary steps to preserve hierarchy, and properly synthesizing the 
design, a hierarchical implementation file (EDIF or NGC) should be 
created by the synthesis tool that will retain the hierarchy.

Before implementing the design with the Xilinx software, place a 
KEEP_HIERARCHY constraint on each instance in the design in 
which the hierarchy is to be preserved. This tells the Xilinx software 
exactly which parts of the design should not be flattened or modified 
to maintain proper hierarchy boundaries. This constraint may be 
Synthesis and Simulation Design Guide 6-79



Synthesis and Simulation Design Guide
passed in the source code as an attribute, as an instance constraint in 
the NCF or UCF file, or may be automatically generated by the 
synthesis tool. See your synthesis vendor documentation to see how 
your synthesis tool handles this. More information on the 
KEEP_HIERARCHY constraint can be found in the Constraints Guide.

Alternatively, if the design was compiled using a bottom-up 
methodology where individual implementation files (EDIF or NGC) 
were created for each level of design hierarchy, the 
KEEP_HIERARCHY constraint may be automatically generated. A 
KEEP_HIERARCHY constraint will be generated for each separate 
design file passed to the Xilinx software by the use of a switch during 
input netlist translation. During the ngdbuild netlist translation 
stage, if the –insert_keep_hierarchy switch is enabled, the hierarchy 
for each individual input file for the design will be preserved during 
implementation.

After the design is mapped, placed, and routed, run ngdanno with 
the resulting NGM file from map during delay annotation to properly 
back-annotate the hierarchy of the design. Then run the netlister on 
the output NGA file from ngdanno using the following syntax:

ngdanno design_name.ncd design_name_map.ngm

ngd2ver/ngd2vhdl design_name.nga output_name

This is the default way ngdanno is run when using ISE or XFLOW to 
generate the simulation files. It is only necessary to know this if you 
plan to execute the ngdanno outside of ISE or XFLOW. When you run 
the netlister on the resulting back-annotated NGA file, and using the 
NGM file, all hierarchy that was specified to KEEP_HIERARCHY 
should be reconstructed in the resulting VHDL or Verilog netlist.

Note Hierarchy created by generate statements may not match the 
original simulation due to naming differences between the simulator 
and synthesis engines for generated instances.The back-end Verilog 
and VHDL netlist could have additional ports in the user hierarchy 
called GSR and GTS as part of the hierarchy interface for instances 
with the KEEP_HIERARCHY attribute. These ports are necessary for 
connecting the GSR and GTS global nets that are needed for the 
correct simulation of the design.
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RTL Simulation Using Xilinx Libraries
Since Xilinx simulation libraries are VHDL-93 and Verilog-2001 
compliant, they can be simulated using any simulator that supports 
these language standards. However, certain delay and modelling 
information is built into the libraries, which is required to correctly 
simulate the Xilinx hardware devices.

Xilinx recommends not changing data signals at clock edges, even for 
functional simulation. The simulators add a unit delay between the 
signals that change at the same simulator time. If the data changes at 
the same time as a clock, it is possible that the data input will be 
scheduled by the simulator to occur after the clock edge. Thus, the 
data will not go through until the next clock edge, although it is 
possible that the intent was to have the data get clocked in before the 
first clock edge. To avoid any such unintended simulation results, 
Xilinx recommends not switching data signals (for registered 
components) and clock signals simultaneously.

The UNISIMS VHDL BlockRAM simulation models have a 10 
picosecond setup time built in. Since the ideal simulation 
environment calls for using the same testbench in both RTL and 
timing simulation, this default setup time warns the user when a 
stimulus that will not work in timing simulation or hardware is 
passed by the testbench. This is desirable since it gives the user an 
early warning before the design goes into the implementation stage. 
Similarly, the UNISIMS VHDL CLKDLL and DCM simulation 
models have a 100 picosecond default skew between the input and 
output clocks, which is the skew seen on average in timing 
simulation and board-level simulation. 

Timing Simulation
In back annotated (timing) simulation, the introduction of delays can 
cause the behavior to be different from what is expected. Most 
problems are caused due to timing violations in the design, and are 
reported by the simulator. However, there are a few other problems 
that can occur.

Glitches in your Design 
When a glitch (small pulse) occurs in an FPGA circuit or any 
integrated circuit, the glitch may be passed along by the transistors 
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and interconnect (transport) in the circuit, or it may be swallowed 
and not passed (internal) to the next resource in the FPGA. This 
depends on the width of the glitch and the type of resource the glitch 
passes through. To produce more accurate simulation of how signals 
are propagated within the silicon, Xilinx models this behavior in the 
timing simulation netlist. For Verilog simulation, this information is 
passed by the PATHPULSE construct in the SDF file. This construct is 
used to specify the size of pulses to be rejected or swallowed on 
components in the netlist. For VHDL, there are two library 
components called X_BUF_PP and X_TRI_PP in which proper values 
are annotated for pulse rejection in the simulation netlist. The result 
of these constructs in our simulation netlists is a more true-to-life 
simulation model, and so a more accurate simulation.

CLKDLL/DCM Clocks do not appear de-skewed
The CLKDLL and DCM components remove the clock delay from the 
clock entering into the chip. As a result, the incoming clock and the 
clocks feeding the registers in the device have a minimal skew within 
the range specified in the Databook for any given device. However, in 
timing simulation, the clocks may not appear to be de-skewed within 
the range specified. This is due to the way the delays in the SDF file 
are handled by some simulators. 

The SDF file annotates the CLOCK PORT delay on the X_FF 
components. However, some simulators may show the clock signal 
before taking this delay into account. If this CLOCK PORT delay on 
the X_FF is added to the internal clock signal, then it should line up 
within the device specifications in the waveform viewer with the 
input port clock. Currently there is no work around to this problem 
for Verilog designs. Therefore, in order to verify the correct 
functioning of the CLKDLL/DCM, delays from the SDF file need to 
be accounted for manually to calculate the actual skew between the 
input and internal clocks. For VHDL designs, probe the internal 
signals of the simulation models to see the PORT delays being 
annotated. The internal signals have a "_int" annotated to the external 
port name.

Simulating the DLL/DCM
Although the functionality of the Xilinx DLL and DCM components 
may seem easy to understand, the simulation of these components 
can be easily misinterpreted. The purpose of this section is to clarify 
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how the DLL/DCM is supposed to simulate, and to identify some of 
the common problems designers face when simulating these 
components.

TRACE/Simulation Model Differences

To fully understand the simulation model, you must first understand 
that there are differences in the way the DLL and DCM are built in 
silicon and the way TRACE reports them compared to the DLL/
DCM simulation model. The DLL/DCM simulation model attempts 
to replicate the functionality of the DLL/DCM in the Xilinx silicon, 
but it does not always do it exactly how it is implemented in the 
silicon. In the silicon, the DLL/DCM uses a tapped delay line to delay 
the clock signal. This accounts for input delay paths and global buffer 
delay paths to the feedback in order to accomplish the proper clock 
phase adjustment. TRACE or Timing Analyzer reports the phase 
adjustment as a simple delay (usually negative) so that you can 
adjust the clock timing for static timing analysis. As for simulation, 
the DLL/DCM simulation model itself, attempts to align the input 
clock to the clock coming back into the feedback input. Instead of 
putting the delay in the DLL or DCM itself, the delays are handled by 
combining some of them into the feedback path as clock delay on the 
clock buffer (component) and clock net (port delay). The remainder is 
combined with the port delay of the CLKFB pin. While this is 
different from the way TRACE or Timing Analyzer reports it, and the 
way it is implemented in the silicon, the end result is the same 
functionality. TRACE and simulation both use a simple delay model 
rather than an adjustable delay tap line similar to silicon.

Note Note that we do not currently support jitter and clock arrival 
differences in the simulation model or static timing analysis.

The primary job of the DLL/DCM is to remove the clock delay from 
the internal clocking circuit as shown in the following figure.
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Figure 6-9  Delay Locked Loop Block Diagram

Do not confuse this with the function of de-skewing the clock. Clock 
skew is generally associated with delay variances in the clock tree, 
which is a different matter. By removing the clock delay, the input 
clock to the device pin should be properly phase aligned with the 
clock signal as it arrives at each register it is sourcing. This means that 
observing signals at the DLL/DCM pins generally does not give the 
proper view point to observe the removal of the clock delay. The 
place to see if the DCM is doing its job is to compare the input clock 
(at the input port to the design) with the clock pins of one of the 
sourcing registers. If these are aligned (or shifted to the desired 
amount) then the DLL/DCM has accomplished its job.

Non-LVTTL Input Drivers

When using non-LVTTL input buffer drivers to drive the clock, the 
DCM does not make adjustments as to the type of input buffer 
chosen, but instead has a single delay value to provide the best 
amount of clock delay across all I/O standards. If you are using the 
same input standard for the data, the delay values should track, and 
generally not cause a problem. Even if you are not using the same 
input standard, the amount of delay variance will generally not cause 
hold time failures because the delay variance is small compared to 
the amount of input delay. The delay variance is calculated in both 
static timing analysis and simulation so you should see proper setup 
time values during static timing analysis, as well as during 
simulation.
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Viewer Considerations

Depending on which simulator you use, the waveform viewer may 
not depict the delay timing the way you expect to see it. Some 
simulators, including the current version of MTI ModelSim, will 
combine interconnect delays (either interconnect or port delays) with 
the input pins of the component delays when you view the waveform 
on the waveform viewer. In terms of the simulation, the results are 
correct, but in terms of what you see in the waveform viewer, this 
may not always be what you expect to see. Since interconnect delays 
are combined, when you look at a pin using the MTI ModelSim 
viewer, you do not see the transition as it happens on the pin. In 
terms of functionality, the simulation acts properly, and this is not 
very relevant, but when attempting to calculate clock delay, the 
interconnect delays before the clock pin must be taken into account if 
the simulator you are using combines these interconnect delays with 
component delays. Please refer to http://support.xilinx.com/
techdocs/11067.htm on the Xilinx support Web site at for the most 
current information on this issue.

Attributes for Simulation and Implementation 

Ensure that the same attributes are passed for simulation and 
implementation. During implementation of the design, DLL/DCM 
attributes may be passed either by the synthesis tool via a synthesis 
attribute, or within the UCF file. For RTL simulation of the UNISIM 
models, the simulation attributes must be passed via a generic if you 
are using VHDL, or a defparam if you are using Verilog. If you do not 
use the default setting for the DLL/DCM, and you use the UCF file or 
a different synthesis attribute to pass the attribute values, you must 
ensure that the attributes for RTL simulation are the same as those 
used for implementation. If not, there may be differences between 
RTL simulation and the actual device implementation. 

Simulating the DCM in Digital Frequency Synthesis 
Mode Only 

To simulation the DCM in Digital Frequency Synthesis Mode only, set 
the CLK_FEEDBACK attribute to NONE and the leave the CLKFB 
unconnected. The CLKFX and CLKFX180 will be generated based 
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes. These outputs 
will not have phase correction with respect to CLKIN. 
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Negative Hold Times
In previous versions of Xilinx simulation models, negative hold times 
were truncated and specified as zero hold times. While this does not 
cause inaccuracies for simulation, it does reveal a more pessimistic 
model in terms of timing than is possible in the actual FPGA. 
Therefore this made it more difficult to meet stringent timing 
requirements. With the current release, negative hold times are now 
specified in the timing models to provide a wider, yet more accurate 
representation of the timing window. This is accomplished by 
combining the setup and hold parameters for the synchronous 
models into a single setuphold parameter in which the timing for the 
setup/hold window can be expressed. This should not change the 
timing simulation methodology in any way, however when using 
Cadence Verilog-XL or NC-Verilog, there will no longer be separate 
violation messages for setup and hold as they are now combined into 
a single setuphold violation.

Simulation Flows
When simulating, compile the Verilog source files in any order since 
Verilog is compile order independent. However, VHDL components 
must be compiled bottom-up due to order dependency. Xilinx recom-
mends that you specify the test fixture file before the HDL netlist of 
your design, as in the following examples.

Xilinx recommends giving the name testbench to the main module in 
the test fixture file. This name is consistent with the name used by 
default in the ISE Project Navigator. If this name is used, no changes 
are necessary to the option in ISE in order to perform simulation from 
that environment.

ModelSim Vcom
The following is information regarding ModelSim Vcom.
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Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using ModelSim Vcom. See the “Compiling HDL Libraries” section 
for instruction on how to compile the Xilinx VHDL libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the command-line.

vlib work

vcom lower_level_files.vhd top_level.vhd testbench.vhd 
(testbench_cfg.vhd)

vsim testbench_cfg

For timing simulation or post-Ngd2vhdl, the SIMPRIMS-based 
libraries are used. Specify the following at the command-line:

vlib work

vcom -work work design.vhd testbench.vhd [testbench_cfg.vhd]

vsim -sdfmax instance_name=design.sdf testbench_cfg

Scirocco
The following is information regarding Scirocco.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using Scirocco. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx VHDL libraries.

Depending on the makeup of the design (Xilinx instantiated compo-
nents, or CORE Generator components), for RTL simulation, specify 
the following at the command-line.

mkdir work

vhdlan work_macro1.vhd top_level.vhd testbench.vhd testbench_cfg.vhd

scs testbench_cfg

scsim
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For timing simulation or post-Ngd2vhdl, the SIMPRIMS-based 
libraries are used. Specify the following at the command-line:

mkdir work

vhdlan work_design.vhd testbench.vhd 

scs testbench

scsim -sdf testbench:design.sdf 

NC-VHDL
The following is information regarding NC-VHDL.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using NC_VHDL. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx VHDL libraries. It is 
assumed that the proper mapping and setup files are present before 
simulation. If you are unsure that you have the simulator properly 
setup, please consult the simulator vendor documentation.

Depending on the makeup of the design (Xilinx instantiated compo-
nents, or CORE Generator components), for RTL simulation, specify 
the following at the command-line.

1. Create a working directory.

mkdir test

2. Compile design files and workbench.

ncvhdl -work test testwork_macro1.vhd top_level.vhd 
testbench.vhd testbench_cfg.vhd

3. Elaborate the design at the proper scope 

ncelab testbench_cfg:A

4. Invoke the simulation.

ncsim testbench_cfg:A
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For timing simulation or post-Ngd2vhdl, the SIMPRIMS-based 
libraries are used. Specify the following at the command-line:

1. Compile the SDF annotation file:

ncsdfc design.sdf 

2. Create an SDF command file, sdf.cmd, the following data in it:

COMPILED_SDF_FILE = design.sdf.X

SCOPE = uut,

MTM_CONTROL = ’MINIMUM’;

3. Create a working directory.

mkdir test

4. Compile design files and workbench.

ncvhdl -work test work_design.vhd testbench.vhd 

5. Elaborate the design at the proper scope 

ncelab -sdf_cmd_file.cmd testbench_cfg:A

6. Invoke the simulation.

ncsim testbench_cfg:A 

Verilog-XL
Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the command-line.

verilog -y $XILINX/verilog/src/unisims
+libext+.v
<testfixture>.v <design>.v $XILINX/verilog/src/glbl.v

The –y switch points the simulator to the HDL models.
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For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line:

verilog -y $XILINX/verilog/src/simprims \
+libext+.v <testfixture>.v <design>.v $XILINX/verilog/src/glbl.v

For more information on specifying the Xilinx SIMPRIMs library 
using the -ul switch with NGD2VER instead of using the -y switch in 
Verilog-XL, go to http://support.xilinx.com/techdocs/3167.htm.

Note You do not need to compile the libraries for Verilog-XL because 
it uses an interpretive compilation of the libraries. 

NC-Verilog
There are two methods to run simulation with NC-Verilog.

1. Using library source files with compile time options (similar to 
Verilog-XL).

2. Using shared precompiled libraries.

Using Library Source Files With Compile Time 
Options

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the command-line:

ncxlmode +libext+.v -y $XILINX/verilog/src/unisims -y
<testfixture>.v <design>.v $XILINX/verilog/src/glbl.v

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line.

ncxlmode -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v 

+libext+.v <testfixture>.v time_sim.v

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using NC-Verilog. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, edit the 
hdl.var and cds.lib files to specify the library mapping.
6-90 Xilinx Development System

http://support.xilinx.com/techdocs/3167.htm


Simulating Your Design
# cds.lib
DEFINE simprims_ver <compiled_lib_dir>/simprims_ver
DEFINE xilinxcorelib_ver <compiled_lib_dir>/xilinxcorelib_ver
DEFINE worklib worklib

# hdl.var
DEFINE VIEW_MAP ($VIEW_MAP, .v => v) DEFINE LIB_MAP ($LIB_MAP, 
<compiled_lib_dir>/unisims_ver => unisims_ver)
DEFINE LIB_MAP ($LIB_MAP, <compiled_lib_dir>/simprims_ver => 
simprims_ver)
DEFINE LIB_MAP ($LIB_MAP, <compiled_lib_dir>/simprims_ver => 
xilinxcorelib_ver)
DEFINE LIB_MAP ($LIB_MAP, + => worklib)
// After setting up the libraries, now compile and simulate the design:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v 
<design>.v
ncelab -messages testfixture_name glbl
ncsim -messages testfixture_name

The -update option of Ncvlog enables incremental compilation.

For timing simulation or post-Ngd2ver, the Simprims-based libraries 
are used. Specify the following at the command-line:

ncvlog -messages -update $XILINX/verilog/src/glbl.v 
<testfixture>.v time_sim.v
ncelab -messages -autosdf testfixture_name glbl
ncsim -messages testfixture_name

For more information on how to back-annotate the SDF file for timing 
simulation, go to http://support.xilinx.com/techdocs/947.htm.

VCS/VCSi
VCS and VCSi are identical except that VCS is more highly opti-
mized, resulting in greater speed for RTL and mixed level designs. 
Pure gate level designs run with comparable speed. However, VCS 
and VCSi are guaranteed to provide the exact same simulation 
results. VCSi is invoked using the vcsi command rather than the 
vcs. command.
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There are two methods to run simulation with VCS/VCSi.

1. Using library source files with compile time options (similar to 
Verilog-XL).

2. Using shared precompiled libraries.

Using Library Source Files With Compile Time 
Options

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the command-line.

vcs -y $XILINX/verilog/src/unisims
incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v
-Mupdate -R <testfixture>.v <design>.v

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line.

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
+libext+.v -Mupdate -R <testfixture>.v time_sim.v

The -R option automatically simulates the executable after compila-
tion .

The -Mupdate option enables incremental compilation. Modules will 
be recompiled because of one of the following reasons:

1. Target of a hierarchical reference has changed.

2. Some compile time constant such as a parameter has changed.

3. Ports of a module instantiated in the module have changed.

4. Module inlining. For example, merging, internally in VCS, of a 
group of module definitions into a larger module definition 
which leads to faster simulation. These affected modules are 
again recompiled. This is done only once.

For more information on how to back-annotate the SDF file for timing 
simulation, go to http://support.xilinx.com/techdocs/6349.htm.
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Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using VCS/VCSi. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the command-line.

vcs -Mupdate -Mlib=<compiled_dir>/unisims_ver -y $XILINX/verilog/src/
unisims -Mlib=<compiled_dir>/simprims_ver -y $XILINX/verilog/src/simprims 
-Mlib=<compiled_dir>/xilinxcorelib_ver 
+libext+.v $XILINX/verilog/src/glbl.v -R <testfixture>.v <design>.v

 For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line.

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
+libext+.v-Mupdate -R <testfixture>.v time_sim.v

The -R option automatically simulates the executable after compila-
tion. Finally, the -Mlib=<compiled_lib_dir> option provides VCS 
with a central place to look for the descriptor information before it 
compiles a module and a central place to get the object files when it 
links together the executable.

The -Mupdate option enables incremental compilation. Modules will 
be recompiled because of one of the following reasons:

1. Target of a hierarchical reference has changed.

2. Some compile time constant such as a parameter has changed.

3. Ports of a module instantiated in the module have changed.

4. Module inlining. For example, merging, internally in VCS, of a 
group of module definitions into a larger module definition 
which leads to faster simulation. These affected modules are 
again recompiled. This is done only once.

For more information on how to back-annotate the SDF file for timing 
simulation, go to http://support.xilinx.com/techdocs/6349.htm.
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ModelSim Vlog
There are two methods to run simulation with ModelSim Vlog.

1. Using library source files with compile time options (similar to 
Verilog-XL).

2. Using shared precompiled libraries.

Using Library Source Files With Compile Time 
Options

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the ModelSim prompt:

set XILINX $env(XILINX)

vlog -y $XILINX/verilog/src/unisims

+libext+.v $XILINX/verilog/src/glbl.v -incr

<testfixture>.v <design>.v

vsim <testfixture> glbl

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the ModelSim prompt:

vlog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v 

+libext+.v <testfixture>.v time_sim.v -incr

vsim <testfixture> glbl +libext+.v <testfixture>.v

The -incr option enables incremental compilation.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using ModelSim Vlog. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify 
the following at the ModelSim prompt:

set XILINX $env(XILINX)

vlog $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v -incr

vsim -L unisims_ver -L simprims_ver -L xilinxcorelib_ver <testfixture> 
glbl
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For timing simulation or post-NGD2VER, the SIMPRIM-based 
libraries are used. Specify the following at the ModelSim prompt:

vlog $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v -incr 
vsim -L simprims_ver <testfixture> glbl

The -incr option enables incremental compilation. The -L 
<compiled_lib_dir> option provides VSIM with a library to search for 
design units instantiated from Verilog.

IBIS
The Xilinx IBIS models provide information on I/O characteristics. 
The IBIS models can be used for the following.

IBIS models provide information about I/O driver and receiver 
characteristics without disclosing proprietary knowledge of the IC 
design (as unencrypted SPICE models do). However, there are some 
limitations on the information that IBIS models can provide. Please 
note that these are limitations imposed by the IBIS specification itself. 

IBIS models can be used for the following:

1. Model best-case and worst-case conditions (best-case = strong 
transistors, low temperature, high voltage; worst-case = weak 
transistors, high temperature, low voltage). Best-case conditions 
are represented by the "fast/strong" model, while worst-case 
conditions are represented by the "slow/weak" model. Typical 
behavior is represented by the "typical" model. 

2. Model varying drive strength and slew rate conditions for Xilinx 
I/Os that support such variation. 

IBIS cannot be used for any of the following: 

1. Provide internal timing information (propagation delays and 
skew). 

2. Model power and ground structures. 

3. Model pin-to-pin coupling. 

4. Provide detailed package parasitic information. Package 
parasitics are provided in the form of lumped RLC data. This is 
typically not a significant limitation, as package parasitics have 
an almost negligible effect on signal transitions. 
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The implications of (2) and (3) above are that ground bounce, power 
supply droop, and simultaneous switching output (SSO) noise 
CANNOT be simulated with IBIS models. To ensure that these effects 
do not harm the functionality of your design, Xilinx provides device/
package-dependent SSO guidelines based on extensive lab 
measurements. The locations of these guidelines are as follows: 

Virtex-II - The "Design Considerations" section of the Virtex-II 
Handbook: http://www.xilinx.com/products/virtex/handbook/
index.htm. 

Virtex-II Pro - The "PCB Design Considerations" section of the Virtex-
II Pro Handbook: http://support.xilinx.com/publications/
products/v2pro/handbook/index.htm. 

Virtex/-E - Xilinx Application Note 133: "Using the Virtex Select I/O 
Resource" (Xilinx XAPP133) 

Spartan-II/-IIE - Xilinx Application Note 179: "Using Select I/O 
Interfaces in Spartan-II FPGAs" (Xilinx XAPP179) 

IBIS models for Xilinx devices can be found at: http://
support.xilinx.com/support/sw_ibis.htm 

For more information about the IBIS specification, please see the IBIS 
Home Page at http://www.eigroup.org/ibis/ibis.htm 

The Xilinx IBIS models are available for download at:

ftp://ftp.xilinx.com/pub/swhelp/ibis/

STAMP
The Xilinx development system supports Stamp Model Generation. 
This feature supports the use of board level Static Timing Analysis 
tools, such as Mentor Graphics’ Tau and Innoveda’s Blast. With these 
tools, users of Xilinx programmable logic products can accelerate 
board level design verification.

Using the -stamp switch in the Xilinx program Trace, will write out 
the stamp models.

For more information on creating the STAMP files, options to use in 
Trace, and integrating it with Tau and Blast, please see the Applica-
tion note at http://support.xilinx.com/xapp/xapp166.pdf
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Debugging Timing Problems
In back-annotated (timing) simulation, the simulator takes into 
account timing information that resides in the standard delay format 
(SDF) file. This may lead to eventual timing violations issued by the 
simulator. This section explains some of the more common timing 
violations, and gives advice on how to debug and correct them.

Identifying Timing Violations
After you run timing simulation, check the messages generated by 
your simulator. If you have timing violations, they will be indicated 
by error messages. 

The following example is a typical setup violation message from MTI 
ModelSim for a Verilog design. Message formats will vary from 
simulator to simulator, but will all contain the same basic 
information. See your simulator documentation for details.

# ** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96):

$setup(negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);

# Time:29151 ps Iteration:0 Instance: /test_bench/u1/\U1/X_RAMD16\

• The first line points to the line in the simulation model that is in 
error. In the example above, the failing line would be line 96 of 
the verilog file, X_RAMD16.

• The second line gives information about the two signals that are 
the cause of the error. This line states the following.

♦ The type of violation ($setup, $hold, $recovery, etc.). The 
above example is a $setup violation.

♦ The name of each signal involved in the violation followed 
by the simulation time at which that signal last changed 
values. In the above example, the failing signals would be 
negative-going edge of the signal WE which last changed at 
29138 picoseconds, and the positive-going edge of the signal 
CLK which last changed at 29151 picoseconds.

♦ The third value is the allotted amount of time for the setup. 
For this example, the signal on WE should be ’stable for 
373 pico seconds before the clock transitions. Since WE 
changed only 13 pico seconds before the clock, this violation 
was reported.
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• The third line gives the simulation time at which the error was 
reported, and the instance in the structural design (time_sim) in 
which the violation occurred.

Verilog System Timing Tasks

Verilog system tasks and functions are used to perform simulation 
related operations such as monitoring and displaying simulation 
time and associated signal values at a specific time during simulation. 
All system tasks and functions begin with a dollar sign, for example 
$setup. See the Verilog Language Reference Manual (available from 
IEEE) for details about specific system tasks.

Timing check tasks may be invoked in specific blocks to verify the 
timing performance of a design by making sure critical events occur 
within given time limits. Timing checks perform the following steps:

• Determine the elapsed time between two events.

• Compare the elapsed time to a specified limit. 

• If the elapsed time does not fall within the specified time 
window, report timing violation. 

The following system tasks may be used for performing timing 
checks:

VITAL Timing Checks

VITAL (VHDL Initiative Towards ASIC Libraries) is an addition to 
the VHDL specification that deals with adding timing information to 
VHDL models. One of the key aspects of VITAL is the specification of 
the package vital_timing. This package, in addition to other things, 
provides standard procedures for performing timing checks.

$hold $setup

$nochange $setuphold

$period $skew

$recovery $width
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The package vital_timing defines the following timing check 
procedures: 

• VitalSetupHoldCheck 

• VITALRecoveryRemovalCheck

• VitalInPhaseSkewCheck

• VitalOutPhaseSkewCheck

• VITALPeriodPulseCheck. 

VitalSetupHoldCheck is overloaded for use with test signals of type 
Std_Ulogic or Std_Logic_Vector. Each defines a CheckEnabled 
parameter that supports the modeling of conditional timing checks. 
See the VITAL Language Reference Manual (available from IEEE) for 
details about specific VITAL timing checks.

Timing Problem Root Causes
Timing violations, such as $setuphold, occur any time data changes at 
a register input (either data or clock enable) within the setup or hold 
time window for that particular register. There are a few typical 
causes for timing violations; the most common are the following.

• The design is not constrained

• A path in the design is not constrained

• The design does not meet timespecs

• The design simulation clock does not match what is called for in 
the timespecs

• Clock skew is unaccounted for in a particular data path 

• A path in the design has asynchronous inputs, crosses out-of-
phase clock domains or has asynchronous clock boundaries 

Design Not Constrained

Timing constraints are essential to help you meet your design goals 
or obtain the best implementation of your circuit. Global timing 
constraints cover most constrainable paths in a design. These global 
constraints cover clock definitions, input and output timing 
requirements, and combinatorial path requirements. Specify global 
constraints like PERIOD, OFFSET_IN_BEFORE, and 
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OFFSET_OUT_AFTER to match your simulator with the timespecs of 
the devices used in the design.

In general, keep in mind the following two points when constraining 
a design: 

• PERIOD: Can be quickly applied to a design. It also leads in the 
support of OFFSET, which you can use to specify your I/O 
timing. This works well for a single-clock, or multi-clock design 
that is not multi-cycle. 

• FROM-TO: This constraint works well with more complicated 
timing paths. Designs that are multi-cycle or have paths that 
cross clock domains are better handled this way. For I/O, 
however, you must add/subtract the delay of the global buffer. 
Note that using an OFFSET before for input and an OFFSET after 
for output is supported without the need to specify a period, so 
you can use the advantages of both.

For detailed information on constraining your design, consult any or 
all of the following resources.

• Constraints Guide: 

The Constraints Guide lists all of the Xilinx constraints along with 
explanations and guides to their usage. 

The Timing Constraint Strategies chapter in the Constraints Guide 
gives detailed information on the best ways to constrain the 
timing on your design to get optimum results.

• Timing and Constraints area on the Xilinx home page:

The Timing and Constraints area on the Xilinx home page provides 
a presentation of Basic Timing Concepts and Syntax Examples. This 
presentation gives an overview of how to constrain your design, 
and has examples of how to code various constraints. 

• The Timing Improvement Wizard:

The Timing Improvement Wizard provides suggestions for 
improving failing paths, and can help you find answers to your 
specific timing questions. You can find the Timing Improvement 
Wizard at:

http://support.xilinx.com/support/troubleshoot/psolvers.htm 
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Path Not or Improperly Constrained

Unconstrained or improperly constrained data and clock paths are 
the most common sources of setup and hold violations. Because data 
and clock paths can cross domain boundaries, global constraints are 
not always adequate to ensure that all paths are constrained. For 
example, a global constraint, such as PERIOD, does not constrain 
paths that originate at an input pin, and data delays along these paths 
could cause setup violations.

Use Timing Analyzer to determine the length of an individual data or 
clock path. For input paths to the design, if the length of a data path 
minus the length of the corresponding clock path, plus any data 
delay, is greater than the clock period, you will get a setup violation.

clock period < data path - clock path + data delay 
value setup value for register

For detailed information on constraining paths driven by input pins, 
see the Timing Constraint Strategies chapter of the Constraints Guide. 
Also see the Design Not Constrained section above for other 
constraints resources.

Design Does Not Meet Timespec

Xilinx software enables you to specify precise timing requirements 
for your Xilinx FPGA designs. Specify the timing requirements for 
any nets or paths in your design. The primary method of specifying 
timing requirements is by assigning timing constraints. You can enter 
timing constraints through your synthesis tool, the Xilinx Constraints 
Editor, or by editing the User Constraint File (UCF). For detailed 
information on entering timing specifications, see the Development 
System Reference Guide. For detailed information about the constraints 
you can use with your schematic entry software, see the Constraints 
Guide.

Once you define timing specifications, use TRACE (Timing Report, 
Circuit Evaluator, and TSI Report) or Timing Analyzer to analyze the 
results of your timing specifications. Review the timing report 
carefully to ensure that all paths are constrained, and that the 
constraints are specified properly. Be sure to check for any error 
messages in the report.

If after applying timing constraints your design still does not meet 
timespec, there are several things you can do. Generally, your 
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synthesis and implementation tools have options intended to 
improve timing performance. Check with your tool’s documentation 
to see what options can be applied to your design.

If refining your tool options is not sufficient, it may be necessary to go 
back to your source code to reconfigure parts of your design. 
Reducing levels of logic will reduce timing delays, as well as 
arranging your floor plan so that related logic is grouped together.

Simulation Clock Does Not Meet Timespec

If the frequency of the clock that was specified during simulation is 
greater than that specified in the timing constraints, then this over-
clocking of the design could cause timing violations. For example, if 
your simulation clock has a frequency of 5 ns, and you have a 
PERIOD constraint set at 10 ns, a timing violation could occur. This 
situation can also be complicated by the presence of DLL or DCM in 
the clock path.

Generally, this problem is caused by an error either in the testbench 
or in the constraint specification. Check to ensure that the constraints 
match the conditions in the testbench, and correct any 
inconsistencies. If you modify the constraints, be sure to re-run the 
design through place and route to ensure that all constraints are met.

Unaccounted Clock Skew

Clock skew is the difference between the amount of time the clock 
signal takes to reach the destination register, and the amount of time 
the clock signal takes to reach the source register. The data must reach 
the destination register within a single clock period plus or minus the 
amount of clock skew. Clock skew is generally not a problem when 
you use global buffers; however, clock skew can be a concern if you 
use the local routing network for your clock signals. 

To find out if clock skew is your problem, use TRACE to do a setup 
test. See the TRACE chapter of the Development Systems Reference 
Guide for directions on how to run a setup check, and read the 
TRACE report. You can also use Timing Analyzer to determine clock 
skew. See the Timing Analyzer Online Help for instructions.

Be aware that clock skew will be modeled in the simulation, but not 
in TRACE unless you invoke TRACE using the "-skew" switch. 
Simulation results may not equal TRACE results if the skew is 
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significant (as when a non-BUFG clock is used). To account for skew 
in TRACE, use the following command:

trce -skew

or set the following environment variable:

setenv XILINX_DOSKEWCHECK yes 

If your design has clock skew, consider redesigning your path so that 
all registers are tied to the same global buffer. If that is not possible, 
consider using the USELOWSKEWLINES constraint to minimize 
skew. Refer to the Constraints Guide for detailed information on the 
USELOWSKEWLINES constraint.

Note Avoid using the XILINX_DOSKEWCHECK environment variable 
with PAR. If you have clocks on local routing, the PAR timing score 
may oscillate. This is because the timing score will be a function of 
both a clock delay and the data delay, and attempts to make the data 
path faster may make the clock path slower, or vice versa. It should 
only be used within PAR on designs with paths that make use of 
global clock resources.

Asynchronous Inputs, Asynchronous Clock Domains, 
Crossing Out-of-phase

Timing violations can be caused by data paths that are not controlled 
by the simulation clock, or are not clock controlled at all. Timing 
violations also include data paths that cross asynchronous clock 
boundaries, have asynchronous inputs, or cross data paths out of 
phase. 

• Asynchronous Clocks

If the design has two or more clock domains defined, any path 
that crosses data from one domain to another could cause timing 
problems. Although data paths that cross from one clock domain 
to another are not always asynchronous, it is always best to be 
cautious with these situations. If two clocks have unrelated 
frequencies, they should certainly be treated as asynchronous. 
Any clocking signal that is coming from of- chip should also be 
treated as asynchronous. Note that anytime a register’s clock is 
gated, it should be treated as asynchronous unless extreme 
caution is used.
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Check the source code and the Timing Analyzer report to see if 
the path in question crosses asynchronous clock boundaries. If 
your design does not allow enough time for the path to be 
properly clocked into the other domain, you may have to 
redesign your clocking scheme. Consider using an asynchronous 
FIFO as a better way to pass data from one clock domain to 
another.

• Asynchronous Inputs

Data paths that are not controlled by a clocked element are 
asynchronous inputs. Because they are not clock controlled, they 
can easily violate setup and hold time specifications.

Check the source code to see if the path in question is 
synchronous to the input register. If synchronization is not 
possible, you can use the ASYNC_REG constraint to work 
around the problem. See the “Using the ASYNC_REG Attribute” 
section in this chapter. 

• Out of Phase Data Paths

Data paths can be clock controlled at the same frequency, but 
nevertheless can have setup or hold violations because the clocks 
are out of phase. Even if the clock frequencies are a derivative of 
each other, improper phase alignment could cause setup 
violations.

Check the source code and the Timing Analyzer report to see if 
the path in question crosses another path with an out of phase 
clock.

Debugging Tips
When you are faced with a timing violation, the following questions 
may give valuable clues as to what went wrong.

• Was the clock path analyzed by TRACE or Timing Analyzer?

• Did TRACE or Timing Analyzer report that the data path can run 
at speeds being clocked in simulation? 

• Is clock skew being accounted for in this path delay? 

• Does subtracting the clock path delay from the data path delay 
still allow clocking speeds?
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• Will slowing down the clock speeds eliminate the $setup/$hold 
time violations? 

• Does this data path cross clock boundaries (from one clock 
domain to another)? Are the clocks synchronous to each other? Is 
there appreciable clock skew or phase difference between these 
clocks? 

• If this path is an input path to the device, does changing the time 
at which the input stimulus is applied eliminate the $setup/
$hold time violations? 

Based on the answers to these questions, you may need to make 
changes to your design or testbench to accommodate the simulation 
conditions.

Special Considerations for Setup and Hold 
Violations

Zero Hold Time Considerations

While Xilinx data sheets report that there are zero hold times on the 
internal registers and I/O registers with the default delay and using a 
global clock buffer, it is still possible to receive a $hold violation from 
the simulator. This $hold violation is really a $setup violation on the 
register. However, in order to get an accurate representation of the 
CLB delays, part of the setup time must be modeled as a hold time. 
For more information on this modeling, please refer to Xilinx Answer 
782 at the Xilinx Support web site. 

RAM Considerations

Xilinx devices contain two types of memories, BlockRAM and 
Distributed RAM. Both BlockRAM and Distributed RAM are 
synchronous elements when you write data to them, so the same 
precautions must be taken as with all synchronous elements to avoid 
timing violations. The data input, address lines, and enables all must 
be stable before the clock signal arrives to guarantee proper data 
storage. BlockRAMs also perform synchronous read operations. This 
means that during a read cycle, the addresses and enables must be 
stable before the clock signal arrives or a timing violation may occur.

When using Distributed RAM or BlockRAM in dual-port mode, 
special care must be taken to avoid memory collisions. A memory 
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collision occurs when one port is being written to while the other port 
is either read or write is attempted to the same address at the same 
time, or within a very short period of time thereafter. The model will 
warn you if a collision occurs. If the RAM is being read on one port as 
it is being written to on the other, the model will output an ’X’ value 
signifying an unknown output. If the two ports are writing data to 
the same address at the same time, the model can write unknown 
data into memory. Special care should be taken to avoid this situation 
as unknown results may occur from this action.

Calculating Setup and Hold Times

Guaranteed External Setup Times 

The external setup time is defined as the setup time of the DATAPAD 
within the IOB, relative to the CLKPAD within the CLKIOB. 

When a guaranteed external setup time exists in the speed files for a 
particular DATAPAD/CLKPAD pair and configuration, an X_SUH 
component will be added to the netlist to annotate this value to the 
design. When no guaranteed external setup time exists in the speed 
files for a particular DATAPAD/CLKPAD pair, no X_SUH 
components will be added and the external setup time will be 
reported as the maximum path delay from DATAPAD to the IFD, 
plus the maximum IFD setup time, less the minimum of maximum 
path delay(s) from the CLKPAD to the IFD. 

Setup Time Calculations

Calculate the external setup time for a pad-to-register path using the 
following equation: 

Tsu(ext) = T(data_path) + Tsu(int) - T(clock_path) 
where:

♦ T(data_path) = maximum data path delay 

♦ Tsu(int) = setup time of an internal register 

♦ T(clock_path) = minimum clock path delay 

Hold Times 

The external hold time is defined as the hold time of the DATAPAD 
within the IOB, relative to the CLKPAD within the CLKIOB. 
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When a guaranteed external hold time exists in the speed files for a 
particular DATAPAD/CLKPAD pair and configuration, an X_SUH 
component will be added to the netlist to annotate this value to the 
design. When no guaranteed external hold time exists in the speed 
files for a particular DATAPAD and CLKPAD pair, no X_SUH 
components will be added and the external hold time will be 
reported as the maximum path delay from CLKPAD to the IFD, plus 
the maximum IFD hold time, less the minimum of maximum path 
delay(s) from the DATAPAD to the IFD. 

Hold Time Calculations

Calculate the external hold time for a pad-to-register path using the 
following equation: 

Th(ext) = T(clock_path) + Th(int) - T(data_path)

where:

♦ T(data_path) = minimum data path delay 

♦ Th(int) = hold time of an internal register 

♦ T(clock_path) = maximum clock path delay 

$Width Violations
The $width Verilog system task monitors the width of signal pulses. 
When the pulse width of a specific signal is less than what is required 
for the device being used, the simulator issues a $width violation. 
Generally, $width violations are only specified for clock signals and 
asynchronous set or reset signals.

Consult the online version of The Programmable Logic Data Book for the 
device switching characteristics for your device. Find the minimum 
pulse width requirements, and ensure that the device stimulus 
conforms to these specifications. 

$Recovery Violations
The $recovery Verilog system task specifies a time constraint between 
an asynchronous control signal and a clock signal (for example, 
between clearbar and the clock for a flip-flop). A $recovery violation 
occurs when a change to the signal occurs within the specified time 
constraint. 
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The $recovery Verilog system task is used to check for one of two 
dual-port block RAM conflicts: 

• If both ports write to the same memory cell simultaneously, 
violating the clock-to-setup requirement, the data stored will be 
invalid. 

• If one port attempts to read from the same memory cell to which 
the other is simultaneously writing (also violating the clock setup 
requirement) the write will be successful, but the data read will 
be invalid. 

Recovery tasks are also used to detect if an asynchronous set/reset 
signal is released just before a clock event occurs. If this happens, the 
result is similar to a setup violation in that it is undetermined 
whether the new data should be clocked in or not.
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