
Synthesis and Simulation
Design Guide
Synthesis and Simulation Design Guide Printed in U.S.A.

Synthesis and Simulation Design Guide
“Xilinx” and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted
herein are reserved.

CoolRunner, RocketChips, RocketIP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090,
XC4005, and XC5210 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable
Logic Cell, CORE Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap,
Fast Zero Power, Foundation, Gigabit Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA,
LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze,
PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, SelectI/O, SelectRAM, SelectRAM+, Silicon
Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap,
UIM, VectorMaze, VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER,
WebPACK, WebPOWERED, XABEL, XACT-Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep
Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker, XDM, XEPLD, Xilinx Foundation Series,
Xilinx XDTV, Xinfo, XSI, XtremeDSP, and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or information shown
or described herein "as is." By providing the design, code, or information as one possible implementation of a
feature, application, or standard, Xilinx makes no representation that such implementation is free from any claims
of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx
expressly disclaims any warranty whatsoever with respect to the adequacy of any such implementation, including
but not limited to any warranties or representations that the implementation is free from claims of infringement, as
well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices and
products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent
that devices shown or products described herein are free from patent infringement or from any other third party
right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of
any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. © Copyright 1994-2002 Xilinx, Inc. All Rights
Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic,
mechanical, photocopying, recording or otherwise, without the prior written consent of Xilinx. Any unauthorized
use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statues.

R

ii Xilinx Development System

About This Manual

This manual provides a general overview of designing Field
Programmable Gate Arrays (FPGAs) with Hardware Description
Languages (HDLs). It includes design hints for the novice HDL user,
as well as for the experienced user who is designing FPGAs for the
first time.

The design examples in this manual were created with Verilog and
VHSIC Hardware Description Language (VHDL); compiled with
various synthesis tools; and targeted for XC4000, Spartan, Spartan-II,
Spartan-XL, Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and XC5200
devices. Xilinx equally endorses both Verilog and VHDL. VHDL may
be more difficult to learn than Verilog and usually requires more
explanation.

The design examples in this manual were created with Verilog and
VHSIC Hardware Description Language (VHDL); compiled with
various synthesis tools; and targeted for Spartan-II, Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, and XC5200 devices. Xilinx equally endorses
both Verilog and VHDL. VHDL may be more difficult to learn than
Verilog and usually requires more explanation.

This manual does not address certain topics that are important when
creating HDL designs, such as the design environment; verification
techniques; constraining in the synthesis tool; test considerations; and
system verification. Refer to your synthesis tool’s reference manuals
and design methodology notes for additional information.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools.
Synthesis and Simulation Design Guide iii

Synthesis and Simulation Design Guide
Manual Contents
This book contains the following chapters.

• Chapter 1, “Introduction,” provides a general overview of
designing Field Programmable Gate Arrays (FPGAs) with HDLs.
This chapter also includes installation requirements and instruc-
tions.

• Chapter 2, “Understanding High-Density Design Flow,”
provides synthesis and Xilinx implementation techniques to
increase design performance and utilization.

• Chapter 3, “General HDL Coding Styles,” includes HDL coding
hints and design examples to help you develop an efficient
coding style.

• Chapter 4, “Architecture Specific HDL Coding Styles for Spartan-
II, Virtex, Virtex-E, Virtex-II, and Virtex-II Pro,” includes coding
techniques to help you use the latest Xilinx devices.

• Chapter 5 “Virtex-II Pro Considerations,” highlights some of the
outstanding features of Xilinx Virtex-II Pro FPGAs.

• Chapter 6, “Simulating Your Design,” describes simulation
methods for verifying the function and timing of your designs.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
iv Xilinx Development System

http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm

About This Manual
Data Book Pages from The Programmable Logic Data Book, which contains device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
Synthesis and Simulation Design Guide v

http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/support/techsup/journals/index.htm

Synthesis and Simulation Design Guide
vi Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
most conventions.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals

See the Development System Reference Guide for more
information.
Synthesis and Simulation Design Guide vii

Synthesis and Simulation Design Guide
♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “…” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 … locn;

Online Document
The following conventions are used for online documents.

• Blue text indicates cross-references within a book. Red text
indicates cross-references to other books. Click the colored text to
jump to the specified cross-reference.

• Blue, underlined text indicates a Web site. Click the link to open
the specified Web site. You must have a Web browser and internet
connection to use this feature.
viii Xilinx Development System

Contents
About This Manual
Manual Contents ...iv
Additional Resources ..iv

Conventions
Typographical ..vii
Online Document ..viii

Chapter 1 Introduction

Architecture Support ...1-1
Overview of Hardware Description Languages1-2
Advantages of Using HDLs to Design FPGAs1-2
Designing FPGAs with HDLs ..1-3

Using Verilog ..1-4
Using VHDL ...1-4
Comparing ASICs and FPGAs ...1-4
Using Synthesis Tools ...1-4
Using FPGA System Features ...1-5
Designing Hierarchy ...1-5
Specifying Speed Requirements ..1-5

Xilinx Internet Web Sites ...1-5
 Xilinx World Wide Web Site ..1-6
Technical Support Web Site ..1-6
Technical and Applications Support Hotlines1-7
Xilinx FTP Site ...1-7

Vendor Support Sites ..1-8

Chapter 2 Understanding High-Density Design Flow

Design Flow ..2-1
Entering your Design and Selecting Hierarchy2-3

Design Entry Recommendations ...2-3
Using RTL Code ...2-3
Carefully Select Design Hierarchy2-3

Architecture Wizard ..2-4
DCM Wizard ...2-4
Synthesis and Simulation Design Guide ix

Synthesis and Simulation Design Guide
Rocket I/O Wizard ...2-5
Functional Simulation of your Design ..2-5
Synthesizing and Optimizing your Design2-6

Creating an Initialization File ..2-6
Creating a Compile Run Script ..2-6

FPGA Compiler II ..2-6
LeonardoSpectrum ...2-8
Synplify ...2-8

Compiling Your Design ..2-10
Modifying your Design ..2-10
Compiling Large Designs ..2-10
Saving Compiled Design as EDIF2-10

Setting Constraints ..2-11
Using the UCF File ...2-11
Using the Xilinx Constraints Editor ...2-11
Using Synthesis Tools’ Constraints Editor2-12

Evaluating Design Size and Performance2-12
Using your Synthesis Tool to Estimate Device Utilization
and Performance ...2-13

Using the Timing Report Command2-13
Determining Actual Device Utilization and Pre-routed
Performance ...2-14

Using Project Navigator to Map Your Design2-14
Using the Command Line to Map Your Design2-15

Evaluating your Design for Coding Style and System Features ...2-21
Tips for Improving Design Performance2-21

Modifying Your Code ..2-21
Using FPGA System Features ..2-21
Using Xilinx-specific Features of Your Synthesis Tool2-22

Modular Design and Incremental Design (ECO)2-22
Placing and Routing Your Design ...2-23

Decreasing Implementation Time ..2-23
Improving Implementation Results ...2-24

Map Timing Option ...2-25
Extra Effort Mode in PAR ..2-25
Multi-Pass Place and Route ...2-25
Turns Engine Option (UNIX only)2-25
Reentrant Routing Option ...2-26
Cost-Based Clean-up Option ..2-27
Delay-Based Clean-up Option ..2-27
Guide Option ...2-28

Timing Simulation of Your Design ...2-28
Timing Analysis Using TRACE ..2-29

Downloading to the Device and In-system Debugging2-29
Creating a PROM File for Stand-Alone Operation2-30

Chapter 3 General HDL Coding Styles

Naming and Labeling Styles ...3-2
Using Xilinx Naming Conventions ..3-2
x Xilinx Development System

Contents
Matching File Names to Entity and Module Names3-3
Naming Identifiers, Types, and Packages3-3
Labeling Flow Control Constructs ..3-3
 Using Named and Positional Association3-5
Passing Attributes ..3-6

VHDL Attribute Examples ...3-6
Verilog Attribute Examples ...3-8

Understanding Synthesis Tools Naming Convention3-10
Specifying Constants ..3-13

Using Constants to Specify OPCODE Functions (VHDL)3-13
Using Parameters to Specify OPCODE Functions (Verilog)3-14

Choosing Data Type (VHDL only) ...3-15
Declaring Ports ..3-15
Minimizing the Use of Ports Declared as Buffers3-16
Comparing Signals and Variables (VHDL only)3-17

Using Signals (VHDL) ...3-18
Using Variables (VHDL) ..3-19

Coding for Synthesis ...3-20
Omit the Wait for XX ns Statement ..3-21
Omit the ...After XX ns or Delay Statement3-21
Omit Initial Values ..3-21
Order and Group Arithmetic Functions3-22
Comparing If Statement and Case Statement3-23

4–to–1 Multiplexer Design with If Construct3-23
4–to–1 Multiplexer Design with Case Construct3-27

Implementing Latches and Registers3-29
D Latch Inference ...3-29
Converting D Latch to D Register3-31

Resource Sharing ..3-33
Reducing Gate Count ..3-38
Using Preset Pin or Clear Pin ..3-39

Register Inference ..3-39
Using Clock Enable Pin Instead of Gated Clocks3-42

Chapter 4 Architecture Specific HDL Coding Styles for Spartan-II,
Virtex, Virtex-E, Virtex-II, and Virtex-II Pro

Introduction ...4-1
Instantiating Components ...4-2

Instantiating FPGA Primitives ..4-2
Instantiating CORE Generator Modules4-4

Using Boundary Scan (JTAG 1149.1) ...4-6
Using Global Clock Buffers ...4-6

Inserting Clock Buffers ...4-8
Instantiating Global Clock Buffers ..4-9

Instantiating Buffers Driven from a Port4-9
Instantiating Buffers Driven from Internal Logic4-9

Using Advanced Clock Management ..4-15
Using CLKDLL (Virtex/E, Spartan II) ..4-15
Using the Additional CLKDLL in Virtex-E4-21
Synthesis and Simulation Design Guide xi

Synthesis and Simulation Design Guide
Using BUFGDLL ..4-26
CLKDLL Attributes ...4-27
Using DCM In Virtex-II/II Pro ..4-30
Attaching Multiple Attributes to CLKDLL and DCM4-34

Using Dedicated Global Set/Reset Resource4-54
Startup State ..4-55
Preset vs. Clear ...4-62

Implementing Inputs and Outputs ...4-65
I/O Standards ...4-65
Inputs ...4-67
Outputs ..4-68
Using IOB Register and Latch ...4-69
Using Dual Data Rate IOB Registers4-71

Using Output Enable IOB Register4-73
Using -pr Option with MAP ...4-76

Virtex-E IOBs ...4-77
Additional I/O Standards ...4-77

Virtex-II IOBs ..4-85
Differential Signaling in Virtex-II ..4-85

Encoding State Machines ...4-90
Using Binary Encoding ...4-91

Binary Encoded State Machine VHDL Example4-92
 Binary Encoded State Machine Verilog Example4-95

Using Enumerated Type Encoding ..4-97
Enumerated Type Encoded State Machine
VHDL Example ...4-98
Enumerated Type Encoded State Machine
Verilog Example ..4-99

Using One-Hot Encoding ...4-101
One-hot Encoded State Machine VHDL Example4-101
One-hot Encoded State Machine Verilog Example4-103

Accelerating FPGA Macros with One-Hot Approach4-104
Summary of Encoding Styles ...4-105
Initializing the State Machine ...4-106

Implementing Operators and Generate Modules4-106
Adder and Subtracter ...4-106
Multiplier ...4-107
Counters ..4-111
Comparator ..4-116
Encoder and Decoders ..4-117

LeonardoSpectrum Priority Encoding HDL Example4-117
Implementing Memory ...4-120

Implementing Block SelectRAM+ ..4-120
Instantiating Block SelectRAM+ ..4-121
Instantiating Block SelectRAM+ in Virtex-II4-127
Inferring Block SelectRAM+ ..4-127
Implementing Distributed SelectRAM+4-141

Implementing ROMs ..4-157
RTL Description of a Distributed ROM
VHDL Example ...4-158
xii Xilinx Development System

Contents
RTL Description of a Distributed ROM
Verilog Example ..4-159

Implementing ROMs Using Block SelectRAM4-160
RTL Description of a ROM VHDL Example Using
Block SelectRAM .. 4-162
RTL Description of a ROM Verilog Example using
Block SelectRAM .. 4-163

Implementing FIFO ..4-164
Implementing CAM ..4-164
Using CORE Generator to Implement Memory4-165

Implementing Shift Register (Virtex/E/II and
Spartan-II) ...4-165

Inferring SRL16 in VHDL ...4-167
Inferring SRL16 in Verilog ..4-168
Inferring Dynamic SRL16 in VHDL ..4-169
Inferring Dynamic SRL16 in Verilog ...4-170
Implementing LFSR ...4-170

Implementing Multiplexers ..4-171
Mux Implemented with Gates VHDL Example4-172
Mux Implemented with Gates Verilog Example4-173
Wide MUX Mapped to MUXFs ...4-174
Mux Implemented with BUFTs VHDL Example4-175
Mux Implemented with BUFTs Verilog Example4-175

Using Pipelining ..4-177
Before Pipelining ..4-178
After Pipelining ...4-178

Design Hierarchy ...4-179
 Using Synthesis Tools with Hierarchical Designs4-180

Restrict Shared Resources to Same Hierarchy Level4-180
Compile Multiple Instances Together4-180
Restrict Related Combinatorial Logic to Same
Hierarchy Level ...4-180
Separate Speed Critical Paths from Non-critical Paths4-180
Restrict Combinatorial Logic that Drives a Register
to Same Hierarchy Level ..4-180
Restrict Module Size ...4-181
Register All Outputs ..4-181
Restrict One Clock to Each Module or to Entire Design4-181

Chapter 5 Virtex-II Pro Considerations

Introduction ...5-1
Summary of Virtex-II Pro Features ..5-2

Using Smart Models to Simulate Virtex-II Pro Designs5-2
Simulation Components ...5-2
Overview of Virtex-II Pro Simulation Flow5-3
Smart Models ...5-4
Supported Simulators ..5-5

Solaris ...5-5
NT or 2000 ..5-5
Synthesis and Simulation Design Guide xiii

Synthesis and Simulation Design Guide
Required Software ...5-5
Installing Smart Models from Xilinx Implementation Tools5-6

Solaris 2.6/2.7/2.8 ...5-6
Windows NT, 2000 ...5-7

Running Simulation ..5-8
MTI Modelsim SE - Solaris 2.6/2.7/2.85-8
MTI Modelsim SE - Windows NT/20005-11
Cadence Verilog-XL - Solaris 2.6/2.7/2.85-13
Cadence NC-Verilog - Solaris 2.6/2.7/2.85-17
Synopsys VCS - Solaris 2.6/2.7/2.85-18

Virtex-II Pro Board Support Package ..5-19
Debugging Tools for Virtex-II Pro Designs5-19

Xilinx GNU Embedded Software Tools5-19
GDB Debugger ..5-19
ChipScope Pro ...5-20
Wind River Embedded Tools ...5-21

SingleStep Debugger - Xilinx Edition5-22
Other Software Tools ...5-23

Chapter 6 Simulating Your Design

Introduction ...6-2
Adhering to Industry Standards ...6-2
Simulation Points ..6-4

Register Transfer Level (RTL) ...6-7
Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation6-7
Post-NGDBuild (Pre-Map) Gate-Level Simulation6-8
Post-Map Partial Timing (CLB and IOB Block Delays)6-8
Timing Simulation Post-Place and Route Full Timing
(Block and Net Delays) ..6-8
Providing Stimulus ...6-9

VHDL/Verilog Libraries and Models ..6-10
Locating Library Source Files ..6-11
Using the UNISIM Library ..6-12

UNISIM Library Structure ..6-12
Using the CORE Generator XilinxCoreLib Library6-13

CORE Generator Library Structure6-13
Using the SIMPRIM Library ...6-14

SIMPRIM Library Structure ...6-14
Compiling HDL Libraries ...6-14

Using compxlib ...6-14
Running NGD2VHDL and NGD2VER ...6-16

Creating a Simulation Netlist ..6-16
From Project Navigator ...6-16
From XFLOW ..6-20
From Command Line ..6-21

Disabling ‘X’ Propagation ...6-22
Using the ASYNC_REG Attribute6-23
Using Global Switches ..6-23
Use With Care ..6-24
xiv Xilinx Development System

Contents
MIN/TYP/MAX Simulation ..6-24
Understanding the Global Reset and Tristate for Simulation6-27
Simulating VHDL ...6-29

Defining Global Signals in VHDL ...6-29
Setting VHDL Global Set/Reset Emulation in Functional
Simulation ..6-30
Global Signal Considerations (VHDL)6-31
GSR Network Design Cases ..6-32

Using VHDL Reset-On-Configuration (ROC) Cell
(Case 1A) ..6-33
Using ROC Cell Implementation Model (Case 1A)6-35
ROC Model in Four Design Phases (Case 1A)6-35
Using VHDL ROCBUF Cell (Case 1B)6-37
ROCBUF Model in Four Design Phases (Case 1B)6-39
Using VHDL STARTBUF_VIRTEX, STARTBUF_VIRTEX2
Block or the STARTBUF_SPARTAN2 Block (Case 2)6-40

GTS Network Design Cases ..6-41
Using VHDL Tristate-On-Configuration (TOC)6-42
VHDL TOC Cell (Case A1) ...6-42
TOC Cell Instantiation (Case A1)6-42
TOC Model in Four Design Phases (Case A1)6-44
Using VHDL TOCBUF (Case A2)6-45
TOCBUF Model Example (Case A2)6-45
TOCBUF Model in Four Design Phases (Case A2)6-47
Using VHDL STARTBUF_VIRTEX, STARTBUF_VIRTEX2
or STARTBUF_SPARTAN2 Block (Case B)6-48
STARTBUF_VIRTEX Model Example (Case B2)6-50

Simulating Special Components in VHDL6-51
Simulating CORE Generator Components in VHDL6-51
Boundary Scan and Readback ...6-51
Differential I/O (LVDS, LVPECL) ..6-51
Simulating a LUT ..6-52
Simulating Virtex Block SelectRAM6-53
Simulating the Virtex Clock DLL ...6-55
Simulating the Virtex-II/ II Pro DCM6-57
Simulating SRLs ...6-61

Simulating Verilog ...6-63
Defining Global Signals in Verilog ..6-63
Using the glbl.v Module ..6-63
Defining GSR/GTS in a Test Bench ...6-63

Designs Without a Startup Block ..6-63
Designs with a STARTUP Block ...6-67

Simulating Special Components in Verilog6-70
Boundary Scan and Readback ...6-70
Differential I/O (LVDS, LVPECL) ..6-71
LUT ...6-71
SRL16 ...6-73
BlockRAM ...6-73
CLKDLL ..6-75
DCM ..6-77
Synthesis and Simulation Design Guide xv

Synthesis and Simulation Design Guide
Simulation CORE Generator Components6-78
Design Hierarchy and Simulation ..6-78
RTL Simulation Using Xilinx Libraries ...6-81
Timing Simulation ..6-81

Glitches in your Design ..6-81
CLKDLL/DCM Clocks do not appear de-skewed6-82
Simulating the DLL/DCM ...6-82

TRACE/Simulation Model Differences6-83
Non-LVTTL Input Drivers ..6-84
Viewer Considerations ..6-85
Attributes for Simulation and Implementation6-85

Simulating the DCM in Digital Frequency Synthesis
Mode Only ..6-85
Negative Hold Times ..6-86

Simulation Flows ...6-86
ModelSim Vcom ...6-86

Using Shared Precompiled Libraries6-87
Scirocco ...6-87

Using Shared Precompiled Libraries6-87
NC-VHDL ...6-88

Using Shared Precompiled Libraries6-88
Verilog-XL ..6-89
NC-Verilog ...6-90

Using Library Source Files With Compile Time Options6-90
Using Shared Precompiled Libraries6-90

VCS/VCSi ..6-91
Using Library Source Files With Compile Time Options6-92
Using Shared Precompiled Libraries6-93

ModelSim Vlog ...6-94
Using Library Source Files With Compile Time Options6-94
Using Shared Precompiled Libraries6-94

IBIS ...6-95
STAMP ..6-96
Debugging Timing Problems ...6-97

Identifying Timing Violations ..6-97
Verilog System Timing Tasks ...6-98
VITAL Timing Checks ...6-98

Timing Problem Root Causes ..6-99
Design Not Constrained ..6-99
Path Not or Improperly Constrained6-101
Design Does Not Meet Timespec6-101
Simulation Clock Does Not Meet Timespec6-102
Unaccounted Clock Skew ...6-102
Asynchronous Inputs, Asynchronous Clock
Domains, Crossing Out-of-phase6-103

Debugging Tips ..6-104
Special Considerations for Setup and Hold Violations6-105

Calculating Setup and Hold Times6-106
$Width Violations ...6-107
$Recovery Violations ...6-107
xvi Xilinx Development System

Chapter 1

Introduction

This chapter provides a general overview of designing Field
Programmable Gate Arrays (FPGAs) with HDLs, and also includes
installation requirements and instructions. It includes the following
sections.

• “Architecture Support”

• “Overview of Hardware Description Languages”

• “Advantages of Using HDLs to Design FPGAs”

• “Designing FPGAs with HDLs”

• “Xilinx Internet Web Sites”

Architecture Support
The software supports the following architecture families in this
release.

• Virtex™/-II/-II PRO/

• CoolRunner™ XPLA3/-II

• XC9500™/XL/XV
Synthesis and Simulation Design Guide 1-1

Synthesis and Simulation Design Guide
Overview of Hardware Description Languages
Hardware Description Languages (HDLs) are used to describe the
behavior and structure of system and circuit designs. This chapter
includes a general overview of designing FPGAs with HDLs. HDL
design examples are provided in subsequent chapters of this book,
and design examples can be downloaded from the Xilinx web site.
System requirements and installation instructions for designs avail-
able from the web are also provided in this chapter.

This chapter also includes a brief description of why using FPGAs is
more advantageous than using ASICs for your design needs.

To learn more about designing FPGAs with HDLs, Xilinx recom-
mends that you enroll in the appropriate training classes offered by
Xilinx and by the vendors of synthesis software. An understanding of
FPGA architecture allows you to create HDL code that effectively
uses FPGA system features.

For the latest information on Xilinx parts and software, visit the
Xilinx web site at http://www.xilinx.com. On the Xilinx home page,
click on Products. You can get answers to your technical questions
from the Xilinx support web site at http://www.support.xilinx.com.
On the support home page, click on Advanced Search to set up search
criteria that match your technical questions. You can also download
software service packs from http://www.support.xilinx.com. On the
support home page, click on Software, and then Service Packs. Soft-
ware documentation, tutorials, and design files are available from the
www.support.xilinx.com web site.

Advantages of Using HDLs to Design FPGAs
Using HDLs to design high-density FPGAs is advantageous for the
following reasons.

• Top-Down Approach for Large Projects—HDLs are used to create
complex designs. The top-down approach to system design
supported by HDLs is advantageous for large projects that
require many designers working together. After the overall
design plan is determined, designers can work independently on
separate sections of the code.

• Functional Simulation Early in the Design Flow—You can verify the
functionality of your design early in the design flow by simu-
1-2 Xilinx Development System

http://www.xilinx.com
http://www.support.xilinx.com
http://www.support.xilinx.com
http://www.support.xilinx.com

Introduction
lating the HDL description. Testing your design decisions before
the design is implemented at the RTL or gate level allows you to
make any necessary changes early in the design process.

• Synthesis of HDL Code to Gates—You can synthesize your hard-
ware description to a design implemented with gates. This step
decreases design time by eliminating the need to define every
gate. Synthesis to gates also reduces the number of errors that can
occur during a manual translation of a hardware description to a
schematic design. Additionally, you can apply the automation
techniques used by the synthesis tool (such as machine encoding
styles or automatic I/O insertion) during the optimization of
your design to the original HDL code, resulting in greater effi-
ciency.

• Early Testing of Various Design Implementations—HDLs allow you
to test different implementations of your design early in the
design flow. You can then use the synthesis tool to perform the
logic synthesis and optimization into gates. Additionally, Xilinx
FPGAs allow you to implement your design at your computer.
Since the synthesis time is short, you have more time to explore
different architectural possibilities at the Register Transfer Level
(RTL). You can reprogram Xilinx FPGAs to test several imple-
mentations of your design.

• Reuse of RTL Code —You can retarget RTL code to new FPGA
architectures with a minimum of recoding.

Designing FPGAs with HDLs
If you are more familiar with schematic design entry, you may find it
difficult at first to create HDL designs. You must make the transition
from graphical concepts, such as block diagrams, state machines,
flow diagrams, and truth tables, to abstract representations of design
components. You can ease this transition by not losing sight of your
overall design plan as you code in HDL. To effectively use an HDL,
you must understand the syntax of the language; the synthesis and
simulator software; the architecture of your target device; and the
implementation tools. This section gives you some design hints to
help you create FPGAs with HDLs.
Synthesis and Simulation Design Guide 1-3

Synthesis and Simulation Design Guide
Using Verilog
Verilog® is popular for synthesis designs because it is less verbose
than traditional VHDL, and it is standardized as IEEE-STD-1364-95.
It was not originally intended as an input to synthesis, and many
Verilog constructs are not supported by synthesis software. The
Verilog examples in this manual were tested and synthesized with
current, commonly-used FPGA synthesis software. The coding strate-
gies presented in the remaining chapters of this manual can help you
create HDL descriptions that can be synthesized.

Using VHDL
VHSIC Hardware Description Language (VHDL) is a hardware
description language for designing Integrated Circuits (ICs). It was
not originally intended as an input to synthesis, and many VHDL
constructs are not supported by synthesis software. However, the
high level of abstraction of VHDL makes it easy to describe the
system-level components and test benches that are not synthesized.
In addition, the various synthesis tools use different subsets of the
VHDL language. The examples in this manual will work with most
commonly used FPGA synthesis software. The coding strategies
presented in the remaining chapters of this manual can help you
create HDL descriptions that can be synthesized.

Comparing ASICs and FPGAs
Xilinx FPGAs are reprogrammable and when combined with an HDL
design flow can greatly reduce the design and verification cycle seen
with traditional ASICs.

Using Synthesis Tools
Most of the commonly-used FPGA synthesis tools have special opti-
mization algorithms for Xilinx FPGAs. Constraints and compiling
options perform differently depending on the target device. There are
some commands and constraints in ASIC synthesis tools that do not
apply to FPGAs and, if used, may adversely impact your results. You
should understand how your synthesis tool processes designs before
creating FPGA designs. Most FPGA synthesis vendors include infor-
mation in their manuals specifically for Xilinx FPGAs.
1-4 Xilinx Development System

Introduction
Using FPGA System Features
You can improve device performance and area utilization by creating
HDL code that uses FPGA system features, such as global reset, wide
I/O decoders, and memory. FPGA system features are described in
this manual.

Designing Hierarchy
Current HDL design methods are specifically written for ASIC
designs. You can use some of these ASIC design methods when
designing FPGAs; however, certain techniques may unnecessarily
increase the number of gates or CLB levels. This design guide will
train you in techniques for optional FPGA design methodologies.

Design hierarchy is important in the implementation of an FPGA and
also during incremental or interactive changes. Some synthesizers
maintain the hierarchical boundaries unless you group modules
together. Modules should have registered outputs so their boundaries
are not an impediment to optimization. Otherwise, modules should
be as large as possible within the limitations of your synthesis tool.
The “5,000 gates per module” rule is no longer valid, and can inter-
fere with optimization. Check with your synthesis vendor for the
current recommendations for preferred module size. As a last resort,
use the grouping commands of your synthesizer, if available. The size
and content of the modules influence synthesis results and design
implementation. This manual describes how to create effective design
hierarchy.

Specifying Speed Requirements
To meet timing requirements, you should understand how to set
timing constraints in both the synthesis and placement/routing tools.
For more information, see the “Setting Constraints” section of the
“Understanding High-Density Design Flow” chapter.

Xilinx Internet Web Sites
You can get product information and product support from the Xilinx
internet web sites. Both sites are described in the following sections.
Synthesis and Simulation Design Guide 1-5

Synthesis and Simulation Design Guide
 Xilinx World Wide Web Site
You can reach the Xilinx web site at http://www.xilinx.com. The
following features can be accessed from the Xilinx web site.

• Products — You can find information about new Xilinx products
that are being offered, as well as previously announced Xilinx
products.

• Service and Support — You can jump to the Xilinx technical
support site by choosing Service and Support.

• Xpresso Cafe —You can purchase Xilinx software, hardware and
software tool education classes through Xilinx and Xilinx distrib-
utors.

Technical Support Web Site
Answers to questions, tutorials, Application notes, software manuals
and information on using Xilinx products can be found on the tech-
nical support web site. You can reach the support web site at http://
www.support.xilinx.com. The following features can be accessed
from the Xilinx support web site.

• Troubleshoot — You can do an advanced search on the answers
database to troubleshoot questions or issues you have with your
design.

• Software — You can download the latest software service packs,
IP updates, and product information from the Xilinx support
website.

• Library — You can view the Software manuals from this web site.
The manuals are provided in both HTML, viewable through most
HTML browsers, and PDF. The Databook, CORE Generator
documentation and datasheets are also available.

• Design — You can find helpful application notes that illustrate
specific design solutions and methodologies.

• Services — You can open a support case when you need to have
information from a Xilinx technical support person. You can also
find information about your hardware or software order.

• Feedback —We are always interested in how well we’re serving
our customers. You can let us know by filling out our customer
service survey questionnaire.
1-6 Xilinx Development System

http://www.xilinx.com
http://www.xilinx.com
http://www.support.xilinx.com
http://www.support.xilinx.com

Introduction
You can contact Xilinx technical support and application support for
additional information and assistance in the following ways.

Technical and Applications Support Hotlines
The telephone hotlines give you direct access to Xilinx Application
Engineers worldwide. You can also e-mail or fax your technical ques-
tions to the same locations.

Note When e-mailing or faxing inquiries, provide your complete
name, company name, and phone number. Also, provide a complete
problem description including your design entry software and design
stage.

Xilinx FTP Site
ftp://ftp.xilinx.com

The FTP site provides online access to automated tutorials, design
examples, online documents, utilities, and published patches.

Table 1-1 Technical Support

Location Telephone Electronic Mail Facsimile (Fax)

North America 1-800-255-7778 hotline@xilinx.com 1-408-879-4442

Japan 81-3-3297-9163 jhotline@xilinx.com 81-3-3297-0067

France 33-1-3463-0100 eurosupport@xilinx.com 44-870-7350-620

Germany 49- 180-3-60-60-60 eurosupport@xilinx.com 44-870-7350-620

Sweden 46- 8-33-14-00 eurosupport@xilinx.com 44-870-7350-620

United Kingdom 44-870-7350-610 eurosupport@xilinx.com 44-870-7350-620

Corporate
Switchboard

1-408-559-7778
Synthesis and Simulation Design Guide 1-7

Synthesis and Simulation Design Guide
Vendor Support Sites
Vendor support for synthesis and verification products can be
obtained at the following locations.

Table 1-2 Vendor Support Sites

Vendor Name
and Product

Telephone Electronic Mail Web Site

Synopsys - XSI 1-800-245-8005 support_center
@synopsys.com

www.synopsys.com

Cadence -
Concept-HDL

1-877-237-4911 support@cadence.com sourcelink.cadence.com

Mentor Graphics 1-800-547-4303 support_net@mentor.com www.mentor.com

Synplicity 1-408-548-6000 support@synplicity.com www.synplicity.com
1-8 Xilinx Development System

Chapter 2

Understanding High-Density Design Flow

This chapter describes the steps in a typical HDL design flow.
Although these steps may vary with each design, the information in
this chapter is a good starting point for any design. This chapter
includes the following sections.

• “Design Flow”

• “Entering your Design and Selecting Hierarchy”

• “Functional Simulation of your Design”

• “Synthesizing and Optimizing your Design”

• “Setting Constraints”

• “Evaluating Design Size and Performance”

• “Evaluating your Design for Coding Style and System Features”

• “Modular Design and Incremental Design (ECO)”

• “Placing and Routing Your Design”

• “Timing Simulation of Your Design”

• “Downloading to the Device and In-system Debugging”

• “Creating a PROM File for Stand-Alone Operation”

Design Flow
An overview of the design flow steps is shown in the following
figure.
Synthesis and Simulation Design Guide 2-1

Synthesis and Simulation Design Guide
Figure 2-1 Design Flow Overview

X9203

Entering your Design
and Selecting Hierarchy

Functional Simulation
of your Design

Synthesizing and Optimizing
your Design

Adding Design
Constraints

Evaluating your Design Size
and Performance

Placing and Routing
your Design

Downloading to the Device,
In-System Debugging

Creating a PROM
File for Stand-Alone

Operation

Evaluating your Design’s Coding Style
and System Features

Timing Simulation
of your Design

Static Timing
Analysis
2-2 Xilinx Development System

Understanding High-Density Design Flow
Entering your Design and Selecting Hierarchy
The first step in implementing your design is creating the HDL code
based on your design criteria.

Design Entry Recommendations
The following recommendations can help you create effective
designs.

Using RTL Code

By using register transfer level (RTL) code and avoiding (when
possible) instantiating specific components, you can create designs
with the following characteristics.

Note In some cases instantiating optimized CORE Generator or Logi-
CORE modules is beneficial with RTL.

• Readable code

• Faster and simpler simulation

• Portable code for migration to different device families

• Reusable code for future designs

Carefully Select Design Hierarchy

Selecting the correct design hierarchy is advantageous for the
following reasons.

• Improves simulation and synthesis results

• Improves debugging and modifying modular designs

• Allows parallel engineering (a team of engineers can work on
different parts of the design at the same time)

• Improves the placement and routing of your design by reducing
routing congestion and improving timing

• Allows for easier code reuse in the current design, as well as in
future designs
Synthesis and Simulation Design Guide 2-3

Synthesis and Simulation Design Guide
Architecture Wizard
The Architecture Wizard is a graphical application provided in
Project Navigator that lets you configure complicated aspects of some
Xilinx devices. The Architecture Wizard consists of several
components, that you can use to configure specific device features.
Each component is presented as an independent wizard. The
following is a list of the wizards that make up the Architecture
Wizard:

• DCM Wizard

• Rocket I/O Wizard

The Architecture Wizard produces an XAW file, which is an XDM file
with.xaw file extension. The Architecture Wizard can create a new
XAW file, or it can read in an existing XAW file. When it reads in an
existing XAW file, it allows you to modify the settings. When you
finish with the wizard, the new data is saved to the same XAW file
that was read in.

The Architecture Wizard can also produce a VHDL, Verilog, or EDIF
file, depending on the flow type that is passed to it. The generated
HDL output is a module (consisting of one or more primitives and
the corresponding properties) and not just a code snippet. This allows
the output file to be referenced from the HDL Editor. There is no UCF
output file, since the necessary attributes are embedded inside the
HDL file.

Launch the Architecture Wizard from Project Navigator, from the File
dropdown, select File → New Source → Architecture
Wizard... menu item.

DCM Wizard

The DCM Wizard component of the Architecture Wizard provides
the following functions.

• Provides the ability to specify Setup information.

• Provides the ability to view DCM component, specify attributes,
generate corresponding components and signals, and execute
DRC checks.

• Provides the ability to view up to eight clock buffers.

• Provides the ability to setup the Feedback Path information.
2-4 Xilinx Development System

Understanding High-Density Design Flow
• Provides the ability to setup the Clock Frequency Generator
information and execute DRC checks.

• Provides the ability to view and edit component attributes.

• Provides the ability to view and edit component constraints.

• Provides the ability to automatically place one component in the
XAW file.

• Provides the ability to save component settings in a VHDL file.

• Provides the ability to save component settings in a Verilog file.

Rocket I/O Wizard

The Rocket I/O Wizard component of the Architecture Wizard
provides the following functions.

• Provides the ability to specify Gigabit I/O type.

• Provides the ability to define Channel Bonding options.

• Provides the ability to specify General Transmitter Settings
including encoding, CRC and clock.

• Provides the ability to specify General Receptor Settings
including encoding, CRC and clock.

• Provides the ability to specify Synchronization.

• Provides the ability to specify Equalization, Signal integrity tip
(resister, termination mode...).

• Provides the ability to view and edit component attributes.

• Provides the ability to view and edit component constraints.

• Provides the ability to automatically place one component in the
xaw file.

• Provides the ability to save component settings to VHDL file.

• Provides the ability to save component settings to Verilog file.

Functional Simulation of your Design
Use functional or RTL simulation to verify the syntax and function-
ality of your design. Use the following recommendations when simu-
lating your design.
Synthesis and Simulation Design Guide 2-5

Synthesis and Simulation Design Guide
• Typically with larger hierarchical HDL designs, you should
perform separate simulations on each module before testing your
entire design. This makes it easier to debug your code.

• Once each module functions as expected, create a test bench to
verify that your entire design functions as planned. You can use
the test bench again for the final timing simulation to confirm
that your design functions as expected under worst-case delay
conditions.

Synthesizing and Optimizing your Design
This section includes recommendations for compiling your designs to
improve your results and decrease the run time.

Note Refer to your synthesis tool documentation for more informa-
tion on compilation options and suggestions.

Creating an Initialization File
Most synthesis tools provide a default initialization with default
options. You may modify the initialization file or use the GUI to
change compiler defaults, and to point to the applicable implementa-
tion libraries. Refer to your synthesis tool documentation for more
information.

Creating a Compile Run Script
FPGA Compiler II, LeonardoSpectrum, and Synplify all support TCL
scripting. Using TCL scripting can make compiling your design
easier and faster while achieving shorter compile times. With more
advanced scripting you can run a compile multiple times using
different options and write to different directories. You can also
invoke and run other command line tools. The following are some
sample scripts that can be run from the command line or from the
GUI.

FPGA Compiler II

FPGA Scripting Tool (FST) implements a TCL-based command line
interface for FPGA Compiler II. FST can be accessed from a command
line by typing the following.

• For FPGA Compiler II
2-6 Xilinx Development System

Understanding High-Density Design Flow
fc2_shell -f synth_file.tcl

The script will execute and put you back at the UNIX or DOS prompt.

FPGA Compiler II FST Example

The following FST commands can be run in FPGA Compiler II.

• To create the project, enter the following.

create_project -dir . d_register

• To open the project, enter the following.

open_project d_register

• To add the files to the project, enter the following.

add_file -format VHDL ../src/d_register.vhd

• To analyze the design files enter the following.

analyze_file -progress

• To create a chip for a device enter the following.

create_chip -progress -target Virtex -device v50PQ240 -speed -5 -
name d_register d_register

• To set the top level as the current design, enter the following.

current_chip d_register

• To optimize the design, enter the following.

set opt_chip [format "%s-Optimized" d_register]

optimize_chip -progress -name $opt_chip

• To write out the messages enter the following.

list_message

• To write out the netlist, enter the following.

export_chip -progress -dir .

• close_project

• quit
Synthesis and Simulation Design Guide 2-7

Synthesis and Simulation Design Guide
LeonardoSpectrum

The following TCL script can be run from LeonardoSpectrum by
doing one of the following.

1. Select the File → Run Script menu item from the Leonar-
doSpectrum graphical user interface.

2. Type in the Level 3 GUI command line, source script_file.tcl

3. Type in the UNIX/DOS prompt with the EXEMPLAR environ-
ment path set up, spectrum -file script_file.tcl

4. Type spectrum at the UNIX/DOS prompt. This will put you in a
TCL prompt. Then at the TCL prompt type source script_file.tcl

LeonardoSpectrum TCL Examples

The following TCL commands can be entered in LeonardoSpectrum.

• To set the part type, enter the following.

set part v50ecs144

• To read the HDL files, enter the following.

read macro1.vhd macro2.vhd top_level.vhd

• To set assign buffers, enter the following.

PAD IBUF_LVDS data(7:0)

• To optimize while preserving hierarchy, enter the following.

optimize -ta xcve -hier preserve

• To write out the EDIF file, enter the following.

auto_write ./M1/ff_example.edf

Synplify

The following TCL script can be run from Synplify by doing one of
the following:

1. Use the File → Run TCL Script menu item from the GUI

2. Type synplify -batch script_file.tcl at a UNIX/DOS command
prompt.
2-8 Xilinx Development System

Understanding High-Density Design Flow
Synplify TCL Example

The following TCL commands can be entered in Synplify.

• To start a new project, enter the following.

project -new

• To set device options, enter the following.

set_option -technology Virtex-E

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

• To add file options, enter the following.

add_file -constraint “watch.sdc”

add_file -vhdl -lib work “macro1.vhd”

add_file -vhdl -lib work “macro2.vhd”

add_file -vhdl -lib work “top_levle.vhd”

• To set compilation/mapping options, enter the following.

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler true

set_option -resource_sharing true

• To set simulation options, enter the following.

set_option -write_verilog false

set_option -write_vhdl false

• To set automatic place and route (vendor) options, enter the
following.

set_option -write_apr_constraint true

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8
Synthesis and Simulation Design Guide 2-9

Synthesis and Simulation Design Guide
• To set result format/file options, enter the following.

project -result_format “edif”

project -result_file “top_level.edf”

project -run

project -save “watch.prj”

• exit

Compiling Your Design
Use the recommendations in this section to successfully compile your
design.

Modifying your Design

You may need to modify your code to successfully compile your
design because certain design constructs that are effective for simula-
tion may not be as effective for synthesis. The synthesis syntax and
code set may differ slightly from the simulator syntax and code set.

Compiling Large Designs

Older versions of synthesis tools required incremental design compi-
lations to decrease run times. Some or all levels of hierarchy were
compiled with separate compile commands and saved as output or
database files. The output netlist or compiled database file for each
module was read during synthesis of the top level code. This method
is not necessary with new synthesis tools, which can handle large
designs from the top down. The 5,000 gates per module rule of thumb
no longer applies with the new synthesis tools. Refer to your
synthesis tool documentation for details.

Saving Compiled Design as EDIF

After your design is successfully compiled, save it as an EDIF file for
input to the Xilinx software.
2-10 Xilinx Development System

Understanding High-Density Design Flow
Setting Constraints
You can define timing specifications for your design in the User
Constraints File (UCF). You can use the Xilinx Constraints Editor
which provides a graphical user interface allowing for easy
constraints specification. You can also enter constraints directly into
the UCF file. Both methods are described below. Most synthesis tools
support an easy to use Constraints Editor interface for entering
constraints in your design.

Using the UCF File
The UCF gives you tight control of the overall specifications by
giving you access to more types of constraints; the ability to define
precise timing paths; and the ability to prioritize signal constraints.
Furthermore, you can group signals together to simplify timing spec-
ifications. Some synthesis tools translate certain synthesis constraints
to Xilinx implementation constraints. The translated constraints are
placed in the NCF/NGC file. For more information on timing specifi-
cations in the UCF file, refer to the Constraints Guide, and the Answers
Database on the Xilinx Support Web site, http://support.xilinx.com.

Using the Xilinx Constraints Editor
The Xilinx Constraints Editor is a GUI based tool that can be accessed
from the Processes for Current Source window of the Project Navi-
gator GUI (Design Entry Utilities -> User Constraints ->
Constraints Editor), or from the command line
(constraints_editor). The Constraints Editor allows the user to
easily enter design constraints in a spreadsheet form and writes out
the constraints in the UCF file. This eliminates the need to know the
UCF file syntax. The other benefit is the Constraints Editor reads the
design and lists all the nets and elements in the design. This is very
helpful in the HDL flow when the synthesis tool creates the names.

Some constraints are not available through the Constraints Editor.
The unavailable constraints will need to be entered directly in the
UCF file using a text editor. The new UCF file needs to be re-run
through the Translate step or NGDBuild using the command line
method. For more information on using the Xilinx Constraints Editor,
please refer to the Constraints Editor Guide on the Xilinx Support Web
site, http://support.xilinx.com.
Synthesis and Simulation Design Guide 2-11

http://support.xilinx.com
http://support.xilinx.com

Synthesis and Simulation Design Guide
Using Synthesis Tools’ Constraints Editor
The FPGA Compiler II, LeonardoSpectrum, and Synplify synthesis
tools all have constraint editors to apply constraints to your HDL
design. Refer to your synthesis tool’s documentation for information
on how to use the constraints editor specific to your synthesis envi-
ronment. You can add the following constraints:

• Clock frequency or cycle and offset

• Input and Output timing

• Signal Preservation

• Module constraints

• Buffering ports

• Path timing

• Global timing

Generally, the timing constraints will be written out to an NCF file,
and all other constraints will be written to the output EDIF file. In
XST, all constraints will be written to an NGC file. Please refer to the
documentation for your synthesis tool to obtain more information on
Constraint Editors.

Evaluating Design Size and Performance
Your design should meet the following requirements.

• Design must function at the specified speed

• Design must fit in the targeted device

After your design is compiled, you can determine preliminary device
utilization and performance with your synthesis tool’s reporting
options. After your design is mapped by the Xilinx tools, you can
determine the actual device utilization. At this point in the design
flow, you should verify that your chosen device is large enough to
incorporate any future changes or additions, and that your design
will perform as specified.
2-12 Xilinx Development System

Understanding High-Density Design Flow
Using your Synthesis Tool to Estimate Device
Utilization and Performance

Use your synthesis tool’s area and timing reporting options to esti-
mate device utilization and performance. After compiling, use the
report area command to obtain a report of device resource utilization.
Some synthesis tools provide area reports automatically. Refer to
your synthesis tool documentation for correct command syntax.

The device utilization and performance report lists the compiled cells
in your design, as well as information on how your design is mapped
in the FPGA. These reports are generally accurate because the
synthesis tool creates the logic from your code and maps your design
into the FPGA. However, these reports are different for the various
synthesis tools. Some reports specify the minimum number of CLBs
required, while other reports specify the “unpacked” number of
CLBs to make an allowance for routing. For an accurate comparison,
you should compare reports from the Xilinx place and route tool after
implementation. Also, any instantiated components, such as CORE
Generator modules, EDIF files, or other components that your
synthesis tool does not recognize during compilation are not
included in the report file. If you include these components in your
design, you must include the logic area used by these components
when estimating design size. Also, sections of your design may get
trimmed during the mapping process, and may result in a smaller
design.

Using the Timing Report Command

Use your synthesis tool’s timing report command to obtain a report
with estimated data path delays. Refer to your synthesis vendor’s
documentation for command syntax.

The timing report is based on the logic level delays from the cell
libraries and estimated wire-load models for your design. This report
is an estimate of how close you are to your timing goals; however, it is
not the actual timing for your design. An accurate report of your
design’s timing is only available after your design is placed and
routed. This timing report does not include information on any
instantiated components, such as CORE Generator modules, EDIF
files, or other components that are not recognized by your synthesis
tool during compilation.
Synthesis and Simulation Design Guide 2-13

Synthesis and Simulation Design Guide
Determining Actual Device Utilization and Pre-routed
Performance

To determine if your design fits the specified device, you must map it
with the Xilinx Map program. The generated report file
design_name.mrp contains the implemented device utilization infor-
mation. The report file can be read by double-clicking on Map Report
in the Project Navigator Process Window. You can run the Map
program from Project Navigator or from the command line.

Using Project Navigator to Map Your Design

Use the following steps to map your design using Project Navigator.

Note For more information on using the Project Navigator, see Project
Navigator Online Help.

1. After opening Project Navigator and creating your project, go to
the Process Window and click the “+” symbol in front of
Implement Design.

2. To run the Xilinx Map program, double-click Map.

3. To view the Map Report, double-click its name in the Process
Window or click its name and then select Process → View. If the
report does not currently exist, it is generated. If a green check
mark is in front of the report name, the report is up-to-date and
no processing is performed. If the desired report is not up-to-
date, you can click the report name and then select Process → Run
to update the report before you view it. The auto-make process
automatically runs only the necessary processes to update the
report before displaying it. Or, you can select Process → Run All
to re-run all processes— even those processes that are currently
up-to-date— from the top of the design to the stage where the
report would be.

4. View the Logic Level Timing Report with the Report Browser.
This report shows the performance of your design based on logic
levels and best-case routing delays.

5. At this point, you may want to start the Timing Analyzer to
create a more specific report of design paths.

6. Use the Logic Level Timing Report and any reports generated
with the Timing Analyzer or the Map program to evaluate how
2-14 Xilinx Development System

Understanding High-Density Design Flow
close you are to your performance and utilization goals. Use
these reports to decide whether to proceed to the place and route
phase of implementation, or to go back and modify your design
or implementation options to attain your performance goals. You
should have some slack in routing delays to allow the place and
route tools to successfully complete your design. Use the verbose
option in the Timing Analyzer to see block-by-block delay. The
timing report of a mapped design (before place and route) shows
block delays, as well as minimum routing delays.

Note A typical Virtex /E/II/II Pro design should allow 40% of
the delay for logic, and 60% of the delay for routing. If most of
your time is taken by logic, then most likely, the design will not
meet timing after place and route.

Using the Command Line to Map Your Design

1. Translate your design as follows.

ngdbuild -p target_device design_name.edf

2. Map your design as follows.

map design_name.ngd

3. Use a text editor to view the Device Summary section of the
design_name.mrp Map Report. This section contains the device
utilization information.

4. Run a timing analysis of the logic level delays from your mapped
design as follows.

trce [options] design_name.ngd

Note For available options, enter only the trce command at the
command line without any arguments.

Use the Trace reports to evaluate how close you are to your
performance goals. Use the report to decide whether to proceed
to the place and route phase of implementation, or to go back and
modify your design or implementation options to attain your
performance goals. You should have some slack in routing delays
to allow the place and route tools to successfully complete your
design.

The following is the Design Summary section of a Map Report
containing device information.
Synthesis and Simulation Design Guide 2-15

Synthesis and Simulation Design Guide
Release 4.1i - Map HEAD
Xilinx Mapping Report File for Design ‘udcntr’

Design Information

Command Line : map udcntr.ngd -o udcntr_map.ncd
Target Device : xv300
Target Package : bg432
Target Speed : -5
Mapper Version : virtex -- $Revision: 1.58 $
Mapped Date : Wed May 23 10:32:53 2001

Design Summary

 Number of errors: 0
 Number of warnings: 1
 Number of Slices: 3 out of 3,072 1%
 Number of Slices containing
 unrelated logic: 0 out of 3 0%
 Number of Slice Flip Flops: 4 out of 6,144 1%
 Number of 4 input LUTs: 6 out of 6,144 1%
 Number of bonded IOBs: 18 out of 316 5%
 Number of Tbufs: 8 out of 3,200 1%
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
 Number of hard macros: 1
Total equivalent gate count for design (not including hard macros): 68
Additional JTAG gate count for IOBs: 912

Table of Contents

Section 1 - Errors
Section 2 - Warnings
Section 3 - Informational
Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - IOB Properties
Section 7 - RPMs
Section 8 - Guide Report
Section 9 - Area Group Summary
Section 10 - Modular Design Summary
Section 1 - Errors

Section 2 - Warnings

WARNING:MapLib:328 - Block U2 is not a recognized logical block. The mapper will
continue to process the design but there may be design problems if this block does
2-16 Xilinx Development System

Understanding High-Density Design Flow
not get trimmed.

Section 3 - Informational

INFO:MapLib:62 - All of the external outputs in this design are using slew rate
limited output drivers. The delay on speed critical outputs can be dramatically
reduced by designating them as fast outputs in the schematic.

Section 4 - Removed Logic Summary

 3 block(s) removed
 1 block(s) optimized away
 3 signal(s) removed

Section 5 - Removed Logic

The trimmed logic report below shows the logic removed from your design due to
sourceless or loadless signals, and VCC or ground connections. If the removal of a
signal or symbol results in the subsequent removal of an additional signal or symbol,
the message explaining that second removal will be indented. This indentation will
be repeated as a chain of related logic is removed.

To quickly locate the original cause for the removal of a chain of logic, look
above the place where that logic is listed in the trimming report, then locate the
lines that are least indented (begin at the leftmost edge).

The signal “VCC” is loadless and has been removed.
 Loadless block “VCC” (ONE) removed.
The signal “U1/GND” is sourceless and has been removed.
The signal “U1/VCC” is sourceless and has been removed.
Unused block “U1/GND” (ZERO) removed.
Unused block “U1/VCC” (ONE) removed.

Optimized Block(s):
TYPE BLOCK
GND GND

Section 6 - IOB Properties

Synthesis and Simulation Design Guide 2-17

Synthesis and Simulation Design Guide
+--+
| IOB Name | Type |Direction|IO Standard|Drive |Slew|Reg(s)|Resistor|IOB |
| | | | |Strength |Rate| | |Delay|
+--+
clock	GCLKIOB	INPUT	LVTTL					
IN[0]	IOB	INPUT	LVTTL					
IN[1]	IOB	INPUT	LVTTL					
IN[2]	IOB	INPUT	LVTTL					
IN[3]	IOB	INPUT	LVTTL					
Q1[0]	IOB	OUTPUT	LVTTL	12	SLOW			
Q1[1]	IOB	OUTPUT	LVTTL	12	SLOW			
Q1[2]	IOB	OUTPUT	LVTTL	12	SLOW			
Q1[3]	IOB	OUTPUT	LVTTL	12	SLOW			
Q2[0]	IOB	OUTPUT	LVTTL	12	SLOW			
Q2[1]	IOB	OUTPUT	LVTTL	12	SLOW			
Q2[2]	IOB	OUTPUT	LVTTL	12	SLOW			
Q2[3]	IOB	OUTPUT	LVTTL	12	SLOW			
clear1	IOB	INPUT	LVTTL					
clear2	IOB	INPUT	LVTTL					
load1	IOB	INPUT	LVTTL					
load2	IOB	INPUT	LVTTL					
triL	IOB	INPUT	LVTTL					
triR	IOB	INPUT	LVTTL					
+--+
Section 7 - RPMs

Section 8 - Guide Report

Guide not run on this design.
Section 9 - Area Group Summary

 AREA_GROUP AG_U1
 RANGE: CLB_R1C1.*:CLB_R32C24.*
 No COMPRESSION specified for AREA_GROUP AG_U1
 Number of Slices: 3 out of 1,536 1%
 Number of Slice Flip Flops: 4 out of 3,072 1%
 Total Number 4 input LUTs: 6 out of 3,072 1%
 Number used as 4 input LUTs: 6
Section 10 - Modular Design Summary

The following logic was added to the design to satisfy the
active module’s interface. These interface components will
be removed during the Modular Design Final Assembly Phase.
0 Flip Flops.
 0 LUTs
 0 TBUFs
To get a listing of the active module port nets, set the
“XIL_MAP_LISTPORTNETS” environment variable and rerun map.
2-18 Xilinx Development System

Understanding High-Density Design Flow
The following is a sample Logic Level Timing Report.

Release 4.1i - Trace HEAD
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

trce udcntr.ncd udcntr_map.pcf

Design file: udcntr.ncd
Physical constraint file: udcntr_map.pcf
Device,speed: xcv300,-5 (FINAL 1.115 2001-05-14)
Report level: summary report

WARNING:Timing - No timing constraints found, doing default
enumeration.
Asterisk (*) preceding a constraint indicates it was not met.

Constraint | Requested | Actual | Logic
| | | Levels

Default period analysis | | 5.144ns | 3

Default net enumeration | | 4.326ns |

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clock
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
IN[0] | 2.964(R)| 0.000(R)|
IN[1] | 2.971(R)| 0.000(R)|
IN[2] | 3.068(R)| 0.000(R)|
IN[3] | 2.967(R)| 0.000(R)|
clear1 | 1.370(R)| 0.654(R)|
load1 | 2.503(R)| 0.000(R)|
---------------+------------+------------+
Synthesis and Simulation Design Guide 2-19

Synthesis and Simulation Design Guide
Clock clock to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
Q1[0] | 11.691(R)|
Q1[1] | 12.304(R)|
Q1[2] | 12.164(R)|
Q1[3] | 12.454(R)|
---------------+------------+

Clock to Setup on destination clock clock
---------------+---------+---------+---------+---------+
 | Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clock | 5.144| | | |
---------------+---------+---------+---------+---------+

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 30 paths, 22 nets, and 43 connections (100.0%
coverage)

Design statistics:
 Minimum period: 5.144ns (Maximum frequency: 194.401MHz)
 Maximum combinational path delay: 10.442ns
 Maximum net delay: 4.326ns

Analysis completed Wed May 23 10:36:47 2001

2-20 Xilinx Development System

Understanding High-Density Design Flow
Evaluating your Design for Coding Style and System
Features

At this point, if you are not satisfied with your design performance,
you can re-evaluate your code and make any necessary improve-
ments. Modifying your code and selecting different compiler options
can dramatically improve device utilization and speed.

Tips for Improving Design Performance
This section includes ways of improving design performance by
modifying your code and by incorporating FPGA system features.
Most of these techniques are described in more detail in this manual.

Modifying Your Code

You can improve design performance with the following design
modifications.

• Reduce levels of logic to improve timing

• Redefine hierarchical boundaries to help the compiler optimize
design logic

• Pipeline

• Logic replication

• Use of CORE Generator modules

• Resource sharing

• Restructure logic

Using FPGA System Features

After correcting any coding style problems, use any of the following
FPGA system features in your design to improve resource utilization
and to enhance the speed of critical paths.

Note Each device family has a unique set of system features. Review
the current version of the The Programmable Logic Data Book for the
system features available for the device you are targeting.

• Use clock enables
Synthesis and Simulation Design Guide 2-21

Synthesis and Simulation Design Guide
• In Virtex family components, modify large multiplexers to use
tristate buffers

• Use one-hot encoding for large or complex state machines

• Use I/O registers when applicable

• In Virtex families, use dedicated shift registers

• In Virtex-II families use dedicated multipliers

Using Xilinx-specific Features of Your Synthesis Tool

Most synthesis tools have special options for the Xilinx-specific
features listed in the previous section. Refer to your synthesis tool
white papers, application notes, documentation and online help for
detailed information on using Xilinx-specific features.

Modular Design and Incremental Design (ECO)
For information on Incremental Design (ECO), please refer to the
following Application Notes:

• XAPP165: “Using Xilinx and Exemplar for Incremental Designing
(ECO)”, application note, v1.0 (8/9/99) (http://
www.xilinx.com/xapp/xapp165.pdf).

• XAPP164: “Using Xilinx and Synplify for Incremental Designing
(ECO)”, application note, v1.0 (8/6/99) (http://
www.xilinx.com/xapp/xapp164.pdf).

Xilinx Development Systems feature Modular Design to help you
plan and manage large designs. Reference the following URL and
application note for more information on the Modular Design
feature:

• Xilinx Modular Design URL:

http://www.xilinx.com/products/software/moddes/
moddes.htm

• XAPP404: “Xilinx Modular Design”, application note.

http://www.xilinx.com/xapp/xapp404.pdf
2-22 Xilinx Development System

http://www.xilinx.com/xapp/xapp165.pdf
http://www.xilinx.com/xapp/xapp165.pdf
http://www.xilinx.com/xapp/xapp164.pdf
http://www.xilinx.com/xapp/xapp164.pdf
http://www.xilinx.com/products/software/moddes/moddes.htm
http://www.xilinx.com/xapp/xapp404.pdf

Understanding High-Density Design Flow
Placing and Routing Your Design
Note For more information on placing and routing your design, refer
to the Development System Reference Guide.

The overall goal when placing and routing your design is fast imple-
mentation and high-quality results. However, depending on the situ-
ation and your design, you may not always accomplish this goal, as
described in the following examples.

• Earlier in the design cycle, run time is generally more important
than the quality of results, and later in the design cycle, the
converse is usually true.

• During the day, you may want the tools to quickly process your
design while you are waiting for the results. However, you may
be less concerned with a quick run time, and more concerned
about the quality of results when you run your designs for an
extended period of time (during the night or weekend).

• If the targeted device is highly utilized, the routing may become
congested, and your design may be difficult to route. In this case,
the placer and router may take longer to meet your timing
requirements.

• If design constraints are rigorous, it may take longer to correctly
place and route your design, and meet the specified timing.

Decreasing Implementation Time
The options you select for the placement and routing of your design
directly influence the run time. Generally, these options decrease the
run time at the expense of the best placement and routing for a given
device. Select your options based on your required design perfor-
mance.

Note If you are using the command line, the appropriate command
line option is provided in the following procedure.

Use the following steps to decrease implementation time in the
Project Navigator. For details on implementing your design in Project
Navigator see Project Navigator Online Help.

1. In the Project Navigator Process Window, right click Place &
Route and then select Properties.
Synthesis and Simulation Design Guide 2-23

Synthesis and Simulation Design Guide
The Process Properties dialog box appears.

Set options in this dialog box as follows.

♦ Place & Route Effort Level

Generally, you can reduce placement times by selecting a less
CPU-intensive algorithm for placement. You can set the
placement level at one of five settings from Lowest (fastest
run time) to Highest (best results) with the default equal to
Low. Use the –l switch at the command line to perform the
same function.

Note In some cases, poor placement with a lower placement
level setting can result in longer route times.

♦ Router Options

You can limit router iterations to reduce routing times by
setting the Number of Routing Passes option. However, this
may prevent your design from meeting timing requirements,
or your design may not completely route. From the
command line, you can control router passes with the –i
switch.

♦ Use Timing Constraints During Place and Route

You can improve run times by not specifying some or all
timing constraints. This is useful at the beginning of the
design cycle during the initial evaluation of the placed and
routed circuit. To disable timing constraints in the Project
Navigator, uncheck the Use Timing Constraints check box. To
disable timing constraints at the command line, use the –x
switch with PAR.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route to in the Process Window of Project
Navigator to begin placing and routing your design.

Improving Implementation Results
Conversely, you can select options that increase the run time, but
produce a better design. These options generally produce a faster
design at the cost of a longer run time. These options are useful when
you run your designs for an extended period of time (overnight or
over the weekend). The following options can be used to improve
2-24 Xilinx Development System

Understanding High-Density Design Flow
implementation results. Detailed information for these options can be
found in the Development System Reference Guide.

Map Timing Option

Use the Xilinx Map program Timing option to improve timing during
the mapping phase. This switch directs the mapper to give priority to
timing critical paths during packing. To use this feature at the
command line, use the –timing switch. See the Development System
Reference Guide for more in information.

Extra Effort Mode in PAR

Use the Xilinx PAR program Extra Effort mode to invoke advanced
algorithmic techniques to provide higher quality results. To use this
feature at the command line, use the –xe <level> switch. The level can
be a value from 0 to 5; the default is 1. Using level 0 turns off all extra
effort off, and can significantly increase runtime. See the Development
System Reference Guide for more information.

Multi-Pass Place and Route

Use this feature to place and route your design with several different
cost tables (seeds) to find the best possible placement for your design.
This optimal placement results in shorter routing delays and faster
designs. This works well when the router passes are limited (with the
–i option). After an optimal cost table is selected, use the reentrant
routing feature to finish the routing of your design. To use this feature
double-click on Multi Pass Place & Route in the Process Window of
Project Navigator, or specify this option at the command line with the
–n switch. See the Development System Reference Guide for a descrip-
tion of Multi-Pass Place and Route, and how to set the appropriate
options.

Turns Engine Option (UNIX only)

This option is a Unix-only feature that works with the Multi-Pass
Place and Route option to allow parallel processing of placement and
routing on several Unix machines. The only limitation to how many
cost tables are concurrently tested is the number of workstations you
have available. To use this option in Project Navigator, see the Project
Navigator Online Help for a description of the options that can be set
under Multi-Pass Place and Route. To use this feature at the
Synthesis and Simulation Design Guide 2-25

Synthesis and Simulation Design Guide
command line, use the –m switch to specify a node list, and the –n
switch to specify the number of place and route iterations.

Note For more information on the turns engine option, refer to the
Development System Reference Guide.

Reentrant Routing Option

Use the reentrant routing option to further route an already routed
design. The router reroutes some connections to improve the timing
or to finish routing unrouted nets. You must specify a placed and
routed design (.ncd) file for the implementation tools. This option is
best used when router iterations are initially limited, or when your
design timing goals are close to being achieved.

From the Project Navigator

To initiate a reentrant route from Project Navigator, follow these
steps. See the Project Navigator Online Help for details on reentrant
routing.

1. In the Project Navigator Process Window, right click Place &
Route and then select Properties.

The Process Properties dialog box appears. Set the Place and
Route Mode option to Reentrant Route.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route to in the Process Window of Project
Navigator to begin placing and routing your design.

Using PAR and Cost Tables

The PAR module places in two stages: a constructive placement and
an optimizing placement. PAR writes the NCD file after constructive
placement and modifies the NCD after optimizing placement.

During constructive placement, PAR places components into sites
based on factors such as constraints specified in the input file (for
example, certain components must be in certain locations), the length
of connections, and the available routing resources. This placement
also takes into account “cost tables,” which assign weighted values to
each of the relevant factors. There are 100 possible cost tables.
Constructive placement continues until all components are placed.
PAR writes the NCD file after constructive placement.
2-26 Xilinx Development System

Understanding High-Density Design Flow
For more information on PAR and Cost Tables, refer to Chapter 9 of
the Development System Reference Guide.

From the Command Line

To initiate a reentrant route from the command line, you can run PAR
with the –k and –p options, as well as any other options you want to
use for the routing process. You must either specify a unique name
for the post reentrant routed design (.ncd) file or use the –w switch to
overwrite the previous design file, as shown in the following exam-
ples.

par –k –p other_options design_name.ncd new_name.ncd

par –k –p –w other_options design_name.ncd design.ncd

Cost-Based Clean-up Option

This option specifies clean-up passes after routing is completed to
substitute more appropriate routing options available from the initial
routing process. For example, if several local routing resources are
used to transverse the chip and a longline is available, the longline is
substituted in the clean-up pass. The default value of cost-based
cleanup passes is 1. You can change the default at the command line
with the –c switch. To change the default value from Project Navi-
gator, follow these steps. See Chapter 9 of the Development System
Reference Guide for details on the Cost-Based Clean-up Option.

1. In the Project Navigator Process Window, right click Place &
Route and then select Properties.

The Process Properties dialog box appears. Set the Cost-Based
Clean-up Passes option to a value between 0 and 5.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route to in the Process Window of Project
Navigator to begin placing and routing your design.

Delay-Based Clean-up Option

This option specifies clean-up passes after routing is completed to
substitute more appropriate routing options to reduce delays. The
default number of passes for delay-based clean-up is 0. You can
change the default at the command line with the –d switch. To change
the default value from Project Navigator, follow these steps. See
Synthesis and Simulation Design Guide 2-27

Synthesis and Simulation Design Guide
Chapter 9 of the Development System Reference Guide for details on the
Delay-Based Clean-up Option.

1. In the Project Navigator Process Window, right click Place &
Route and then select Properties.

The Process Properties dialog box appears. Set the Delay-Based
Clean-up Passes option to a value between 0 and 5.

2. Select OK to exit the Process Properties dialog box.

3. Double click Place & Route in the Process Window of Project
Navigator to begin placing and routing your design.

Guide Option

This option is generally not recommended for synthesis-based
designs, except for modular design flows. Re-synthesizing modules
can cause the signal and instance names in the resulting netlist to be
significantly different from those in earlier synthesis runs. This can
occur even if the source level code (Verilog or VHDL) contains only a
small change. Because the guide process is dependent on the names
of signals and comps, synthesis designs often result in a low match
rate during the guiding process. Generally, this option does not
improve implementation results.

For information on guide in modular design flows, refer to XAPP 404
at http://www.xilinx.com/xapp/xapp404.pdf.

Timing Simulation of Your Design
Note Refer to the“Simulating Your Design” chapter for more infor-
mation on design simulation.

Timing simulation is important in verifying the operation of your
circuit after the worst-case placed and routed delays are calculated
for your design. In many cases, you can use the same testbench that
you used for functional simulation to perform a more accurate simu-
lation with less effort. You can compare the results from the two
simulations to verify that your design is performing as initially speci-
fied. The Xilinx tools create a VHDL or Verilog simulation netlist of
your placed and routed design, and provide libraries that work with
many common HDL simulators.
2-28 Xilinx Development System

http://www.xilinx.com/xapp/xapp404.pdf

Understanding High-Density Design Flow
Timing Analysis Using TRACE
Timing-driven PAR is based upon Xilinx’s timing analysis software,
an integrated static timing analysis tool (that is, it does not depend on
input stimulus to the circuit). This means that placement and routing
are executed according to timing constraints that you specify in the
beginning of the design process. The timing analysis software inter-
acts with PAR to ensure that the timing constraints you impose on the
design are met.

If you have timing constraints, TRACE will generate a report based
on your constraints. If there are no constraints, the timing analysis
tool has an option to write out a timing report containing the
following.

• An analysis that enumerates all clocks and the required OFFSETs
for each clock.

• An analysis of paths having only combinatorial logic, ordered by
delay.

For more information on TRACE, refer to Chapter 9 of the Develop-
ment System Reference Guide. For more information on Timing Anal-
ysis, refer to the Timing Analyzer Online Help.

Downloading to the Device and In-system
Debugging

After you have verified the functionality and timing of your placed
and routed design, you can create a design data file to download for
in-system verification. The design data or bitstream (.bit) file is
created from the placed and routed .ncd file.

In Project Navigator, create a bitstream file for your design using the
following procedure.

1. Select the top-level source for the project in the Sources window.

2. Click Create Programming File in the Processes window.

3. Click Process .Run in the Project Navigator menu. (An alternative
method is to double-click Creating Programming File in the
Processes window.)

4. The programming file creation process runs. If there are no
errors, the top_source_name.bit file is created.
Synthesis and Simulation Design Guide 2-29

Synthesis and Simulation Design Guide
5. To view the Programming File Report in the ISE Report Viewer,
double-click View Programming File Generation Report in the
Processes window. The Programming File Report contains
information about the BitGen run.

For a complete description of BitGen, see the “BitGen” chapter in the
Development System Reference Guide.

From the command line, run BitGen on your placed and routed .ncd
file to create the .bit file as follows.

bitgen [options] design.ncd

Use the .bit file with the XChecker cable and iMPACT to download
the data to your device. You can run iMPACT from Project Navigator,
or from the command line as follows.

impact design.bit

iMPACT allows you to download the data to the FPGA using your
computer’s serial port. iMPACT can also synchronously or asynchro-
nously probe external or internal nodes in the FPGA. Waveforms can
be created from this data and correlated to the simulation data for
true in-system verification of your design.

Creating a PROM File for Stand-Alone Operation
After verifying that the FPGA works in the circuit, you can create a
PROM file from the .bit file to program a PROM or other data storage
device. You can then use this file to program the FPGA in-circuit
during normal operation.

Use the Prom File Formatter to create the PROM file, or from the
command line use PROMGen. You can run the Prom File Formatter
from the Project Navigator, or from the command line as follows.

promfmtr design.bit

Run PROMGen from the command line by typing the following.

promgen [options] design.bit

Note For more information on using these programs, refer to the
Development System Reference Guide.
2-30 Xilinx Development System

Chapter 3

General HDL Coding Styles

This chapter contains HDL coding styles and design examples to help
you develop an efficient coding style. It includes the following
sections.

• “Naming and Labeling Styles”

• “Specifying Constants”

• “Choosing Data Type (VHDL only)”

• “Coding for Synthesis”

HDLs contain many complex constructs that are difficult to under-
stand at first. Also, the methods and examples included in HDL
manuals do not always apply to the design of FPGAs. If you
currently use HDLs to design ASICs, your established coding style
may unnecessarily increase the number of gates or CLB levels in
FPGA designs.

HDL synthesis tools implement logic based on the coding style of
your design. To learn how to efficiently code with HDLs, you can
attend training classes, read reference and methodology notes, and
refer to synthesis guidelines and templates available from Xilinx and
the synthesis vendors. When coding your designs, remember that
HDLs are mainly hardware description languages. You should try to
find a balance between the quality of the end hardware results and
the speed of simulation.

The coding hints and examples included in this chapter are not
intended to teach you every aspect of VHDL or Verilog, but they
should help you develop an efficient coding style.
Synthesis and Simulation Design Guide 3-1

Synthesis and Simulation Design Guide
Naming and Labeling Styles
Because HDL designs are often created by design teams, Xilinx
recommends that you agree on a style for your code at the beginning
of your project. An established coding style allows you to read and
understand code written by your fellow team members. Also, ineffi-
cient coding styles can adversely impact synthesis and simulation,
which can result in slow circuits. Additionally, because portions of
existing HDL designs are often used in new designs, you should
follow coding standards that are understood by the majority of HDL
designers. This section of the manual provides a list of suggested
coding styles that you should establish before you begin your
designs.

Using Xilinx Naming Conventions
Use the Xilinx naming conventions listed in this section for naming
signals, variables, and instances that are translated into nets, buses,
and symbols.

Note Most synthesis tools convert illegal characters to legal ones.

• User-defined names can contain A–Z, a–z, $, _, –, <, and >. A “/”
is also valid, however, it is not recommended because it is used as
a hierarchy separator

• Names must contain at least one non-numeric character

• Names cannot be more than 256 characters long

The following FPGA resource names are reserved and should not be
used to name nets or components.

• Components (Comps), Configurable Logic Blocks (CLBs), Input/
Output Blocks (IOBs), Slices, basic elements (bels), clock buffers
(BUFGs), tristate buffers (BUFTs), oscillators (OSC), CCLK, DP,
GND, VCC, and RST

• CLB names such as AA, AB, SLICE_R1C2, SLICE_X1Y2, X1Y2,
and R1C2

• Primitive names such as TD0, BSCAN, M0, M1, M2, or STARTUP

• Do not use pin names such as P1 and A4 for component names

• Do not use pad names such as PAD1 for component names
3-2 Xilinx Development System

General HDL Coding Styles
Refer to the language reference manual for Verilog or VHDL for
language-specific naming restrictions. Xilinx does not recommend
using escape sequences for illegal characters. Also, if you plan on
importing schematics into your design, use the most restrictive
character set.

Matching File Names to Entity and Module Names
Xilinx recommends the following practices in naming your HDL files.

• Ensure that the VHDL or Verilog source code file name matches
the designated name of the entity (VHDL) or module (Verilog)
specified in your design file. This is less confusing and generally
makes it easier to create a script file for the compilation of your
design.

• If your design contains more than one entity or module, each
should be contained in a separate file with the appropriate file
name.

• It is a good idea to use the same name as your top-level design
file for your synthesis script file with either a .do, .scr, .script, or
the appropriate default script file extension for your synthesis
tool.

Naming Identifiers, Types, and Packages
You can use long (256 characters maximum) identifier names with
underscores and embedded punctuation in your code. Use mean-
ingful names for signals and variables, such as
CONTROL_REGISTER. Use meaningful names when defining
VHDL types and packages as shown in the following examples.

type LOCATION_TYPE is ...;
package STRING_IO_PKG is

Labeling Flow Control Constructs
You can use optional labels on flow control constructs to make the
code structure more obvious, as shown in the following VHDL and
Verilog examples. However, you should note that these labels are not
translated to gate or register names in your implemented design.
Flow control constructs can slow down simulations in some Verilog
simulators.
Synthesis and Simulation Design Guide 3-3

Synthesis and Simulation Design Guide
• VHDL Example

-- D_REGISTER.VHD

-- May 2001

-- Changing Latch into a D-Register

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

 port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

end d_register;

architecture BEHAV of d_register is

begin

My_D_Reg: process (CLK, DATA)

begin

if (CLK’event and CLK=’1’) then

Q <= DATA;

end if;

end process; --End My_D_Reg

end BEHAV;
3-4 Xilinx Development System

General HDL Coding Styles
• Verilog Example

/* Changing Latch into a D-Register

* D_REGISTER.V

* May 2001

*/

module d_register (CLK, DATA, Q);

input CLK;

input DATA;

output Q;

reg Q;

always @ (posedge CLK)

begin: My_D_Reg

 Q <= DATA;

end

endmodule

 Using Named and Positional Association
Use positional association in function and procedure calls, and in
port lists only when you assign all items in the list. Use named associ-
ation when you assign only some of the items in the list. Also, Xilinx
suggests that you use named association to prevent incorrect connec-
tions for the ports of instantiated components. Do not combine posi-
tional and named association in the same statement as illustrated in
the following examples.
Synthesis and Simulation Design Guide 3-5

Synthesis and Simulation Design Guide
• VHDL

Incorrect

CLK_1: BUFGS port map (I=>CLOCK_IN,CLOCK_OUT);

Correct

CLK_1: BUFGS port map(I=>CLOCK_IN,O=>CLOCK_OUT);

• Verilog

Incorrect

BUFGS CLK_1 (.I(CLOCK_IN), CLOCK_OUT);

Correct

BUFGS CLK_1 (.I(CLOCK_IN), .O(CLOCK_OUT));

Passing Attributes
An attribute is attached to HDL objects in your design. You can pass
attributes to HDL objects in two ways; you can predefine data that
describes an object, or directly attach an attribute to an HDL object.
Predefined attributes can be passed with a command file or
constraints file in your synthesis tool, or you can place attributes
directly in your HDL code. This section will illustrate passing
attributes in HDL code only. For information on passing attributes via
the command file, please refer to your synthesis tool manual.

Most vendors adopt identical syntax for passing attributes in VHDL,
but not in Verilog. The examples below illustrate the VHDL syntax.

Note For FPGA Compiler II, attribute passing is available beginning
with version 3.0 and the attributes can only be applied to instantiated
components or ports (but not inferred logic and nets).

VHDL Attribute Examples

The following are examples of VHDL attributes.

• Attribute declaration:

attribute <attribute_name> : <attribute_type> ;

• Attribute use on a port or signal:

attribute <attribute_name> of <object_name> : signal is
<attribute_value>
3-6 Xilinx Development System

General HDL Coding Styles
Example:

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

attribute FAST : string;

attribute FAST of Q : signal is "";

end d_register;

• Attribute use on an instance:

attribute <attribute_name> of <object_name> : label is
<attribute_value>

Example:

architecture struct of spblkrams is

attribute INIT_00: string;

attribute INIT_00 of INST_RAMB4_S4: label is

"1F1E1D1C1B1A191817161514131211100F0E0D0C0B09087
06050403020100";

begin

INST_RAMB4_S4 : RAMB4_S4 port map (

DI => DI(3 downto 0),

EN => EN,

WE => WE,

RST => RST,

CLK => CLK,

ADDR => ADDR(9 downto 0),

DO => DORAMB4_S4

);
Synthesis and Simulation Design Guide 3-7

Synthesis and Simulation Design Guide
• Attribute use on a component:

attribute <attribute_name> of <object_name> : component is
<attribute_value>

Example:

architecture xilinx of tenths_ex is

attribute black_box : boolean;

component tenths

port (CLOCK : in STD_LOGIC;

CLK_EN : in STD_LOGIC;

Q_OUT : out STD_LOGIC_VECTOR(9
downto 0));

end component;

attribute black_box of tenths : component is
true;

begin

Verilog Attribute Examples

The following are examples of attribute passing in Verilog. Note that
attribute passing in Verilog is synthesis tool specific.

• Attribute use in FPGA Compiler II syntax:

//synopsys attribute <name> <value>

Example:

BUFG CLOCKB (.I(oscout), .O(clkint)); //synopsys

attribute LOC "BR"

or

RAMB4_S4 U1 (.WE(w), .EN(en), .RST(r), .CLK(ck)

.ADDR(ad), .DI(di), .DO(do)); /* synopsys
attribute INIT_00

"AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB" INIT_09

"99999988888888887777777776666666" */
3-8 Xilinx Development System

General HDL Coding Styles
• Attribute use in LeonardoSpectrum syntax:

//exemplar attribute <object_name> <attribute_name>
<attribute_value>

Examples:

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),

.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT));

//exemplar attribute U0 INIT_00

1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A0908
070605040

3020100

• Attribute use in Synplify syntax:

// synthesis <directive>

//synthesis <attribute_name>=<value>

or

/* synthesis <directive> */

/* synthesis <attribute_name>=<value> */

Examples:

FDCE u2(.D (q1),.CE(ce),.C (clk),.CLR (rst),

.Q (qo)) /* synthesis rloc="r1c0.s0" */;

or

module BUFG(I,O); // synthesis black_box

input I;

output O;

endmodule
Synthesis and Simulation Design Guide 3-9

Synthesis and Simulation Design Guide
• Attribute use in XST syntax:

// synthesis <attribute_name> of <object_name> is <value>

Example:

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),

.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT));

//synthesis attribute INIT_00 of U0 is

“1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706
050403020100”

Understanding Synthesis Tools Naming Convention
Some net and logic names are preserved and some are altered by the
synthesis tools during the synthesis process. This may result in a
netlist that is hard to read or trace back to the original code.

This section will discuss how different synthesis tools generate names
from your VHDL/Verilog codes. This will help you corollate nets and
component names appearing in the EDIF netlist. It will also help
corollate nets and names during your after-synthesis design view of
the VHDL/Verilog source.

Note The naming conventions below apply to inferred logic. The
names of instantiated components and their connections, and port
names are preserved during synthesis.

• FPGA Compiler II Naming Styles:

Register instance: <output_signal>_reg

Output of register: <output_signal>_reg

Output of clock buffer: <signal>_BUFGed

Output of tristate: <signal>_tri

Port names: preserved

Hierarchy notation: ‘_’, e.g., <hier_1>_<hier_2>

Other inferred component and net names are machine generated.
3-10 Xilinx Development System

General HDL Coding Styles
• LeonardoSpectrum Naming Styles:

Register instance: reg_<output signal>

Output of register: preserved, except if the output is also external
port of the design. In this case, it will be <signal>_dup0

Clock buffer/ibuf: <driver_signal>_ibuf

Output of clock buffer/ibuf: <driver_signal>_int

Tristate instance: tri_<output_signal>

Driver and output of tristate: preserved

Hierarchy notation: ‘_’

Other names are machine generated.

• Synplify Naming Styles:

Register instance: output_signal

Output of register: output_signal

Clock buffer instance/ibuf: <portname>_ibuf

Output of clock buffer: <clkname>_c

Output/inout tristate instance: <output_signal>_obuft or

<output_signal>_iobuf

Internal tristate instance: un<n>_<signal_name>_tb, when <n> is
any number or <signal_name>_tb

Output of tristate driving an output/inout : name of port

Output of internal tristate: <signal_name>_tb_<number>

RAM instance and its output

♦ Dual Port RAM:

ram instance: <memory_name>_<n>.I_<n>

ram output : DPO-><memory_name>_<n>.rout_bus, SPO->

<memory_name>_<n>.wout_bus

♦ Single Port RAM:

ram instance: <memory_name>.I_<n>

ram output: <memory_name>
Synthesis and Simulation Design Guide 3-11

Synthesis and Simulation Design Guide
♦ Single Port Block SelectRAM:

ram_instance: <memory_name>.I_<n>

ram output: <memory_name>

♦ Dual Port Block SelectRAM:

ram_instance: <memory_name>.I_<n>

ram output: <memory_name>[the output that is used]

Hierarchy delimiter is usually a ".", however when
syn_hier="hard", the hierarchy delimiter in the edif is "/"

Other names are machine generated.

• XST Naming Styles:

Net Naming Conventions:

These rules are listed in order of naming priority.

1. External pin names are maintained.

2. Hierarchy in signal names is kept, using underscores as
hierarchy designators.

3. Output signal names of registers, including state bits, are
maintained. The hierarchical name from the level where the
register was inferred is used.

4. Output signals of clock buffers get _clockbuffertype (like
_BUFGP or _IBUFG) follow the clock signal name.

5. Input nets to registers and tristates names are maintained.

6. Output net names of IBUFs are named net_name_IBUF. For
example, for an IBUF with an output net name of DIN, the
output IBUF net name is DIN_IBUF. Input net names to
OBUFs are named net_name_OBUF. For example, for an
OBUF with an input net name of DOUT, the input OBUF net
name is DOUT_OBUF.
3-12 Xilinx Development System

General HDL Coding Styles
Instance Naming Conventions:

These rules are listed in order of naming priority.

1. Hierarchy in instance names is kept, using underscores as
hierarchy designators.

2. Register instances, including state bits, are named for the
output signal.

3. Clock buffer instances are named _clockbuffertype (like
_BUFGP or _IBUFG) after the output signal.

4. Instantiation instance names of black boxes are maintained.

5. Instantiation instance names of library primitives are
maintained.

6. Input and output buffers are named _IBUF or _OBUF after
the pad name.

7. Output instance names of IBUFs are named
instance_name_IBUF. Input instance names to OBUFs are
named instance_name_OBUF.

Specifying Constants
Use constants in your design to substitute numbers to more mean-
ingful names. The use of constants helps make a design more read-
able and portable.

Using Constants to Specify OPCODE Functions
(VHDL)

Do not use variables for constants in your code. Define constant
numeric values in your code as constants and use them by name. This
coding convention allows you to easily determine if several occur-
rences of the same literal value have the same meaning. In some
simulators, using constants allows greater optimization. In the
following code example, the OPCODE values are declared as
constants, and the constant names refer to their function. This
method produces readable code that may be easier to modify.
Synthesis and Simulation Design Guide 3-13

Synthesis and Simulation Design Guide
constant ZERO : STD_LOGIC_VECTOR (1 downto 0):=“00”;
constant A_AND_B: STD_LOGIC_VECTOR (1 downto 0):=“01”;
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):=“10”;
constant ONE : STD_LOGIC_VECTOR (1 downto 0):=“11”;

process (OPCODE, A, B)
begin

if (OPCODE = A_AND_B)then OP_OUT <= A and B;
elsif (OPCODE = A_OR_B) then OP_OUT <= A or B;
elsif (OPCODE = ONE) then OP_OUT <= ‘1’;
else OP_OUT <= ‘0’;

end if;
end process;

Using Parameters to Specify OPCODE Functions
(Verilog)

You can specify a constant value in Verilog using the parameter
special data type, as shown in the following examples. The first
example includes a definition of OPCODE constants as shown in the
previous VHDL example. The second example shows how to use a
parameter statement to define module bus widths.

• Example 1

//Using parameters for OPCODE functions

parameter ZERO = 2’b00;

parameter A_AND_B = 2’b01;

parameter A_OR_B = 2’b10;

parameter ONE = 2’b11;

always @ (OPCODE or A or B)

begin

if (OPCODE==‘ZERO) OP_OUT=1’b0;

else if(OPCODE==‘A_AND_B) OP_OUT=A&B;

else if(OPCODE==‘A_OR_B) OP_OUT=A|B;

else OP_OUT=1’b1;

end
3-14 Xilinx Development System

General HDL Coding Styles
• Example 2

//Using a parameter for Bus Size

parameter BUS_SIZE = 8;

output [‘BUS_SIZE-1:0] OUT;

input [‘BUS_SIZE-1:0] X,Y;

Choosing Data Type (VHDL only)
Use the Std_logic (IEEE 1164) standards for hardware descriptions
when coding your design. These standards are recommended for the
following reasons.

• Applies as a wide range of state values—It has nine different values
that represent most of the states found in digital circuits.

• Automatically initializes to an unknown value—Automatic initializa-
tion is important for HDL designs because it forces you to
initialize your design to a known state, which is similar to what is
required in a schematic design. Do not override this feature by
initializing signals and variables to a known value when they are
declared because the result may be a gate-level circuit that cannot
be initialized to a known value.

• Easily performs board-level simulation—For example, if you use an
integer type for ports for one circuit and standard logic for ports
for another circuit, your design can be synthesized; however, you
will need to perform time-consuming type conversions for a
board-level simulation.

The back-annotated netlist from Xilinx implementation is in
Std_logic. If you do not use Std_logic type to drive your top-level
entity in the testbench, you cannot reuse your functional testbench
for timing simulation. Some synthesis tools can create a wrapper for
type conversion between the two top-level entities; however, this is
not recommended by Xilinx.

Declaring Ports
Xilinx recommends that you use the Std_logic package for all entity
port declarations. This package makes it easier to integrate the
Synthesis and Simulation Design Guide 3-15

Synthesis and Simulation Design Guide
synthesized netlist back into the design hierarchy without requiring
conversion functions for the ports. A VHDL example using the
Std_logic package for port declarations is shown below.

Entity alu is
 port(A : in STD_LOGIC_VECTOR(3 downto 0);
 B : in STD_LOGIC_VECTOR(3 downto 0);
 CLK : in STD_LOGIC;
 C : out STD_LOGIC_VECTOR(3 downto 0));
end alu;

Since the downto convention for vectors is supported in a back-anno-
tated netlist, the RTL and synthesized netlists should use the same
convention if you are using the same test bench. This is necessary
because of the loss of directionality when your design is synthesized
to an EDIF netlist.

Minimizing the Use of Ports Declared as Buffers
Do not use buffers when a signal is used internally and as an output
port. In the following VHDL example, signal C is used internally and
as an output port.

Entity alu is
port(A : in STD_LOGIC_VECTOR(3 downto 0);

 B : in STD_LOGIC_VECTOR(3 downto 0);
 CLK : in STD_LOGIC;
 C : buffer STD_LOGIC_VECTOR(3 downto 0));
end alu;
architecture BEHAVIORAL of alu is
begin
process begin
 if (CLK’event and CLK=’1’) then
 C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);
 end if;
 end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every
level of hierarchy in your design that connects to port C must be
declared as a buffer. However, buffer types are not commonly used in
VHDL designs because they can cause problems during synthesis. To
reduce the amount of buffer coding in hierarchical designs, you can
3-16 Xilinx Development System

General HDL Coding Styles
insert a dummy signal and declare port C as an output, as shown in
the following VHDL example.

Entity alu is
 port(A : in STD_LOGIC_VECTOR(3 downto 0);
 B : in STD_LOGIC_VECTOR(3 downto 0);
 CLK : in STD_LOGIC;
 C : out STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture BEHAVIORAL of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin
 C <= C_INT;

process begin
 if (CLK’event and CLK=’1’) then

C_INT < =UNSIGNED(A) + UNSIGNED(B) +
 UNSIGNED(C_INT);

 end if;
 end process;
end BEHAVIORAL;

Comparing Signals and Variables (VHDL only)
You can use signals and variables in your designs. Signals are similar
to hardware and are not updated until the end of a process. Variables
are immediately updated and, as a result, can affect the functionality
of your design. Xilinx recommends using signals for hardware
descriptions; however, variables allow quick simulation.

The following VHDL examples show a synthesized design that uses
signals and variables, respectively. These examples are shown imple-
mented with gates in the “Gate Implementation of XOR_VAR” and
“Gate Implementation of XOR_SIG” figures.

Note If you assign several values to a signal in one process, only the
final value is used. When you assign a value to a variable, the assign-
ment takes place immediately. A variable maintains its value until
you specify a new value.
Synthesis and Simulation Design Guide 3-17

Synthesis and Simulation Design Guide
Using Signals (VHDL)

-- XOR_SIG.VHD
-- May 2001
Library IEEE;
use IEEE.std_logic_1164.all;
entity xor_sig is

 port (A, B, C: in STD_LOGIC;
 X, Y: out STD_LOGIC);
end xor_sig;

architecture SIG_ARCH of xor_sig is
 signal D: STD_LOGIC;
begin

SIG:process (A,B,C)
begin

 D <= A; -- ignored !!
X <= C xor D;
D <= B; -- overrides !!
Y <= C xor D;

end process;
end SIG_ARCH;
3-18 Xilinx Development System

General HDL Coding Styles
Figure 3-1 Gate implementation of XOR_SIG

Using Variables (VHDL)

-- XOR_VAR.VHD
-- May 2001

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity xor_var is
 port (A, B, C: in STD_LOGIC;
 X, Y: out STD_LOGIC);
end xor_var;

XOR2

IBUF

IBUFB

C

A

OBUF

OBUF Y

X

X8542
Synthesis and Simulation Design Guide 3-19

Synthesis and Simulation Design Guide
architecture VAR_ARCH of xor_var is
begin

VAR:process (A,B,C)
 variable D: STD_LOGIC;
 begin

D := A;
 X <= C xor D;
 D := B;
 Y <= C xor D;

end process;
end VAR_ARCH;

Figure 3-2 Gate Implementation of XOR_VAR

Coding for Synthesis
VHDL and Verilog are hardware description and simulation
languages that were not originally intended as inputs to synthesis.
Therefore, many hardware description and simulation constructs are
not supported by synthesis tools. In addition, the various synthesis
tools use different subsets of VHDL and Verilog. VHDL and Verilog
semantics are well defined for design simulation. The synthesis tools
must adhere to these semantics to ensure that designs simulate the
same way before and after synthesis. Follow the guidelines presented
below to create code that simulates the same way before and after
synthesis.

XOR2

XOR2

IBUF

IBUF

IBUFB

A

C

OBUF

OBUF Y

X

X8
3-20 Xilinx Development System

General HDL Coding Styles
Omit the Wait for XX ns Statement
Do not use the Wait for XX ns statement in your code. XX specifies the
number of nanoseconds that must pass before a condition is
executed. This statement does not synthesize to a component. In
designs that include this statement, the functionality of the simulated
design does not match the functionality of the synthesized design.
VHDL and Verilog examples of the Wait for XX ns statement are as
follows.

• VHDL

wait for XX ns;

• Verilog

#XX;

Omit the ...After XX ns or Delay Statement
Do not use the ...After XX ns statement in your VHDL code or the
Delay assignment in your Verilog code. Examples of these statements
are as follows.

• VHDL

(Q <=0 after XX ns)

• Verilog

assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a
condition is executed. This statement is usually ignored by the
synthesis tool. In this case, the functionality of the simulated design
does not match the functionality of the synthesized design.

Omit Initial Values
Do not assign signals and variables initial values because initial
values are ignored by most synthesis tools. The functionality of the
simulated design may not match the functionality of the synthesized
design.
Synthesis and Simulation Design Guide 3-21

Synthesis and Simulation Design Guide
For example, do not use initialization statements like the following
VHDL and Verilog statements.

• VHDL

variable SUM:INTEGER:=0;

• Verilog

wire SUM=1’b0;

Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions can influence
design performance. For example, the following two VHDL state-
ments are not necessarily equivalent.

ADD <= A1 + A2 + A3 + A4;
ADD <= (A1 + A2) + (A3 + A4);

For Verilog, the following two statements are not necessarily equiva-
lent.

ADD = A1 + A2 + A3 + A4;
ADD = (A1 + A2) + (A3 + A4);

The first statement cascades three adders in series. The second state-
ment creates two adders in parallel: A1 + A2 and A3 + A4. In the
second statement, the two additions are evaluated in parallel and the
results are combined with a third adder. RTL simulation results are
the same for both statements, however, the second statement results
in a faster circuit after synthesis (depending on the bit width of the
input signals).

Although the second statement generally results in a faster circuit, in
some cases, you may want to use the first statement. For example, if
the A4 signal reaches the adder later than the other signals, the first
statement produces a faster implementation because the cascaded
structure creates fewer logic levels for A4. This structure allows A4 to
catch up to the other signals. In this case, A1 is the fastest signal
followed by A2 and A3; A4 is the slowest signal.

Most synthesis tools can balance or restructure the arithmetic oper-
ator tree if timing constraints require it. However, Xilinx recommends
that you code your design for your selected structure.
3-22 Xilinx Development System

General HDL Coding Styles
Comparing If Statement and Case Statement
The If statement generally produces priority-encoded logic and the
Case statement generally creates balanced logic. An If statement can
contain a set of different expressions while a Case statement is evalu-
ated against a common controlling expression. In general, use the
Case statement for complex decoding and use the If statement for
speed critical paths.

Most current synthesis tools can determine if the if-elsif conditions
are mutually exclusive, and will not create extra logic to build the
priority tree. The following are points to consider when writing if
statements.

• Make sure that all outputs are defined in all branches of an if
statement. If not, it can create latches or long equations on the CE
signal. A good way to prevent this is to have default values for all
outputs before the if statements.

• Limiting the number of input signals into an if statement can
reduce the number of logic levels. If there are a large number of
input signals, see if some of them can be pre-decoded and regis-
tered before the if statement.

• Avoid bringing the dataflow into a complex if statement. Only
control signals should be generated in complex if-else statements.

The following examples use an If construct in a 4–to–1 multiplexer
design. The “If_Ex Implementation” figure shows the implementa-
tion of these designs.

4–to–1 Multiplexer Design with If Construct

• VHDL Example
Synthesis and Simulation Design Guide 3-23

Synthesis and Simulation Design Guide
-- IF_EX.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity if_ex is

 port (SEL: in STD_LOGIC_VECTOR(1 downto 0);

 A,B,C,D: in STD_LOGIC;

 MUX_OUT: out STD_LOGIC);

end if_ex;

architecture BEHAV of if_ex is

begin

 IF_PRO: process (SEL,A,B,C,D)

 begin

 if (SEL=”00”) then MUX_OUT <= A;

 elsif (SEL=”01”) then MUX_OUT <= B;

 elsif (SEL=”10”) then MUX_OUT <= C;

 elsif (SEL=”11”) then MUX_OUT <= D;

 else MUX_OUT <= '0';

 end if;

end process; --END IF_PRO

end BEHAV;
3-24 Xilinx Development System

General HDL Coding Styles
• Verilog Example

///
// IF_EX.V //
// Example of a If statement showing a //
// mux created using priority encoded logic //
// HDL Synthesis Design Guide for FPGAs //
// November 2000 //
///

module if_ex (A, B, C, D, SEL, MUX_OUT);

 input A, B, C, D;

 input [1:0] SEL;

 output MUX_OUT;

reg MUX_OUT;

 always @ (A or B or C or D or SEL)

 begin

 if (SEL == 2’b00)

 MUX_OUT = A;

 else if (SEL == 2’b01)

 MUX_OUT = B;

 else if (SEL == 2’b10)

 MUX_OUT = C;

 else if (SEL == 2’b11)

 MUX_OUT = D;

 else

MUX_OUT = 0;

 end

endmodule
Synthesis and Simulation Design Guide 3-25

Synthesis and Simulation Design Guide
Figure 3-3 If_Ex Implementation

The following VHDL and Verilog examples use a Case construct
for the same multiplexer. The “Case_Ex Implementation” figure
shows the implementation of these designs. In these examples,
the Case implementation requires only one Virtex slice while the
If construct requires two slices in some synthesis tools. In this
case, design the multiplexer using the Case construct because
fewer resources are used and the delay path is shorter.

When writing case statements, make sure all outputs are defined
in all branches.

OBUF

IBUF

IBUF
A

B

SEL<1:0>

SEL<0>

SEL<1>

C

D

IBUF

IBUF

IBUF

IBUF

LOGIC_0

MUX_OUT

U47_F

X8544

U47_G

U45_F
3-26 Xilinx Development System

General HDL Coding Styles
4–to–1 Multiplexer Design with Case Construct

• VHDL Example

-- CASE_EX.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity case_ex is

 port (SEL: in STD_LOGIC_VECTOR(1 downto 0);

 A,B,C,D: in STD_LOGIC;

 MUX_OUT: out STD_LOGIC);

end case_ex;

architecture BEHAV of case_ex is

begin

 CASE_PRO: process (SEL,A,B,C,D)

 begin

 case SEL is

 when “00” => MUX_OUT <= A;

 when “01” => MUX_OUT <= B;

 when “10” => MUX_OUT <= C;

 when “11” => MUX_OUT <= D;

 when others=> MUX_OUT <= '0';

 end case;

 end process; --End CASE_PRO

end BEHAV;
Synthesis and Simulation Design Guide 3-27

Synthesis and Simulation Design Guide
• Verilog Example

//
// CASE_EX.V //
// Example of a Case statement showing //
// A mux created using parallel logic //
// HDL Synthesis Design Guide for FPGAs //
// November 2000 //
//

module case_ex (A, B, C, D, SEL, MUX_OUT);

input A, B, C, D;

input [1:0] SEL;

output MUX_OUT;

reg MUX_OUT;

 always @ (A or B or C or D or SEL)

 begin

 case (SEL)

 2’b00:

 MUX_OUT = A;

 2’b01:

 MUX_OUT = B;

 2’b10:

 MUX_OUT = C;

 2’b11:

 MUX_OUT = D;

 default:

 MUX_OUT = 0;

 endcase

 end

endmodule
3-28 Xilinx Development System

General HDL Coding Styles
Figure 3-4 Case_Ex Implementation

Implementing Latches and Registers
Synthesizers infer latches from incomplete conditional expressions,
such as an If statement without an Else clause. This can be problem-
atic for FPGA designs because not all FPGA devices have latches
available in the CLBs. In addition, you may think that a register is
created, and the synthesis tool actually created a latch. The Spartan-II
and Virtex/E/II/II Pro FPGAs do have registers that can be config-
ured to act as latches. For these devices, synthesizers infer a dedi-
cated latch from incomplete conditional expressions.

D Latch Inference

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

SEL [1:0]

A

B

C

D

logic_0

logic_0

U42_f

U42_g U42_h
OBUF

MUX_OUT

SEL [1]

SEL [0]

X8545

One CLB
Synthesis and Simulation Design Guide 3-29

Synthesis and Simulation Design Guide
• VHDL Example

-- D_LATCH.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

entity d_latch is

 port (GATE, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

end d_latch;

architecture BEHAV of d_latch is

begin

LATCH: process (GATE, DATA)

 begin

 if (GATE = ’1’) then

 Q <= DATA;

 end if;

end process; -- end LATCH

end BEHAV;
3-30 Xilinx Development System

General HDL Coding Styles
• Verilog Example

/* Transparent High Latch

 * D_LATCH.V

 * May 2001

*/

module d_latch (GATE, DATA, Q);

input GATE;

input DATA;

output Q;

reg Q;

 always @ (GATE or DATA)

 begin

 if (GATE == 1’b1)

 Q <= DATA;

 end // End Latch

endmodule

Converting D Latch to D Register

If your intention is to not infer a latch, but rather to infer a D
register, then the following code is the latch code example, modi-
fied to infer a D register.
Synthesis and Simulation Design Guide 3-31

Synthesis and Simulation Design Guide
• VHDL Example

-- D_REGISTER.VHD

-- May 2001

-- Changing Latch into a D-Register

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

 port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

end d_register;

architecture BEHAV of d_register is

begin

MY_D_REG: process (CLK, DATA)

 begin

 if (CLK’event and CLK=’1’) then

 Q <= DATA;

 end if;

 end process; --End MY_D_REG

end BEHAV;
3-32 Xilinx Development System

General HDL Coding Styles
• Verilog Example

/* Changing Latch into a D-Register

 * D_REGISTER.V

 * May 2001 */

module d_register (CLK, DATA, Q);

input CLK;

input DATA;

output Q;

reg Q;

 always @ (posedge CLK)

 begin: My_D_Reg

 Q <= DATA;

 end

endmodule

With some synthesis tools you can determine the number of
latches that are implemented in your design. Check the manuals
that came with your software for information on determining the
number of latches in your design.

You should convert all If statements without corresponding Else
statements and without a clock edge to registers. Use the recom-
mended register coding styles in the synthesis tool documenta-
tion to complete this conversion.

Resource Sharing
Resource sharing is an optimization technique that uses a single func-
tional block (such as an adder or comparator) to implement several
operators in the HDL code. Use resource sharing to improve design
performance by reducing the gate count and the routing congestion.
If you do not use resource sharing, each HDL operation is built with
Synthesis and Simulation Design Guide 3-33

Synthesis and Simulation Design Guide
separate circuitry. However, you may want to disable resource
sharing for speed critical paths in your design.

The following operators can be shared either with instances of the
same operator or with an operator on the same line.

*

+ –

> >= < <=

For example, a + operator can be shared with instances of other +
operators or with – operators. A * operator can be shared only with
other * operators.

You can implement arithmetic functions (+, –, magnitude compara-
tors) with gates or with your synthesis tool’s module library. The
library functions use modules that take advantage of the carry logic
in Spartan-II, Virtex family, and Virtex-II/Pro family CLBs/slices.
Carry logic and its dedicated routing increase the speed of arithmetic
functions that are larger than 4-bits. To increase speed, use the
module library if your design contains arithmetic functions that are
larger than 4-bits or if your design contains only one arithmetic func-
tion. Resource sharing of the module library automatically occurs in
most synthesis tools if the arithmetic functions are in the same
process.

Resource sharing adds additional logic levels to multiplex the inputs
to implement more than one function. Therefore, you may not want
to use it for arithmetic functions that are part of your design’s time
critical path.

Since resource sharing allows you to reduce the number of design
resources, the device area required for your design is also decreased.
The area that is used for a shared resource depends on the type and
bit width of the shared operation. You should create a shared
resource to accommodate the largest bit width and to perform all
operations.

If you use resource sharing in your designs, you may want to use
multiplexers to transfer values from different sources to a common
resource input. In designs that have shared operations with the same
output target, the number of multiplexers is reduced as illustrated in
the following VHDL and Verilog examples. The HDL example is
shown implemented with gates in the Figure 3-5.
3-34 Xilinx Development System

General HDL Coding Styles
• VHDL Example

-- RES_SHARING.VHD
-- May 2001

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity res_sharing is
 port (A1,B1,C1,D1: in STD_LOGIC_VECTOR (7 downto 0);
 COND_1: in STD_LOGIC;
 Z1: out STD_LOGIC_VECTOR (7 downto 0));
end res_sharing;

architecture BEHAV of res_sharing is
begin
P1: process (A1,B1,C1,D1,COND_1)
 begin
 if (COND_1=’1’) then
 Z1 <= A1 + B1;
 else
 Z1 <= C1 + D1;
 end if;
 end process; -- end P1

end BEHAV;
Synthesis and Simulation Design Guide 3-35

Synthesis and Simulation Design Guide
• Verilog Example

/* Resource Sharing Example
 * RES_SHARING.V
 * May 2001
*/

module res_sharing (A1, B1, C1, D1, COND_1, Z1);

input COND_1;
input [7:0] A1, B1, C1, D1;
output [7:0] Z1;

reg [7:0] Z1;

 always @(A1 or B1 or C1 or D1 or COND_1)
 begin
 if (COND_1)
 Z1 <= A1 + B1;
 else
 Z1 <= C1 + D1;
 end

endmodule

If you disable resource sharing or if you code the design with the
adders in separate processes, the design is implemented using
two separate modules as shown in the “Implementation without
Resource Sharing” figure.
3-36 Xilinx Development System

General HDL Coding Styles
Figure 3-5 Implementation of Resource Sharing

X9462

+

UN1_C1[7:0]
Z1_5[7:0]

0

1

COND_1

C1[7:0]

A1[7:0]

UN1_D1[7:0]

0

1

CLK

D1[7:0]

B1[7:0]

Z1[7:0]

Z1[7:0]

D[7:0] Q[7:0]
Synthesis and Simulation Design Guide 3-37

Synthesis and Simulation Design Guide
Figure 3-6 Implementation without Resource Sharing

Note Refer to the appropriate reference manual for more infor-
mation on resource sharing.

Reducing Gate Count
Use the generated module components to reduce the number of gates
in your designs. The module generation algorithms use Xilinx carry
logic to reduce function generator logic and improve routing and
speed performance. Further gate reduction can occur with synthesis
tools that recognize the use of constants with the modules.

You can reduce the number of gates further reduced by mapping
your design onto dedicated logic blocks such as BlockRAM. This will
also reduce the amount of distributed logic.

X9463

+

+

UN4_Z1[7:0]

Z1_1[7:0]

CLK

C1[7:0]

D1[7:0]

Z1_5[7:0]

0

1

COND_1

A1[7:0]

B1[7:0]

Z1[7:0]

Z1[7:0]

D[7:0] Q[7:0]
3-38 Xilinx Development System

General HDL Coding Styles
Using Preset Pin or Clear Pin
Xilinx FPGAs consist of CLBs that contain function generators and
flip-flops. Spartan-II and Virtex/Virtex-E/Virtex-II/Virtex-II Pro
registers can be configured to have either or both preset and clear
pins.

Register Inference

The following VHDL and Verilog designs show how to describe a
register with a clock enable and either an asynchronous preset or a
clear.

• VHDL Example

-- FF_EXAMPLE.VHD

-- May 2001

-- Example of Implementing Registers

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ff_example is

 port (RESET, CLOCK, ENABLE: in STD_LOGIC;

 D_IN: in STD_LOGIC_VECTOR (7 downto 0);

 A_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 B_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 C_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 D_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0));

end ff_example;
Synthesis and Simulation Design Guide 3-39

Synthesis and Simulation Design Guide
architecture BEHAV of ff_example is

begin

 -- D flip-flop

 FF: process (CLOCK)

 begin

 if (CLOCK’event and CLOCK=’1’) then

 A_Q_OUT <= D_IN;

 end if;

 end process; -- End FF

 -- Flip-flop with asynchronous reset

 FF_ASYNC_RESET: process (RESET, CLOCK)

 begin

 if (RESET = ’1’) then

 B_Q_OUT <= “00000000”;

 elsif (CLOCK'event and CLOCK='1') then

 B_Q_OUT <= D_IN;

 end if;

 end process; -- End FF_ASYNC_RESET

 -- Flip-flop with asynchronous set

 FF_ASYNC_SET: process (RESET, CLOCK)

 begin

 if (RESET = '1') then

 C_Q_OUT <= “11111111”;

 elsif (CLOCK'event and CLOCK = '1') then

 C_Q_OUT <= D_IN;

 end if;

 end process; -- End FF_ASYNC_SET
3-40 Xilinx Development System

General HDL Coding Styles
-- Flip-flop with asynchronous reset

-- and clock enable

 FF_CLOCK_ENABLE: process (ENABLE, RESET,
CLOCK)

 begin

 if (RESET = ’1’) then

 D_Q_OUT <= “00000000”;

 elsif (CLOCK'event and CLOCK='1') then

 if (ENABLE='1') then

 D_Q_OUT <= D_IN;

 end if;

 end if;

 end process; -- End FF_CLOCK_ENABLE

-- Flip-flop with asynchronous reset

-- asynchronous set and clock enable

FF_ASR_CLOCK_ENABLE: process (ENABLE, RESET,
SET, CLOCK)

begin

 if (RESET = '1') then

 E_Q_OUT <= "00000000";

 elsif (SET = '1') then

 E_Q_OUT <= "11111111";

 elsif (CLOCK'event and CLOCK='1') then

 if (ENABLE='1') then

 E_Q_OUT <= D_IN;

 end if;

 end if;

end process; -- End FF_ASR_CLOCK_ENABLE

end BEHAV;
Synthesis and Simulation Design Guide 3-41

Synthesis and Simulation Design Guide
Using Clock Enable Pin Instead of Gated Clocks

Use the CLB clock enable pin instead of gated clocks in your designs.
Gated clocks can introduce glitches, increased clock delay, clock skew,
and other undesirable effects. The first two examples in this section
(VHDL and Verilog) illustrate a design that uses a gated clock. Figure
3-7 shows this design implemented with gates. Following these
examples are VHDL and Verilog designs that show how you can
modify the gated clock design to use the clock enable pin of the CLB.
Figure 3-8 shows this design implemented with gates.

• VHDL Example

-- GATE_CLOCK.VHD Version 1.1 --

-- Illustrates clock buffer control --

-- Better implementation is to use --

-- clock enable rather than gated clock --

-- May 2001 --

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity gate_clock is

 port (IN1,IN2,DATA,CLK,LOAD: in STD_LOGIC;

 OUT1: out STD_LOGIC);

end gate_clock;
3-42 Xilinx Development System

General HDL Coding Styles
architecture BEHAVIORAL of gate_clock is

signal GATECLK: STD_LOGIC;

begin

GATECLK <= (IN1 and IN2 and CLK);

 GATE_PR: process (GATECLK,DATA,LOAD)

 begin

 if (GATECLK’event and GATECLK=’1’) then

 if (LOAD=’1’) then

 OUT1 <= DATA;

 end if;

 end if;

 end process; --End GATE_PR

end BEHAVIORAL;
Synthesis and Simulation Design Guide 3-43

Synthesis and Simulation Design Guide
• Verilog Example

//

// GATE_CLOCK.V Version 1.1 //

// Gated Clock Example //

// Better implementation to use clock //

// enables than gating the clock //

// May 2001 //

//

module gate_clock(IN1, IN2, DATA,
CLK,LOAD,OUT1);

input IN1 ;

input IN2 ;

input DATA ;

input CLK ;

input LOAD ;

output OUT1 ;

reg OUT1 ;

wire GATECLK ;

assign GATECLK = (IN1 & IN2 & CLK);

always @(posedge GATECLK)

begin

 if (LOAD == 1’b1)

 OUT1 = DATA;

end

endmodule
3-44 Xilinx Development System

General HDL Coding Styles
Figure 3-7 Implementation of Gated Clock

• VHDL Example

-- CLOCK_ENABLE.VHD

-- May 2001

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity clock_enable is

 port (IN1,IN2,DATA,CLOCK,LOAD: in STD_LOGIC;

 DOUT: out STD_LOGIC);

end clock_enable;

D

DATA

LOAD

IN1

IN2

CLK
AND3

GATECLK

OUT1
DFF

CE

C

Q

X8628
Synthesis and Simulation Design Guide 3-45

Synthesis and Simulation Design Guide
architecture BEHAV of clock_enable is

signal ENABLE: STD_LOGIC;

begin

 ENABLE <= IN1 and IN2 and LOAD;

 EN_PR: process (ENABLE,DATA,CLOCK)

 begin

 if (CLOCK’event and CLOCK=’1’) then

 if (ENABLE=’1’) then

 DOUT <= DATA;

 end if;

 end if;

 end process; -- End EN_PR

end BEHAV;
3-46 Xilinx Development System

General HDL Coding Styles
• Verilog Example

/* Clock enable example

 * CLOCK_ENABLE.V

 * May 2001

*/

module clock_enable (IN1, IN2, DATA, CLK, LOAD,
DOUT);

input IN1, IN2, DATA;

input CLK, LOAD;

output DOUT;

wire ENABLE;

reg DOUT;

assign ENABLE = IN1 & IN2 & LOAD;

 always @(posedge CLK)

 begin

 if (ENABLE)

 DOUT <= DATA;

 end

endmodule
Synthesis and Simulation Design Guide 3-47

Synthesis and Simulation Design Guide
Figure 3-8 Implementation of Clock Enable

D

DATA

IN1

IN2

LOAD

CLOCK

ENABLE

AND3

OUT1
DFF

CE

C

Q

X4976
3-48 Xilinx Development System

Chapter 4

Architecture Specific HDL Coding Styles for
Spartan-II, Virtex, Virtex-E, Virtex-II, and
Virtex-II Pro

This chapter includes coding techniques to help you improve
synthesis results. It includes the following sections.

• “Introduction”

• “Instantiating Components”

• “Using Boundary Scan (JTAG 1149.1)”

• “Using Global Clock Buffers”

• “Using Advanced Clock Management”

• “Using Dedicated Global Set/Reset Resource”

• “Implementing Inputs and Outputs”

• “Encoding State Machines”

• “Implementing Operators and Generate Modules”

• “Implementing Memory”

• “Implementing Shift Register (Virtex/E/II and Spartan-II)”

• “Implementing Multiplexers”

• “Using Pipelining”

• “Design Hierarchy”

Introduction
This chapter highlights the features and synthesis techniques in
designing with Xilinx Virtex/E/II/II Pro and Spartan-II FPGAs.
Synthesis and Simulation Design Guide 4-1

Synthesis and Simulation Design Guide
Virtex/E and Spartan-II devices share many architectural similarities.
Virtex-II/II Pro provide an architecture that is substantially different
from Virtex, Virtex-E, and Spartan-II; however, many of the synthesis
design techniques apply the same way to all these devices. Unless
otherwise stated, the features and examples in this chapter apply to
all Virtex/E/II/II Pro and Spartan-II devices. For details specific to
Virtex-II Pro, see the Virtex II Pro Handbook.

This chapter covers the following FPGA HDL coding features.

• Advanced clock management

• On-chip RAM and ROM

• IEEE 1149.1 — compatible boundary scan logic support

• Flexible I/O with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

• Various drive strength

• Various I/O standards

• Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource
utilization and enhance the speed of critical paths in your HDL
designs. The examples in this chapter are provided to help you
incorporate these system features into your HDL designs.

Instantiating Components
Xilinx provides a set of libraries that your Synthesis tool can infer
from your HDL code description. However, architecture specific and
customized components must be explicitly instantiated as compo-
nents in your design.

Instantiating FPGA Primitives
Architecture specific components that are built in to the implementa-
tion software's library are available for instantiation without the need
of specifying a definition. These components are marked as primitive
in the Libraries Guide. Components marked as macro in the Libraries
Guide are not built into the implementation software's library so they
cannot be instantiated. The macro components in the Libraries Guide
define the schematic symbols. When macros are used, the schematic
4-2 Xilinx Development System

Architecture Specific Coding Style for Virtex
tool decomposes the macros into their primitive elements when the
schematic tool writes out the netlist.

FPGA primitives can be instantiated in VHDL and Verilog.

• VHDL Example (declaring component and port map)

library IEEE;
use IEEE.std_logic_1164.all;
-- Add the following two lines if using Synplify:
-- library virtex;
-- use virtex.components.all;
entity flops is port(
di: in std_logic;
ce : in std_logic;
clk: in std_logic;
qo: out std_logic;
rst: in std_logic);
end flops;
-- remove the following component declaration
-- if using Synplify

architecture inst of flops is
component FDCE port(D: in std_logic;

CE: in std_logic;
C: in std_logic;
CLR: in std_logic;
Q: out std_logic);

end component;

begin
U0 : FDCE port map(D => di,

CE=> ce,
C => clk,
CLR => rst,
Q => qo);

end inst;

Note To use this example in Synplify, you need to add the Xilinx
primitive library and remove the component declarations as
noted above.
Synthesis and Simulation Design Guide 4-3

Synthesis and Simulation Design Guide
The Virtex library contains primitives of Virtex and Spartan-II
architectures. Replace ‘virtex’ with the appropriate device family
if you are targeting other Xilinx FPGA architecture

If you are designing with a Virtex-E device, use the virtexe
library. If you are designing with a Virtex-II/II Pro device, use the
virtex2 library.

• Verilog Example.

module flops (d1, ce, clk, q1, rst);
input d1;
input ce;
input clk;
output q1;
input rst;

FDCE u1 (.D(d1),
.CE(ce),
.C (clk),
.CLR(rst),
.Q (q1));

endmodule

Instantiating CORE Generator Modules
The CORE Generator allows you to generate complex ready-to-use
functions such as FIFO, Filter, Divider, RAM, and ROM. CORE
Generator will generate EDIF netlist to describe the functionality and
a component instantiation template for HDL instantiation. For more
information on the use and functions created by the CORE Generator,
see the CORE Generator Guide.
4-4 Xilinx Development System

Architecture Specific Coding Style for Virtex
In VHDL, you can declare the component and port map as shown in
the “Instantiating FPGA Primitives” section above. Synthesis tools will
assume a black box for components that do not have a VHDL
functional description.

In Verilog, an empty module must be declared to get port direction-
ality. Synthesis tools will assume a black box for components that do
not have a Verilog functional description.

Example of Black Box Directive and Empty Module Declaration.

module r256x16s (
addr,
di,
clk,
we,
en,
rst,
do);

input [7:0] addr;
input [15:0] di;
input clk;
input we;
input en;
input rst;
output [15:0] do;
endmodule

module top (addrp, dip, clkp, wep, enp, rstp, dop);
input [7:0] addrp;
input [15:0] dip;
input clkp;
input wep;
input enp;
input rstp;
output [15:0] dop;
r256x16s U0(

.addr(addrp), .di(dip),

.clk(clkp), .we(wep),

.en(enp), .rst(rstp),

.do(dop));
endmodule
Synthesis and Simulation Design Guide 4-5

Synthesis and Simulation Design Guide
Using Boundary Scan (JTAG 1149.1)
Virtex/E/II/II Pro and Spartan-II FPGAs contain boundary scan
facilities that are compatible with IEEE Standard 1149.1.

You can access the built-in boundary scan logic between power-up
and the start of configuration.

In a configured Virtex/E/II/II Pro and Spartan-II device, basic
boundary scan operations are always available. BSCAN_VIRTEX,
BSCAN_VIRTEX2 and BSCAN_SPARTAN2 are instantiated only if
users want to create internal boundary scan chains in a Virtex/Virtex-
E /Virtex-II /Virtex-II Pro or Spartan-II device.

For specific information on boundary scan for an architecture, refer to
the Libraries Guide and The Programmable Logic Data Book. For informa-
tion on configuration and readback of Virtex/Virtex-E/Spartan-II
FPGAs refer to XAPP 139 at http://support.xilinx.com/xapp/
xapp139.pdf.

Using Global Clock Buffers
For designs with global signals, use global clock buffers to take
advantage of the low-skew, high-drive capabilities of the dedicated
global buffer tree of the target device. Your synthesis tool automati-
cally inserts a clock buffer whenever an input signal drives a clock
signal or whenever an internal clock signal reaches a certain fanout.
The Xilinx implementation software automatically selects the clock
buffer that is appropriate for your specified design architecture.

Some synthesis tools also limit global buffer insertions to match the
number of buffers available on the device. Refer to your synthesis
tool documentation for detailed information.

You can instantiate the clock buffers if your design requires a special
architecture-specific buffer or if you want to specify how the clock
buffer resources should be allocated.
4-6 Xilinx Development System

http://support.xilinx.com/xapp/xapp139.pdf
http://support.xilinx.com/xapp/xapp139.pdf

Architecture Specific Coding Style for Virtex
Table 5-1 summarizes global buffer (BUFG) resources in Virtex,
Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-II devices.

Virtex/E/II/II Pro, and Spartan-II devices include two tiers of global
routing resources referred to as primary global and secondary local
clock routing resources.

Note In Virtex-II/II Pro, BUFG is available for instantiation, but will
be implemented with BUFGMUX.

• The primary global routing resources are dedicated global nets
with dedicated input pins that are designed to distribute high-
fanout clock signals with minimal skew. Each global clock net can
drive all CLB, IOB, and Block SelectRAM+ clock pins. The
primary global nets may only be driven by the global buffers
(BUFG), one for each global net. There are four primary global
nets in Virtex/E and Spartan-II. There are sixteen in Virtex-II/II
Pro.

• The secondary local clock routing resources consist of backbone
lines or longlines. These secondary resources are more flexible
than the primary resources since they are not restricted to routing
clock signal only. These backbone lines are accessed differently
between Virtex/E/Spartan-II and Virtex-II/II Pro devices as
follows:

♦ In Virtex/E and Spartan-II devices, there are 12 longlines
across the top of the chip and 12 across bottom. From these
lines, up to 12 unique signals per column can be distributed
via the 12 longlines in the column. To use this, you must
specify the USELOWSKEWLINES constraint in the UCF file.
For more information on the USELOWSKEWLINES
constraint syntax, refer to the Constraints Guide.

♦ In Virtex-II, longlines resources are more abundant. There are
many ways in which the secondary clocks or high fanout
signals can be routed using a pattern of resources that result
in low skew. The Xilinx Implementation tools will automati-
cally use these resources based on various constraints in your

Table 4-1 Global Buffer Resources

Buffer Type Virtex Virtex-E Virtex-II/II Pro Spartan-II

BUFG 4 4 N/A 4

BUFGMUX N/A N/A 16 N/A
Synthesis and Simulation Design Guide 4-7

Synthesis and Simulation Design Guide
design. Additionally, the USELOWSKEWLINES constraint
can be applied to access this routing resource.

Inserting Clock Buffers
Many synthesis tools automatically insert a global buffer (BUFG)
when an input port drives a register’s clock pin or when an internal
clock signal reaches a certain fanout. A BUFGP (an IBUFG-BUFG
connection) is inserted for the external clock whereas a BUFG is
inserted for an internal clock. Most synthesis tools will also allow you
to control BUFG insertions manually if you have more clock pins
than the available BUFGs resources.

FPGA Compiler II will infer up to four clock buffers for pure clock
nets. FPGA Compiler II will not infer a BUFG on a clock line that only
drives one flip-flop.You can also instantiate clock buffers or assign
them via the Express Constraints Editor.

Note Synthesis tools currently insert simple clock buffers, BUFGs, for
all Virtex/E/II/II Pro and Spartan-II designs. For Virtex-II/II Pro,
some tools provide an attribute to use BUFGMUX as an enabled clock
buffer. To use BUFGMUX as a real clock multiplexer in Virtex-II/II
Pro, it must be instantiated.

LeonardoSpectrum will force clock signals to global buffers when the
resources are available. The best way to control unnecessary BUFG
insertions is to turn off global buffer insertion, then use the buffer_sig
attribute to push BUFGs onto the desired signals. By doing this the
user will not have to instantiate any BUFG components. As long as
"chip" options are used to optimize the IBUFs, they will be auto-
inserted for the input.

The following is a syntax example of the buffer_sig attribute.

set_attribute -port clk1 -name buffer_sig -value
BUFG

set_attribute -port clk2 -name buffer_sig -value
BUFG

Synplify will assign a BUFG to any input signal that directly drives a
clock. The maximum number of global buffers is defined as 4. Auto-
insertion of the BUFG for internal clocks occurs with a fanout
threshold of 16 loads. To turn off automatic clock buffers insertion,
use the syn_noclockbuf attribute. This attribute can be applied to the
entire module/architecture or a specific signal. To change the
4-8 Xilinx Development System

Architecture Specific Coding Style for Virtex
maximum number of global buffer insertion, you may set an attribute
in the .sdc file as follows.

define_global_attribute xc_global buffers (8)

XST will assign a BUFG to any input signal that directly drives a
clock. The default number of global buffers for the Virtex, Virtex-E,
and Spartan-II device is 4. The default number of global buffers for
the Virtex-II, and Virtex-II Pro device is 8. The number of BUFGs used
for a design can be modified by the XST option bufg by either
inserting it in HDL, the XST constraints file or via a command line
switch.

Refer to your synthesis tool documentation for a detailed syntax
information.

Instantiating Global Clock Buffers
You can instantiate global buffers in your code as described in this
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout
ports in your code rather than inferring them from a synthesis tool
script. If you do instantiate global buffers, verify that the Pad param-
eter is not specified for the buffer.

In Virtex/E/II and Spartan-II designs, synthesis tools insert BUFGP
for clock signals which access a dedicated clock pin. To have a regular
input pin to a clock buffer connection, you must use an IBUF-BUFG
connection. This is done by instantiating BUFG after disabling global
buffer insertion.

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your
code to use the dedicated routing resource if a high-fanout signal is
sourced from internal flip-flops or logic (such as a clock divider or
multiplexed clock), or if a clock is driven from a non-dedicated I/O
pin. If using Virtex/E or Spartan-II devices, the following VHDL and
Verilog examples instantiate a BUFG for an internal multiplexed
clock circuit
Synthesis and Simulation Design Guide 4-9

Synthesis and Simulation Design Guide
Note Synplify will infer a global buffer for a signal that has 16 or
greater fanouts.

• VHDL Example

-- CLOCK_MUX_BUFG.VHD Version 1.1 --

-- This is an example of an instantiation of --

-- global buffer (BUFG) from an internally --

-- driven signal, a multiplexed clock. --

-- March 2001 --

library IEEE;

use IEEE.std_logic_1164.all;

entity clock_mux is

port (DATA, SEL: in STD_LOGIC;

SLOW_CLOCK, FAST_CLOCK: in STD_LOGIC;

DOUT: out STD_LOGIC);

end clock_mux;

architecture XILINX of clock_mux is

signal CLOCK: STD_LOGIC;

signal CLOCK_GBUF: STD_LOGIC;

component BUFG

 port (I: in STD_LOGIC;

 O: out STD_LOGIC);

end component;
4-10 Xilinx Development System

Architecture Specific Coding Style for Virtex
begin

Clock_MUX: process (SEL, FAST_CLOCK, SLOW_CLOCK)

 begin

 if (SEL = ’1’) then

CLOCK <= FAST_CLOCK;

 else

CLOCK <= SLOW_CLOCK;

end if;

 end process;

GBUF_FOR_MUX_CLOCK: BUFG

 port map (I => CLOCK,

 O => CLOCK_GBUF);

Data_Path: process (CLOCK_GBUF)

 begin

 if (CLOCK_GBUF’event and CLOCK_GBUF=’1’)then

 DOUT <= DATA;

 end if;

 end process;

end XILINX;
Synthesis and Simulation Design Guide 4-11

Synthesis and Simulation Design Guide
• Verilog Example

 //

 // CLOCK_MUX_BUFG.V Version 1.1 //

 // This is an example of an instantiation of//

 // global buffer (BUFG) from an internally //

 // driven signal, a multiplied clock. //

 // March 2001 //

///

module clock_mux(DATA,SEL,SLOW_CLOCK,FAST_CLOCK,
DOUT);

 input DATA, SEL;

 input SLOW_CLOCK, FAST_CLOCK;

 output DOUT;

 reg CLOCK;

 wire CLOCK_GBUF;

 reg DOUT;

always @ (SEL or FAST_CLOCK or SLOW_CLOCK)

begin

 if (SEL == 1’b1)

 CLOCK <= FAST_CLOCK;

 else

 CLOCK <= SLOW_CLOCK;

end

BUFG GBUF_FOR_MUX_CLOCK (.O(CLOCK_GBUF),

.I(CLOCK));

 always @ (posedge CLOCK_GBUF)

 DOUT = DATA;

endmodule
4-12 Xilinx Development System

Architecture Specific Coding Style for Virtex
If using a Virtex-II device a BUFGMUX can be used to multiplex
between clocks. The above examples are rewritten for Virtex-II:

• VHDL Example

--
-- CLOCK_MUX_BUFG.VHD Version 1.2 --
-- This is an example of an instantiation of --
-- a multiplexing global buffer (BUFGMUX) --
-- from an internally driven signal --
-- May 2002 --
--
library IEEE;
use IEEE.std_logic_1164.all;

entity clock_mux is
 port (DATA, SEL : in std_logic;
 SLOW_CLOCK, FAST_CLOCK : in std_logic;
 DOUT : out std_logic);
end clock_mux;

architecture XILINX of clock_mux is
 signal CLOCK_GBUF : std_logic;
 component BUFGMUX
 port (I0 : in std_logic;
 I1 : in std_logic;
 S : in std_logic;
 O : out std_logic);
 end component;

begin
 GBUF_FOR_MUX_CLOCK : BUFGMUX
 port map (I0 => SLOW_CLOCK,
 I1 => FAST_CLOCK,
 S => SEL,
 O => CLOCK_GBUF);
 Data_Path : process (CLOCK_GBUF)
 begin
 if (CLOCK_GBUF’event and CLOCK_GBUF=’1’)then
 DOUT <= DATA;
 end if;
 end process;
end XILINX;
Synthesis and Simulation Design Guide 4-13

Synthesis and Simulation Design Guide
• Verilog Example

///
// CLOCK_MUX_BUFG.V Version 1.2 //
// This is an example of an instantiation of //
// a multiplexing global buffer (BUFGMUX) //
// from an internally driven signal //
// May 2002 //
///

module clock_mux
 (DATA,SEL,SLOW_CLOCK,FAST_CLOCK,DOUT);

 input DATA, SEL, SLOW_CLOCK, FAST_CLOCK;
 output DOUT;

 reg CLOCK, DOUT;
 wire CLOCK_GBUF;

 BUFGMUX GBUF_FOR_MUX_CLOCK
 (.O(CLOCK_GBUF),
 .I0(SLOW_CLOCK),
 .I1(FAST_CLOCK),
 .S(SEL));

 always @ (posedge CLOCK_GBUF)
 DOUT <= DATA;

endmodule
4-14 Xilinx Development System

Architecture Specific Coding Style for Virtex
Using Advanced Clock Management
Virtex/E, and Spartan-II devices feature Clock Delay-Locked Loop
(CLKDLL) for advanced clock management. The CLKDLL can elimi-
nate skew between the clock input pad and internal clock-input pins
throughout the device. CLKDLL also provides four quadrature
phases of the source clock. With CLKDLL you can eliminate clock-
distribution delay, double the clock, or divide the clock. The CLKDLL
also operates as a clock mirror. By driving the output from a DLL off-
chip and then back on again, the CLKDLL can be used to de-skew a
board level clock among multiple Virtex, Virtex-E, and Spartan-II
devices. For detailed information on using CLKDLLs, refer to the
Libraries Guide and application notes, XAPP 132 and XAPP 174 at
http://www.xilinx.com/apps/xapp.htm.

In Virtex-II devices, the Digital Clock Manager (DCM) is available for
advanced clock management. The DCM contains four main features
listed below. For more information on the functionality of these
features, refer to the Libraries Guide and the Virtex-II Handbook.

• Delay Locked Loop (DLL) — The DLL feature is very similar to
CLKDLL.

• Digital Phase Shifter (DPS) — The DPS provides a clock shifted by
a fixed or variable phase skew.

• Digital Frequency Synthesizer (DFS) — The DFS produces a wide
range of possible clock frequencies related to the input clock.

Using CLKDLL (Virtex/E, Spartan II)
There are four CLKDLLs in each Virtex/Spartan-II device and eight
in each Virtex-E device. There are also four global clock input buffers
(IBUFG) in the Virtex/E and Spartan-II devices to bring external
clocks in to the CLKDLL. The VHDL/Verilog example below shows a
possible connection and usage of CLKDLL in your design. Cascading

Table 4-2 CLKDLL and DCM Resources

Virtex/
Spartan-II

Virtex-E
Virtex-II/II
Pro

CLKDLL 4 8 N/A

DCM N/A N/A 4 - 12
Synthesis and Simulation Design Guide 4-15

http://www.xilinx.com/apps/xapp.htm

Synthesis and Simulation Design Guide
three CLKDLLs in the Virtex/Spartan-II device is not allowed due to
excessive jitter.

Synthesis tools do not infer CLKDLLs. The following examples show
how to instantiate CLKDLLs in your VHDL and Verilog code.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
 port(
 ACLK : in std_logic;
-- off chip feedback, connected to OUTBCLK on the board.
 BCLK : in std_logic;
--OUT CLOCK
 OUTBCLK : out std_logic;
 DIN : in std_logic_vector(1 downto 0);
 RESET : in std_logic;
 QOUT : out std_logic_vector (1 downto 0);
-- CLKDLL lock signal
 BCLK_LOCK : out std_logic
);
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
 component IBUFG
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
 component BUFG
 port (
 I : in std_logic;

O : out std_logic);
 end component;
 component CLKDLL
 port (
CLKIN : in std_logic;
 CLKFB : in std_logic;
 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
4-16 Xilinx Development System

Architecture Specific Coding Style for Virtex
 CLK270 : out std_logic;
 CLKDV : out std_logic;
 CLK2X : out std_logic;

LOCKED : out std_logic);
 end component;
 -- Glock signals
 signal ACLK_ibufg : std_logic;
 signal BCLK_ibufg : std_logic;
 signal ACLK_2x : std_logic;
 signal ACLK_2x_design : std_logic;
 signal ACLK_lock : std_logic;
begin
 ACLK_ibufg_inst : IBUFG
 port map (
 I => ACLK,
 O => ACLK_ibufg
);
 BCLK_ibufg_inst : IBUFG
 port map (
 I => BCLK,
 O => BCLK_ibufg
);
 ACLK_bufg : BUFG
 port map (
 I => ACLK_2x,
 O => ACLK_2x_design
);
 ACLK_dll : CLKDLL
 port map (
CLKIN => ACLK_ibufg,
 CLKFB => ACLK_2x_design,
 RST => ’0’,
 CLK2X => ACLK_2x,
 CLK0 => OPEN,
 CLK90 => OPEN,
 CLK180 => OPEN,
 CLK270 => OPEN,
 CLKDV => OPEN,
 LOCKED => ACLK_lock
);
BCLK_dll_out : CLKDLL
 port map (
Synthesis and Simulation Design Guide 4-17

Synthesis and Simulation Design Guide
 CLKIN => ACLK_ibufg,
 CLKFB => BCLK_ibufg,
 RST => ’0’,
 CLK2X => OUTBCLK,
 CLK0 => OPEN,
 CLK90 => OPEN,
 CLK180 => OPEN,
 CLK270 => OPEN,
 CLKDV => OPEN,
 LOCKED => BCLK_lock
);
process (ACLK_2x_design, RESET)
begin
 if RESET = ’1’ then
 QOUT <= "00";
 elsif ACLK_2x_design’event and ACLK_2x_design = ’1’ then
 if ACLK_lock = ’1’ then
 QOUT <= DIN;
 end if;
 end if;
end process;
END RTL;

• Verilog Example.

// Verilog Example

// In this example ACLK’s frequency is doubled,

// used inside and outside the chip.

// BCLK and OUTBCLK are connected in the board

// outside the chip.

module clock_test(ACLK, DIN, QOUT, BCLK,
OUTBCLK, BCLK_LOCK, RESET);

 input ACLK, BCLK;

 input RESET;

 input [1:0] DIN;

 output [1:0] QOUT;

output OUTBCLK, BCLK_LOCK;
4-18 Xilinx Development System

Architecture Specific Coding Style for Virtex
reg [1:0] QOUT;

IBUFG CLK_ibufg_A

 (.I (ACLK),

 .O(ACLK_ibufg)

);

BUFG ACLK_bufg

 (.I (ACLK_2x),

 .O (ACLK_2x_design)

);

IBUFG CLK_ibufg_B

 (.I (BCLK), // connected to OUTBCLK
outside

 .O(BCLK_ibufg)

);

CLKDLL ACLK_dll_2x // 2x clock

 (.CLKIN(ACLK_ibufg),

 .CLKFB(ACLK_2x_design),

 .RST(1’b0),

 .CLK2X(ACLK_2x),

 .CLK0(),

 .CLK90(),

.CLK180(),

 .CLK270(),

 .CLKDV(),

 .LOCKED(ACLK_lock)

);

CLKDLL BCLK_dll_OUT // off-chip synchronization

 (.CLKIN(ACLK_ibufg),
Synthesis and Simulation Design Guide 4-19

Synthesis and Simulation Design Guide
.CLKFB(BCLK_ibufg), // BCLK and OUTBCLK is

 // connected outside the

 // chip.

.RST(1’b0),

.CLK2X(OUTBCLK), //connected to BCLK outside

.CLK0(),

.CLK90(),

.CLK180(),

.CLK270(),

.CLKDV(),

.LOCKED(BCLK_LOCK)

);

always @(posedge ACLK_2x_design or posedge
RESET)

begin

if (RESET)

 QOUT[1:0] <= 2’b00;

else if (ACLK_lock)

 QOUT[1:0] <= DIN[1:0];

end

endmodule
4-20 Xilinx Development System

Architecture Specific Coding Style for Virtex
Using the Additional CLKDLL in Virtex-E
There are eight CLKDLLs in each Virtex-E device, with four located at
the top and four at the bottom. Refer to the “DLLs in Virtex-E
Devices” figure below. The basic operations of the DLLs in the Virtex-
E devices remain the same as in the Virtex and Spartan-II devices, but
the connections may have changed for some configurations.

Figure 4-1 DLLs in Virtex-E Devices

Two DLLs located in the same half-edge (top-left, top-right, bottom-
right, bottom-left) can be connected together, without using a BUFG
between the CLKDLLs, to generate a 4x clock. Refer to the “DLL
Generation of 4x Clock in Virtex-E Devices” figure below.

X9239

B
R
A
M

DLL-3P

DLL-1P

DLL-3S

DLL-1S

DLL-2S

DLL-0S

DLL-2P

DLL-0P
Bottom Right
Half Edge

B
R
A
M

B
R
A
M

B
R
A
M

Synthesis and Simulation Design Guide 4-21

Synthesis and Simulation Design Guide
Figure 4-2 DLL Generation of 4x Clock in Virtex-E Devices

Below are examples of coding a CLKDLL in both VHDL and Verilog.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
 port(
ACLK : in std_logic;
DIN : in std_logic_vector(1 downto 0);

X9240

RST

CLKFB

CLKIN

CLKDLL-S

INV

BUFG

OBUF

SRL16

D

A3
A2
A1
A0

WCLK
Q

IBUFG

CLK0
CLK90

CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLK0
CLK90

CLK180
CLK270

CLK2X

CLKDV

LOCKEDRST

CLKFB

CLKIN

CLKDLL-P
4-22 Xilinx Development System

Architecture Specific Coding Style for Virtex
RESET : in std_logic;
QOUT : out std_logic_vector (1 downto 0);
 -- CLKDLL lock signal
BCLK_LOCK : out std_logic
);
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
 component IBUFG
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
 component BUFG
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
 component CLKDLL
 port (
 CLKIN : in std_logic;
 CLKFB : in std_logic;
 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
 CLK270 : out std_logic;
 CLKDV : out std_logic;
 CLK2X : out std_logic;
 LOCKED : out std_logic);
end component;
 -- Clock signals
 signal ACLK_ibufg : std_logic;
 signal ACLK_2x, BCLK_4x : std_logic;
 signal BCLK_4x_design : std_logic;
 signal BCLK_lockin : std_logic;
begin
 ACLK_ibufginst : IBUFG
 port map (
 I => ACLK,
 O => ACLK_ibufg
);
 BCLK_bufg: BUFG
Synthesis and Simulation Design Guide 4-23

Synthesis and Simulation Design Guide
 port map (
 I => BCLK_4x, O => BCLK_4x_design);
 ACLK_dll : CLKDLL
 port map (
 CLKIN => ACLK_ibufg,
 CLKFB => ACLK_2x,
 RST => ’0’,
 CLK2X => ACLK_2x,
 CLK0 => OPEN,
 CLK90 => OPEN,
 CLK180 => OPEN,
 CLK270 => OPEN,
 CLKDV => OPEN,
 LOCKED => OPEN
);
 BCLK_dll : CLKDLL
 port map (
 CLKIN => ACLK_2x,
 CLKFB => BCLK_4x_design,
 RST => ’0’,
 CLK2X => BCLK_4x,

CLK0 => OPEN,
 CLK90 => OPEN,
 CLK180 => OPEN,
 CLK270 => OPEN,
 CLKDV => OPEN,
 LOCKED => BCLK_lockin
);
process (BCLK_4x_design, RESET)
begin
 if RESET = ’1’ then
 QOUT <= "00";
 elsif BCLK_4x_design’event

and BCLK_4x_design = ’1’
then
 if BCLK_lockin = ’1’ then
 QOUT <= DIN;
 end if;
 end if;
end process;
 BCLK_lock <= BCLK_lockin;
END RTL;
4-24 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example.

module clock_test(ACLK, DIN, QOUT, BCLK_LOCK,
RESET);

 input ACLK;
 input RESET;
 input [1:0] DIN;
 output [1:0] QOUT;
 output BCLK_LOCK;
reg [1:0] QOUT;
IBUFG CLK_ibufg_A
 (.I (ACLK),
 .O(ACLK_ibufg)
);
BUFG BCLK_bufg
 (.I (BCLK_4x),
 .O (BCLK_4x_design)
);
CLKDLL ACLK_dll_2x // 2x clock
 (.CLKIN(ACLK_ibufg),
 .CLKFB(ACLK_2x),
 .RST(1’b0),
 .CLK2X(ACLK_2x),
 .CLK0(),
 .CLK90(),
 .CLK180(),
 .CLK270(),
 .CLKDV(),
 .LOCKED()
);
CLKDLL BCLK_dll_4x // 4x clock
 (.CLKIN(ACLK_2x),
 .CLKFB(BCLK_4x_design), // BCLK_4x after bufg
 .RST(1’b0),
 .CLK2X(BCLK_4x),
 .CLK0(),
 .CLK90(),
.CLK180(),
 .CLK270(),
 .CLKDV(),
 .LOCKED(BCLK_LOCK)
);
Synthesis and Simulation Design Guide 4-25

Synthesis and Simulation Design Guide
always @(posedge BCLK_4x_design or posedge RESET)
begin
if (RESET)
 QOUT[1:0] <= 2’b00;
else if (BCLK_LOCK)
 QOUT[1:0] <= DIN[1:0];
end
endmodule

Using BUFGDLL
BUFGDLL macro is the simplest way to provide zero propagation
delay for a high-fanout on-chip clock from the external input. This
macro uses the IBUFG, CLKDLL and BUFG primitive to implement
the most basic DLL application. Refer to the “BUFGDLL Schematic”
figure below.

Figure 4-3 BUFGDLL Schematic

In FPGA Compiler II, use the Constraints Editor to change the global
buffer insertion to BUFGDLL.

In LeonardoSpectrum, set the following attribute in the command
line or TCL script.

X9222

CLK0
CLK90

CLK180
CLK270

CLK2X

CLKDV
LOCKED

CLKIN

CLKFB

RST

CLKDLL
BUFGIBUFG

OIOI
4-26 Xilinx Development System

Architecture Specific Coding Style for Virtex
set_attribute -port <CLOCK_PORT> -name PAD -value
BUFGDLL

LeonardoSpectrum supports implementation of BUFGDLL with the
CLKDLLHF component. To use this implementation, set the
following attribute.

set_attribute -port <CLOCK_PORT> -name PAD -value
BUFGDLLHF

In Synplify, set the following attribute in the SDC file.

define_attribute <port_name> xc_clockbuftype {BUFGDLL}

This attribute can be applied to the clock port in HDL code as well.

In XST, the BUFGDLL can be used by the ‘clock_buffer’ constraint
entered in either HDL or the XST constraints file. For more
information on using XST specific constraints see the XST User Guide.

CLKDLL Attributes
To specify how the signal on the CLKDIV pin is frequency divided
with respect to the CLK0 pin, the CLKDV_DIVIDE property can be
set. The values allowed for this property are 1.5, 2, 2.5, 3, 4, 5, 8, or 16.
The default is 2.

In HDL code, the CLKDV_DIVIDE property is set as an attribute to
the CLKDLL instance.

The following are VHDL and Verilog coding examples of CLKDLL
attributes.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
 port(
 ACLK : in std_logic;
 DIN : in std_logic_vector(1 downto 0);
 RESET : in std_logic;
 QOUT : out std_logic_vector (1 downto 0)
);
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
 component IBUFG
Synthesis and Simulation Design Guide 4-27

Synthesis and Simulation Design Guide
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
 component BUFG
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
 component CLKDLL
 port (
 CLKIN : in std_logic;
 CLKFB : in std_logic;
 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
 CLK270 : out std_logic;
 CLKDV : out std_logic;
 CLK2X : out std_logic;
 LOCKED : out std_logic);
end component;
 -- Clock signals
signal ACLK_ibufg : std_logic;
signal div_2, div_2_design : std_logic;
signal ACLK0, ACLK0bufg : std_logic;
signal logic_0 : std_logic;

attribute CLKDV_DIVIDE: string;
attribute CLKDV_DIVIDE of ACLK_dll : label is "2";

logic_0 <= ‘0’;

begin
 ACLK_ibufginst : IBUFG
 port map (
 I => ACLK,
 O => ACLK_ibufg
);
 ACLK_bufg: BUFG
 port map (
 I => ACLK0, O => ACLK0bufg);
4-28 Xilinx Development System

Architecture Specific Coding Style for Virtex
 DIV_bufg: BUFG
 port map (
 I => div_2, O => div_2_design);
 ACLK_dll : CLKDLL
 port map (
 CLKIN => ACLK_ibufg,
 CLKFB => ACLK0bufg,
 RST => logic_0,
 CLK2X => OPEN,
 CLK0 => ACLK0,
 CLK90 => OPEN,
 CLK180 => OPEN,
 CLK270 => OPEN,
 CLKDV => div_2,
 LOCKED => OPEN
);
process (div_2_design, RESET)
begin
if RESET = ’1’ then
 QOUT <= "00";
 elsif div_2_design’event and div_2_design = ’1’

then
 QOUT <= DIN;
 end if;
end process;
END RTL;

• Verilog Example.

module clock_test(ACLK, DIN, QOUT, RESET);
 input ACLK;
 input RESET;
 input [1:0] DIN;
 output [1:0] QOUT;
reg [1:0] QOUT;
IBUFG CLK_ibufg_A
 (.I (ACLK),
 .O(ACLK_ibufg)
);
BUFG div_CLK_bufg
 (.I (div_2),
 .O (div_2_design)
);
Synthesis and Simulation Design Guide 4-29

Synthesis and Simulation Design Guide
BUFG clk0_bufg (.I(clk0), .O(clk_bufg));
CLKDLL ACLK_div_2 // div by 2
 (.CLKIN(ACLK_ibufg),
 .CLKFB(clk_bufg),
 .RST(1’b0),
 .CLK2X(),
 .CLK0(clk0),
 .CLK90(),
 .CLK180(),
 .CLK270(),
 .CLKDV(div_2),
 .LOCKED()
);

//exemplar attribute ACLK_div_2 CLKDV_DIVIDE 2
//synopsys attribute CLKDV_DIVIDE “2”
//synthesis attribute CLKDV_DIVIDE of ACLK_div_2 is

“2”
always @(posedge div_2_design or posedge RESET)
begin
if (RESET)
 QOUT[1:0] <= 2’b00;
else
 QOUT[1:0] <= DIN[1:0];
end
endmodule

Using DCM In Virtex-II/II Pro
Using the DCM in your Virtex-II design will improve routability
between clock pads and global buffers. Most synthesis tools currently
do not automatically infer the DCM. Hence, the DCM has to be
instantiated in your VHDL and Verilog designs.

To more easily set up the DCM, use the DCM Wizard. See
“Architecture Wizard” section of the “Understanding High-Density
Design Flow” chapter for details on the DCM Wizard.

Please refer to the Design Considerations Chapter of the Virtex-II
Handbook or the Virtex-II Pro Handbook, respectively, for information
on the various features in the DCM. This book can be found on the
4-30 Xilinx Development System

Architecture Specific Coding Style for Virtex
Xilinx website at
http://www.xilinx.com.

The following examples show how to instantiate DCM and apply a
DCM attribute in VHDL and Verilog.

Note For more information on passing attributes in the HDL code to
different synthesis vendors, refer to the “General HDL Coding
Styles” chapter.

VHDL Example
-- Using a DCM for Virtex-II (VHDL)
--
-- This code uses the phased clock output CLK0 of
-- the DCM
-- The Spread Spectrum option is enabled using the
-- attribute DSS_MODE set to SPREAD_8
--
-- The following code passes the attribute for
-- the synthesis tools Synplify, FPGA Compiler II
-- LeonardoSpectrum and XST.
library IEEE;
use IEEE.std_logic_1164.all;
entity clock_block is
 port (

CLK_PAD : in std_logic;
SPREAD_SPECTRUM_YES : in std_logic;
RST_DLL : in std_logic;
CLK_out : out std_logic;
LOCKED : out std_logic

);
end clock_block;
architecture STRUCT of clock_block is
 signal CLK, CLK_int, CLK_dcm : std_logic;
 attribute CLKIN_PERIOD : string;
 attribute CLKIN_PERIOD of U2: label is "10";
 component IBUFG
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
 component BUFG
 port (
Synthesis and Simulation Design Guide 4-31

http://www.xilinx.com

Synthesis and Simulation Design Guide
 I : in std_logic;
 O : out std_logic);
 end component;
 component DCM is
 port (
 CLKFB : in std_logic;
 CLKIN : in std_logic;
 DSSEN : in std_logic;
 PSCLK : in std_logic;
 PSEN : in std_logic;
 PSINCDEC : in std_logic;
 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
 CLK270 : out std_logic;
 CLK2X : out std_logic;
 CLK2X180 : out std_logic;
 CLKDV : out std_logic;
 CLKFX : out std_logic;
 CLKFX180 : out std_logic;
 LOCKED : out std_logic;
 PSDONE : out std_logic;

STATUS : out std_logic_vector
 (7 downto 0));
 end component;

signal logic_0 : std_logic;

begin

logic_0 <= ‘0’;

U1 : IBUFG port map (I => CLK_PAD, O => CLK_int);
 U2 : DCM port map (
 CLKFB => CLK,
 CLKIN => CLK_int,
 DSSEN => logic_0,
 PSCLK => logic_0,
 PSEN => logic_0,
 PSINCDEC => logic_0,
 RST => RST_DLL,
4-32 Xilinx Development System

Architecture Specific Coding Style for Virtex
 CLK0 => CLK_dcm,
 LOCKED => LOCKED);
 U3 : BUFG port map (I => CLK_dcm, O => CLK);
 CLK_out <= CLK;
end architecture STRUCT;

• Verilog Example

// Using a DCM for Virtex-II (Verilog)
//
// This code uses the phased clock output CLK0 of
// the DCM
// The Spread Spectrum option is enabled using the
// attribute DSS_MODE set to SPREAD_8
//
// The following code passes the attribute for the
// synthesis tools Synplify, FPGA Compiler II,
// LeonardoSpectrum and XST.
module clock_top (clk_pad,rst_dll, clk_out,locked);
input clk_pad, spread_spectrum_yes, rst_dll;
output clk_out, locked;
wire clk, clk_int, clk_dcm;
IBUFG u1 (.I (clk_pad), .O (clk_int));
DCM u2 (.CLKFB (clk),

 .CLKIN (clk_int),
 .DSSEN (spread_spectrum_yes),
 .PSCLK (1’b0),
 .PSEN (1’b0),
 .PSINCDEC (1’b0),
 .RST (rst_dll),
 .CLK0 (clk_dcm),
 .LOCKED (locked))

/* synthesis CLKIN_PERIOD = "10" */;
// synopsys attribute CLKIN_PERIOD 10
// exemplar attribute u2 CLKIN_PERIOD 10
// synthesis attribute CLKIN_PERIOD of u2 is "10"

BUFG u3(.I (clk_dcm), .O (clk));
assign clk_out = clk;

endmodule // clock_top
Synthesis and Simulation Design Guide 4-33

Synthesis and Simulation Design Guide
Attaching Multiple Attributes to CLKDLL and DCM
CLKDLLs and DCMs can be configured to various modes by
attaching attributes during instantiation. In some cases, multiple
attributes must be attached to get the desired configuration. The
following HDL coding examples show how to attach multiple
attributes to DCM components. The same method can be used to
attach attributes to CLKDLL components.

See the Libraries Guide for available attributes for Virtex/Virtex-E
CLKDLL. See the Virtex-II Handbook for the available attributes for
Virtex-II DCM.

• VHDL Example for Synplify

This example attaches multiple attributes to DCM components
using the Synplify ‘xc_prop’ attribute.

Note Do not insert carriage returns between the values assigned
to xc_props. A carriage return could cause Synplify to attach only
part of the attributes.
4-34 Xilinx Development System

Architecture Specific Coding Style for Virtex
-- VHDL code begin --
library IEEE;
library virtex2;
use IEEE.std_logic_1164.all;
use virtex2.components.all;

entity DCM_TOP is
 port (
 clock_in : in std_logic;
 clock_out : out std_logic;
 clock_with_ps_out : out std_logic;
 reset : out std_logic
);
end DCM_TOP;

architecture XILINX of DCM_TOP is
signal low, high : std_logic;
signal dcm0_locked: std_logic;
signal dcm1_locked: std_logic;
signal clock : std_logic;
signal clk0: std_logic;
signal clk1: std_logic;
signal clock_with_ps : std_logic;
signal clock_out_int : std_logic;

attribute xc_props : string;
attribute xc_props of dcm0: label is

"DLL_FREQUENCY_MODE = LOW,DUTY_CYCLE_CORRECTION
= TRUE,STARTUP_WAIT = TRUE,DFS_FREQUENCY_MODE =
LOW,CLKFX_DIVIDE = 1,CLKFX_MULTIPLY =
1,CLK_FEEDBACK = 1X,CLKOUT_PHASE_SHIFT =
NONE,PHASE_SHIFT = 0";

-- Do not insert any carriage return between the
-- lines above.
attribute xc_props of dcm1: label is

"DLL_FREQUENCY_MODE =LOW,DUTY_CYCLE_CORRECTION =
TRUE,STARTUP_WAIT = TRUE,DFS_FREQUENCY_MODE =
LOW,CLKFX_DIVIDE = 1,CLKFX_MULTIPLY =
1,CLK_FEEDBACK = 1X,CLKOUT_PHASE_SHIFT =
FIXED,PHASE_SHIFT = 0";

-- Do not insert any carriage return between the
-- the lines above.
Synthesis and Simulation Design Guide 4-35

Synthesis and Simulation Design Guide
begin
low <= ’0’;
high <= ’1’;
reset <= not(dcm0_locked and dcm1_locked);
clock_with_ps_out <= clock_with_ps;
clock_out <= clock_out_int;

U1 : IBUFG port map (I => clock_in, O => clock);

dcm0 : DCM port map (
 CLKFB => clock_out_int,

CLKIN => clock,
DSSEN => low,
PSCLK => low,
PSEN => low,
PSINCDEC => low,
RST => low,
CLK0 => clk0,
LOCKED => dcm0_locked);

clk_buf0 : BUFG port map (I => clk0, O =>
clock_out_int);

dcm1: DCM port map (
CLKFB => clock_with_ps,
CLKIN => clock,
DSSEN => low,
PSCLK => low,
PSEN => low,
PSINCDEC => low,
RST=> low,
CLK0 => clk1,
LOCKED => dcm1_locked

);
clk_buf1: BUFG port map(

 I => clk1,
 O => clock_with_ps
);

end XILINX;
4-36 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example for Synplify

This example attaches multiple attributes to DCM components
using the Synplify ‘xc_prop’ attribute.

Note Do not insert carriage returns between the values assigned
to xc_props. A carriage return could cause Synplify to attach only
part of the attributes.

//Verilog code begin
‘include “/path_to/virtex2.v”
module DCM_TOP(

clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wire high;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1'b0;
assign high = 1'b1;
assign reset = !(dcm0_locked & dcm1_locked);
IBUFG CLOCK_IN (

.I(clock_in),

.O(clock)
);
Synthesis and Simulation Design Guide 4-37

Synthesis and Simulation Design Guide
DCM DCM0 (
.CLKFB(clock_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk0),
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(),
.CLK2X180(),
.CLKDV(),
.CLKFX(),
.CLKFX180(),
.LOCKED(dcm0_locked),
.PSDONE(),
.STATUS()

)
/*synthesis xc_props="DLL_FREQUENCY_MODE =

LOW,DUTY_CYCLE_CORRECTION = TRUE,STARTUP_WAIT =
TRUE,DFS_FREQUENCY_MODE = LOW,CLKFX_DIVIDE =
1,CLKFX_MULTIPLY = 1,CLK_FEEDBACK =
1X,CLKOUT_PHASE_SHIFT = NONE,PHASE_SHIFT = 0" */
;

//Do not insert any carriage return between the
//lines above.

BUFG CLK_BUF0(
.O(clock_out),
.I(clk0)
);
4-38 Xilinx Development System

Architecture Specific Coding Style for Virtex
DCM DCM1 (
.CLKFB(clock_with_ps_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk1),
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(),
.CLK2X180(),
.CLKDV(),
.CLKFX(),
.CLKFX180(),
.LOCKED(dcm1_locked),
.PSDONE(),
.STATUS()

)
/*synthesis xc_props="DLL_FREQUENCY_MODE

=LOW,DUTY_CYCLE_CORRECTION = TRUE,STARTUP_WAIT =
TRUE,DFS_FREQUENCY_MODE = LOW,CLKFX_DIVIDE =
1,CLKFX_MULTIPLY = 1,CLK_FEEDBACK =
1X,CLKOUT_PHASE_SHIFT = FIXED,PHASE_SHIFT = 0"
*/;

//Do not insert any carriage return between the
//lines above.

BUFG CLK_BUF1(
.O(clock_with_ps_out),
.I(clk1)
);
Synthesis and Simulation Design Guide 4-39

Synthesis and Simulation Design Guide
//synthesis translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";

defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//synthesis translate_on
endmodule // DCM_TOP
4-40 Xilinx Development System

Architecture Specific Coding Style for Virtex
• VHDL Example for LeonardoSpectrum

library IEEE;
use IEEE.std_logic_1164.all;

entity DCM_TOP is
 port (
 clock_in : in std_logic;
 clock_out : out std_logic;
 clock_with_ps_out : out std_logic;
 reset : out std_logic
);
end DCM_TOP;

architecture XILINX of DCM_TOP is
signal low, high : std_logic;
signal dcm0_locked: std_logic;
signal dcm1_locked: std_logic;
signal clock : std_logic;
signal clk0: std_logic;
signal clk1: std_logic;
signal clock_with_ps : std_logic;
signal clock_out_int : std_logic;

attribute DLL_FREQUENCY_MODE : string;
attribute DUTY_CYCLE_CORRECTION : string;
attribute STARTUP_WAIT : string;
attribute DFS_FREQUENCY_MODE : string;
attribute CLKFX_DIVIDE : string;
attribute CLKFX_MULTIPLY : string;
attribute CLK_FEEDBACK : string;
attribute CLKOUT_PHASE_SHIFT : string;
attribute PHASE_SHIFT : string;

attribute DLL_FREQUENCY_MODE of dcm0: label is

"LOW";
attribute DUTY_CYCLE_CORRECTION of dcm0: label is

"TRUE";
attribute STARTUP_WAIT of dcm0: label is "TRUE";
attribute DFS_FREQUENCY_MODE of dcm0: label is

"LOW";
attribute CLKFX_DIVIDE of dcm0: label is "1";
Synthesis and Simulation Design Guide 4-41

Synthesis and Simulation Design Guide
attribute CLKFX_MULTIPLY of dcm0: label is "1";
attribute CLK_FEEDBACK of dcm0: label is "1X";
attribute CLKOUT_PHASE_SHIFT of dcm0 : label is

"NONE";
attribute PHASE_SHIFT of dcm0: label is "0";

attribute DLL_FREQUENCY_MODE of dcm1: label is
"LOW";

attribute DUTY_CYCLE_CORRECTION of dcm1: label is
"TRUE";

attribute STARTUP_WAIT of dcm1: label is "TRUE";
attribute DFS_FREQUENCY_MODE of dcm1: label is

"LOW";
attribute CLKFX_DIVIDE of dcm1: label is "1";
attribute CLKFX_MULTIPLY of dcm1: label is "1";
attribute CLK_FEEDBACK of dcm1: label is "1X";
attribute CLKOUT_PHASE_SHIFT of dcm1 : label is

"FIXED";
attribute PHASE_SHIFT of dcm1: label is "0";

component IBUFG is
port (
 I : in std_logic;
 O : out std_logic
);
end component;

component BUFG is
port (
 I : in std_logic;
 O : out std_logic
);
end component;
4-42 Xilinx Development System

Architecture Specific Coding Style for Virtex
component DCM is
port (

 CLKFB : in std_logic;
 CLKIN : in std_logic;
 DSSEN : in std_logic;
 PSCLK : in std_logic;
 PSEN : in std_logic;
 PSINCDEC : in std_logic;
 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
 CLK270 : out std_logic;
 CLK2X : out std_logic;
 CLK2X180 : out std_logic;
 CLKDV : out std_logic;
 CLKFX : out std_logic;
 CLKFX180 : out std_logic;
 LOCKED : out std_logic;
 PSDONE : out std_logic;
 STATUS : out std_logic_vector (7 downto 0));
end component;

begin
low <= ’0’;
high <= ’1’;
reset <= not(dcm0_locked and dcm1_locked);
clock_with_ps_out <= clock_with_ps;
clock_out <= clock_out_int;

U1 : IBUFG port map (I => clock_in, O => clock);

dcm0 : DCM port map (
 CLKFB => clock_out_int,
 CLKIN => clock,
 DSSEN => low,
 PSCLK => low,
 PSEN => low,
 PSINCDEC => low,
 RST => low,
 CLK0 => clk0,
 LOCKED => dcm0_locked);
Synthesis and Simulation Design Guide 4-43

Synthesis and Simulation Design Guide
clk_buf0 : BUFG port map (I => clk0, O =>
clock_out_int);

dcm1: DCM port map (
CLKFB => clock_with_ps,
CLKIN => clock,
DSSEN => low,
PSCLK => low,
PSEN => low,
PSINCDEC => low,
RST=> low,
CLK0 => clk1,
LOCKED => dcm1_locked

);

clk_buf1: BUFG port map(
I => clk1,

 O => clock_with_ps
);

end XILINX;
4-44 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example for LeonardoSpectrum

module DCM_TOP(
clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wire high;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !(dcm0_locked & dcm1_locked);

IBUFG CLOCK_IN (
.I(clock_in),
.O(clock)
);

DCM DCM0 (
.CLKFB(clock_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk0),
.CLK90(),
.CLK180(),
Synthesis and Simulation Design Guide 4-45

Synthesis and Simulation Design Guide
.CLK270(),

.CLK2X(),

.CLK2X180(),

.CLKDV(),

.CLKFX(),

.CLKFX180(),

.LOCKED(dcm0_locked),

.PSDONE(),

.STATUS()
);
//exemplar attribute DCM0 DLL_FREQUENCY_MODE LOW
//exemplar attribute DCM0 DUTY_CYCLE_CORRECTION
TRUE
//exemplar attribute DCM0 STARTUP_WAIT TRUE
//exemplar attribute DCM0 DFS_FREQUENCY_MODE LOW
//exemplar attribute DCM0 CLKFX_DIVIDE 1
//exemplar attribute DCM0 CLKFX_MULTIPLY 1
//exemplar attribute DCM0 CLK_FEEDBACK 1X
//exemplar attribute DCM0 CLKOUT_PHASE_SHIFT NONE
//exemplar attribute DCM0 PHASE_SHIFT 0

BUFG CLK_BUF0(
.O(clock_out),
.I(clk0)
);

DCM DCM1 (
.CLKFB(clock_with_ps_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk1),
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(),
.CLK2X180(),
.CLKDV(),
.CLKFX(),
4-46 Xilinx Development System

Architecture Specific Coding Style for Virtex
.CLKFX180(),

.LOCKED(dcm1_locked),

.PSDONE(),

.STATUS()
);
//exemplar attribute DCM1 DLL_FREQUENCY_MODE LOW
//exemplar attribute DCM1 DUTY_CYCLE_CORRECTION
TRUE
//exemplar attribute DCM1 STARTUP_WAIT TRUE
//exemplar attribute DCM1 DFS_FREQUENCY_MODE LOW
//exemplar attribute DCM1 CLKFX_DIVIDE 1
//exemplar attribute DCM1 CLKFX_MULTIPLY 1
//exemplar attribute DCM1 CLK_FEEDBACK 1X
//exemplar attribute DCM1 CLKOUT_PHASE_SHIFT FIXED
//exemplar attribute DCM1 PHASE_SHIFT 0

BUFG CLK_BUF1(
.O(clock_with_ps_out),
.I(clk1)
);

//exemplar translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";
defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//exemplar translate_on
endmodule // DCM_TOP
Synthesis and Simulation Design Guide 4-47

Synthesis and Simulation Design Guide
• Verilog Example for FPGA Compiler II

module DCM_TOP(
clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wire high;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !(dcm0_locked & dcm1_locked);

IBUFG CLOCK_IN (
.I(clock_in),
.O(clock)
);

DCM DCM0 (
.CLKFB(clock_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk0),
.CLK90(),
.CLK180(),
4-48 Xilinx Development System

Architecture Specific Coding Style for Virtex
.CLK270(),

.CLK2X(),

.CLK2X180(),

.CLKDV(),

.CLKFX(),

.CLKFX180(),

.LOCKED(dcm0_locked),

.PSDONE(),

.STATUS()
);
/*synopsys attribute DLL_FREQUENCY_MODE “LOW”

DUTY_CYCLE_CORRECTION “TRUE” STARTUP_WAIT “TRUE”
DFS_FREQUENCY_MODE “LOW” CLKFX_DIVIDE “1”
CLKFX_MULTIPLY “1” CLK_FEEDBACK “1X”
CLKOUT_PHASE_SHIFT “NONE” PHASE_SHIFT “0” */

BUFG CLK_BUF0(
.O(clock_out),
.I(clk0)
);

DCM DCM1 (
.CLKFB(clock_with_ps_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk1),
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(),
.CLK2X180(),
.CLKDV(),
.CLKFX(),
.CLKFX180(),
.LOCKED(dcm1_locked),
.PSDONE(),
.STATUS()
Synthesis and Simulation Design Guide 4-49

Synthesis and Simulation Design Guide
);
/* synopsys attribute DLL_FREQUENCY_MODE “LOW”

DUTY_CYCLE_CORRECTION “TRUE” STARTUP_WAIT “TRUE”
DFS_FREQUENCY_MODE “LOW” CLKFX_DIVIDE “1”
CLKFX_MULTIPLY “1” CLK_FEEDBACK “1X”
CLKOUT_PHASE_SHIFT “FIXED” PHASE_SHIFT “0” */

BUFG CLK_BUF1(
.O(clock_with_ps_out),
.I(clk1)
);

//synopsys translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";

defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//synopsys translate_on

endmodule // DCM_TOP
4-50 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example for XST

module DCM_TOP(
clock_in,
clock_out,
clock_with_ps_out,
reset
);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low;
wirehigh;
wire dcm0_locked;
wire dcm1_locked;
wire reset;
wire clk0;
wire clk1;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !(dcm0_locked & dcm1_locked);

IBUFG CLOCK_IN (
.I(clock_in),
.O(clock)
);
Synthesis and Simulation Design Guide 4-51

Synthesis and Simulation Design Guide
DCM DCM0 (
.CLKFB(clock_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk0),
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(),
.CLK2X180(),
.CLKDV(),
.CLKFX(),
.CLKFX180(),
.LOCKED(dcm0_locked),
.PSDONE(),
.STATUS()
);

BUFG CLK_BUF0(
.O(clock_out),
.I(clk0)
);
// synthesis attribute DLL_FREQUENCY_MODE of DCM0

is "LOW"
// synthesis attribute DUTY_CYCLE_CORRECTION of

DCM0 is "TRUE"
// synthesis attribute STARTUP_WAIT of DCM0 is

"TRUE"
// synthesis attribute DFS_FREQUENCY_MODE of DCM0

is "LOW"
// synthesis attribute CLKFX_DIVIDE of DCM0 is "1"
// synthesis attribute CLKFX_MULTIPLY of DCM0 is

"1"
// synthesis attribute CLK_FEEDBACK of DCM0 is "1X"
// synthesis attribute CLKOUT_PHASE_SHIFT of DCM0

is "FIXED"
// synthesis attribute PHASE_SHIFT of DCM0 is "0"
4-52 Xilinx Development System

Architecture Specific Coding Style for Virtex
DCM DCM1 (
.CLKFB(clock_with_ps_out),
.CLKIN(clock),
.DSSEN(low),
.PSCLK(low),
.PSEN(low),
.PSINCDEC(low),
.RST(low),
.CLK0(clk1),
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(),
.CLK2X180(),
.CLKDV(),
.CLKFX(),
.CLKFX180(),
.LOCKED(dcm1_locked),
.PSDONE(),
.STATUS()
);
// synthesis attribute DLL_FREQUENCY_MODE of DCM1

is "LOW"
// synthesis attribute DUTY_CYCLE_CORRECTION of

DCM1 is "TRUE"
// synthesis attribute STARTUP_WAIT of DCM1 is

"TRUE"
// synthesis attribute DFS_FREQUENCY_MODE of DCM1

is "LOW"
// synthesis attribute CLKFX_DIVIDE of DCM1 is "1"
// synthesis attribute CLKFX_MULTIPLY of DCM1 is

"1"
// synthesis attribute CLK_FEEDBACK of DCM1 is "1X"
// synthesis attribute CLKOUT_PHASE_SHIFT of DCM1

is "FIXED"
// synthesis attribute PHASE_SHIFT of DCM1 is "0"

BUFG CLK_BUF1(
.O(clock_with_ps_out),
.I(clk1)
);
Synthesis and Simulation Design Guide 4-53

Synthesis and Simulation Design Guide
//synthesis translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";

defparam DCM1.DLL_FREQUENCY_MODE = "LOW";
defparam DCM1.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM1.STARTUP_WAIT = "TRUE";
defparam DCM1.DFS_FREQUENCY_MODE = "LOW";
defparam DCM1.CLKFX_DIVIDE = 1;
defparam DCM1.CLKFX_MULTIPLY = 1;
defparam DCM1.CLK_FEEDBACK = "1X";
defparam DCM1.CLKOUT_PHASE_SHIFT = "FIXED";
defparam DCM1.PHASE_SHIFT = "0";
//synthesis translate_on

endmodule // DCM_TOP

Using Dedicated Global Set/Reset Resource
Using Global Set/Reset Resource (GSR) in Virtex/E/II and Spartan-II
devices must be considered carefully. Synthesis tools will not auto-
matically infer GSRs for these devices; however, STARTUP_VIRTEX,
STARTUP_VIRTEX2 and STARTUP_SPARTAN2 can be instantiated
in your code in order to access the GSR resource. Xilinx’s recommen-
dation for Virtex, Virtex-E, and Spartan-II designs is to write the high
fanout set/reset signal explicitly in the HDL code and not use the
STARTUP_VIRTEX, STARTUP_VIRTEX2, or STARTUP_SPARTAN2
blocks. There are two advantages to this method.

1. This method gives you a faster speed. The set/reset signal will
be routed onto the secondary longlines in the device, which are
global lines with minimal skews and high speed. Therefore, the
reset/set signal on the secondary lines has much faster speed
than the speed of the GSR net of the STARTUP_VIRTEX block.
4-54 Xilinx Development System

Architecture Specific Coding Style for Virtex
Since Virtex is rich in routings, placing and routing this signal on
the global lines can be easily done by our software.

2. The trce program will analyze the delays of the explicitly
written set/reset signal. You can read the .twr file (report file of
the trce program) and find out exactly how fast its speed is. The
trce program does not analyze the delays on the GSR net of the
STARTUP_VIRTEX, STARTUP_VIRTEX2, or
STARTUP_SPARTAN2. Hence, using an explicit set/reset signal
will improve your design accountability.

For Virtex/E/II and Spartan-II devices, the Global Set/Reset (GSR)
signal is, by default, set to active high (globally resets device when
logic equals 1). You can change this to active low by inverting the
GSR signal before connecting it to the GSR input of the STARTUP
component.

Note See the “Simulating Your Design” chapter for more information
on simulating the Global Set/Reset.

Startup State
The GSR pin on the STARTUP block or the GSRIN pin on the
STARTBUF block drives the GSR net and connects to each flip-flop’s
Preset and Clear pin. When you connect a signal from a pad to the
STARTUP block’s GSR pin, the GSR net is activated. Because the GSR
net is built into the silicon it does not appear in the pre-routed netlist
file. When the GSR signal is asserted High (the default), all flip-flops
and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.

See the “Simulating Your Design” chapter for more information on
STARTUP and STARTBUF.

Note The following VHDL and Verilog example shows a
STARTUP_VIRTEX instantiation using both GSR and GTS pins for
FPGA Compiler II, LeonardoSpectrum, and XST.
Synthesis and Simulation Design Guide 4-55

Synthesis and Simulation Design Guide
• VHDL Example.

-- This example uses both GTS and GSR pins.

-- Unconnected STARTUP pins are omitted from

-- component declaration.

library IEEE;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;

DIN1 : in STD_LOGIC;

DIN2: in STD_LOGIC;

RESET: in STD_LOGIC;

GTSInput: in STD_LOGIC;

DOUT1: out STD_LOGIC;

DOUT2: out STD_LOGIC;

DOUT3: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is

component STARTUP_VIRTEX

port(GSR, GTS: in std_logic);

end component;

begin

startup_inst: STARTUP_VIRTEX port map(GSR =>
RESET, GTS => GTSInput);

reset_process: process (CLK, RESET)
4-56 Xilinx Development System

Architecture Specific Coding Style for Virtex
begin

if (RESET = ’1’) then

DOUT1 <= ’0’;

elsif (CLK’event and CLK =’1’) then

DOUT1 <= DIN1;

end if;

end process;

gtsprocess:process (GTSInput)

begin

if GTSInput = ’0’ then

DOUT3 <= ’0’;

DOUT2 <= DIN2;

else

DOUT2 <= ’Z’;

DOUT3 <= ’Z’;

end if;

end process;

end RTL;
Synthesis and Simulation Design Guide 4-57

Synthesis and Simulation Design Guide
• Verilog example.

// This example uses both GTS and GSR pins

// Unused STARTUP pins are omitted from module

// declaration.

module setreset(CLK,DIN1, DIN2,RESET, GTSInput,

DOUT1,DOUT2,DOUT3);

input CLK;

input DIN1;

input DIN2;

input RESET;

input GTSInput;

output DOUT1;

output DOUT2;

output DOUT3;

reg DOUT1;

STARTUP_VIRTEX startup_inst(.GSR(RESET),
.GTS(GTSInput));

always @(posedge CLK or posedge RESET)

begin

if (RESET)

DOUT1 = 1’b0;

else

DOUT1 = DIN1;

end

assign DOUT3 = (GTSInput == 1’b0)? 1’b0: 1’bZ;

assign DOUT2 = (GTSInput == 1’b0)? DIN2: 1’bZ;

endmodule
4-58 Xilinx Development System

Architecture Specific Coding Style for Virtex
The following VHDL/Verilog examples show a STARTUP_VIRTEX
instantiation using both GSR and GTS pins in Synplify. In the exam-
ples, STARTUP_VIRTEX_GSR and STARTUP_VIRTEX_GTS are
instantiated together to get the GSR and GTS pins connected. The
resulting EDIF netlist will have only one STARTUP_VIRTEX block
with GTS and GSR connections. The CLK pin of the
STARTUP_VIRTEX will be unconnected. If all pins (GSR, GTS, and
CLK) in the STARTUP block are needed, use STARTUP_VIRTEX to
port map the pins.

• VHDL Example

library IEEE,virtex,synplify;

use synplify.attributes.all;

use virtex.components.all;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;

DIN1 : in STD_LOGIC;

DIN2: in STD_LOGIC;

RESET: in STD_LOGIC;

GTSInput: in STD_LOGIC;

DOUT1: out STD_LOGIC;

DOUT2: out STD_LOGIC;

DOUT3: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is

begin

u0: STARTUP_VIRTEX_GSR port map(GSR => RESET);

u1: STARTUP_VIRTEX_GTS port map(GTS =>
GTSInput);

reset_process: process (CLK, RESET)
Synthesis and Simulation Design Guide 4-59

Synthesis and Simulation Design Guide
begin

if (RESET = ’1’) then

DOUT1 <= ’0’;

elsif (CLK’event and CLK =’1’) then

DOUT1 <= DIN1;

end if;

end process;

gtsprocess:process (GTSInput)

begin

if GTSInput = ’0’ then

DOUT3 <= ’0’;

DOUT2 <= DIN2;

else

DOUT2 <= ’Z’;

DOUT3 <= ’Z’;

end if;

end process;

end RTL;
4-60 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog example

‘include "path/to/virtex.v"

 module setreset(CLK,DIN1, DIN2,RESET, GTSInput,

DOUT1,DOUT2,DOUT3);

input CLK;

input DIN1;

input DIN2;

input RESET;

input GTSInput;

output DOUT1;

output DOUT2;

output DOUT3;

reg DOUT1;

STARTUP_VIRTEX_GSR startup_inst(.GSR(RESET));

STARTUP_VIRTEX_GTS startup_2(.GTS(GTSInput));

always @(posedge CLK or posedge RESET)

begin

if (RESET)

DOUT1 = 1’b0;

else

DOUT1 = DIN1;

end

assign DOUT3 = (GTSInput == 1’b0)? 1’b0: 1’bZ;

assign DOUT2 = (GTSInput == 1’b0)? DIN2: 1’bZ;

endmodule
Synthesis and Simulation Design Guide 4-61

Synthesis and Simulation Design Guide
Preset vs. Clear
The Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-II family
flip-flops are configured as either preset (asynchronous set) or clear
(asynchronous reset) during startup. Automatic assertion of the GSR
net presets or clears each flip-flop after the FPGA is configured. You
can assert the GSR pin at any time to produce this global effect. You
can also preset or clear individual flip-flops with the flip-flop’s dedi-
cated Preset or Clear pin. When a Preset or Clear pin on a flip-flop is
connected to an active signal, the state of that signal controls the
startup state of the flip-flop. For example, if you connect an active
signal to the Preset pin, the flip-flop starts up in the preset state. If
you do not connect the Clear or Preset pin, the default startup state is
a clear state. To change the default to preset, assign an INIT=1 to the
Virtex/E/II or Spartan-II flip-flop.

I/O flip-flops and latches in Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
and Spartan-II have an SR pin which can be configured as a synchro-
nous Set, a synchronous Reset, an asynchronous Preset, or an asyn-
chronous Clear. The SR pin can be driven by any user logic, but INIT
will also work for these flip-flops.

Below are examples of setting register INIT using ROCBUF. In the
HDL code, the instantiated ROCBUF connects the set/reset signal.
The Xilinx tools will automatically remove the ROCBUF during
implementation leaving the set/reset signal active only during
power-up.
4-62 Xilinx Development System

Architecture Specific Coding Style for Virtex
• VHDL Example.

library IEEE;
 use IEEE.std_logic_1164.all;
entity d_register is

port (CLK : in std_logic;
RESET : in std_logic;
D0: in std_logic;
D1: in std_logic;
Q0 : out std_logic;
Q1 : out std_logic);

end d_register;
architecture XILINX of d_register is

signal RESET_int : std_logic;
component ROCBUF is port (I : in STD_LOGIC;

O : out STD_LOGIC);
end component;
begin
U1: ROCBUF port map (I => RESET, O => RESET_int);
process (CLK, RESET_int)
begin

if RESET_int = ’1’ then
Q0 <= ’0’;
Q1 <= ’1’;

elsif rising_edge(CLK) then
Q0 <= D0;
Q1 <= D1;

end if;
end process;
end XILINX;
Synthesis and Simulation Design Guide 4-63

Synthesis and Simulation Design Guide
• Verilog example

/* Note: In Synplify, set blackbox attribute for
ROCBUF as follows:

module ROCBUF(I, O);//synthesis syn_black_box

input I;

output O;

endmodule

*/

module ROCBUF (I, O);

input I;

output O;

endmodule

module rocbuf_example (reset, clk, d0, d1, q0,
q1);

input reset;

input clk ;

input d0;

input d1;

output q0 ;

output q1 ;

reg q0, q1;

wire reset_int;

ROCBUF u1 (.I(reset), .O(reset_int));

always @ (posedge clk or posedge reset_int)

begin

if (reset_int) begin

q0 = 1’b0;

q1 = 1’b1;

end
4-64 Xilinx Development System

Architecture Specific Coding Style for Virtex
else

begin

q0 = d0;

q1 = d1;

end

end

endmodule

Implementing Inputs and Outputs
FPGAs have limited logic resources in the user-configurable input/
output blocks (IOB). You can move logic that is normally imple-
mented with CLBs to IOBs. By moving logic from CLBs to IOBs, addi-
tional logic can be implemented in the available CLBs. Using IOBs
also improves design performance by increasing the number of avail-
able routing resources.

The Virtex/E/II, and Spartan-II IOBs feature SelectI/O inputs and outputs
that support a wide variety of I/O signaling standards. In addition, each IOB
provides three storage elements. The following sections discuss IOB features
in more detail.

I/O Standards
The following table summarizes the I/O standards supported in
Virtex/E/II and Spartan-II devices. A complete table is available in
the Libraries Guide.

Table 4-3 I/O Standard in Virtex/E/II and Spartan-II Devices

I/O
Standard

Virtex/
Spartan-II

Virtex-E Virtex-II/II Pro

LVTTL
(default)

√ √ √

AGP √ √ √

CTT √ √

GTL √ √ √

GTLP √ √ √
Synthesis and Simulation Design Guide 4-65

Synthesis and Simulation Design Guide
For Virtex, Virtex-E, and Spartan-II devices, Xilinx provides a set of
IBUF, IBUFG, IOBUF, and OBUF with its SelectI/O variants. For

HSTL Class
I

√ √ √

HSTL Class
II

√

HSTL Class
III

√ √ √

HSTL Class
IV

√ √ √

LVCMOS2 √

LVCMOS15 √

LVCMOS18 √ √

LVCMOS25,
33

√

LVCZ_15,
18, 25, 33

√

LVCZ_DV2
_15, 18, 25,
33

√

LVDS √ √

LVPECL √ √

PCI33_5

PCI33_3,
PCI66_3

√ √ √

PCIX √

SSTL2 Class
I and Class
II

√ √ √

SSTL3 Class
I and Class
II

√ √ √

Table 4-3 I/O Standard in Virtex/E/II and Spartan-II Devices

I/O
Standard

Virtex/
Spartan-II

Virtex-E Virtex-II/II Pro
4-66 Xilinx Development System

Architecture Specific Coding Style for Virtex
example, IBUF_GTL, IBUFG_PCI66_3, IOBUF_HSTL_IV,
OBUF_LVCMOS2. Alternatively, an IOSTANDARD attribute can be
set to a specific I/O standard and attached to an IBUF, IBUFG,
IOBUF, and OBUF. The IOSTANDARD attribute can be set in the user
constraint file (UCF) or in the netlist by the synthesis tool.

The Virtex-II library includes certain SelectI/O components for
compatibility with other architectures. However, the recommended
method for using SelectI/O components for Virtex-II is to attach an
IOSTANDARD attribute to IBUF/IBUFG/IOBUF/OBUF. For
example, attach IOSTANDARD=GTLP to an IBUF instead of using
the IBUF_GTLP.

The default for the IOSTANDARD attribute is LVTTL. For all Virtex/
E/II and Spartan-II devices, you must specify IBUF, IBUFG, IOBUF
or OBUF on the IOSTANDARD attribute if LVTTL is not desired.

For more information on I/O standards and components, please refer
to the Libraries Guide.

Inputs
Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-II inputs can be
configured to the I/O standards listed above.

In FPGA Compiler II, these special IOB components exist in the
synthesis library and can be instantiated in your HDL code or
selected from the FPGA Compiler II constraints GUI. A complete list
of components understood by FPGA Compiler II can be found in the
lib\virtex directory under the FPGA Compiler II tree
(%XILINX%\synth for ISE users). FPGA Compiler II will understand
these components and will not attempt to place any I/O logic on
these ports. Users will be alerted by this warning:

Warning: Existing pad cell ’/ver1-Optimized/U1’ is
connected to the port ’clk’ - no pads cells inserted
at this port. (FPGA-PADMAP-1)

In LeonardoSpectrum, insert appropriate buffers on selected ports in
the constraints editor. Alternatively, you can set the following
attribute in TCL script after the read but before the optimize
options.

PAD <IO_standard> <portname>
Synthesis and Simulation Design Guide 4-67

Synthesis and Simulation Design Guide
The following is an example of setting an I/O standard in Leonar-
doSpectrum.

PAD IBUF_AGP data (7:0)

In Synplify, users can set xc_padtype attribute in SCOPE (Synplify’s
constraint editor) or in HDL code as shown below:

• VHDL Example.

library ieee, synplify;
use ieee.std_logic_1164.all;
use synplify.attributes.all;
entity test_padtype is

port(a : in std_logic_vector(3 downto 0);
b : in std_logic_vector(3 downto 0);
clk, rst, en : in std_logic;
bidir : inout std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

attribute xc_padtype of a : signal is
"IBUF_SSTL3_I";

attribute xc_padtype of bidir : signal is
"IOBUF_HSTL_III";

attribute xc_padtype of q : signal is "OBUF_S_8";
end entity;

• Verilog Example

module test_padtype (a, b, clk, rst, en, bidir, q);
input [3:0] a /* synthesis xc_padtype = "IBUF_AGP"

*/;
input [3:0] b;
input clk, rst, en;
inout [3:0] bidir /* synthesis xc_padtype =

"IOBUF_CTT" */;
output [3:0] q /* synthesis xc_padtype =

"OBUF_F_12" */;

Note Refer to IBUF_selectIO in the Libraries Guide for a list of avail-
able IBUF_selectIO values.

Outputs
Virtex/E/II and Spartan-II outputs can also be configured to any of
I/O standards listed in the I/O standards section. An OBUF that uses
4-68 Xilinx Development System

Architecture Specific Coding Style for Virtex
the LVTTL, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33
signaling standards has selectable drive and slew rates using the
DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12
mA and SLOW slew.

In addition, you can control the slew rate and drive power for LVTTL
outputs using OBUF_<slew>_<drive_power>.

Refer to OBUF_selectIO in the Libraries Guide for a list of available
OBUF_selectIO values. You can use the examples in the Inputs
section to configure OBUF to an I/O standard.

Using IOB Register and Latch
Virtex, Virtex-E, and Spartan-II IOBs contain three storage elements.
The three IOB storage elements function either as edge-triggered D-
type flip-flops or as level sensitive latches. Each IOB has a clock
(CLK) signal shared by the three flip-flops and independent clock
enable (CE) signals for each flip-flop.

In addition to the CLK and CE control signals, the three flip-flops
share a Set/Reset (SR). However, each flip-flop can be independently
configured as a synchronous set, a synchronous reset, an asynchro-
nous preset, or an asynchronous clear. FDCP (asynchronous reset and
set) and FDRS (synchronous reset and set) register configurations are
not available in IOBs.

Virtex-II IOBs also contain three storage elements with an option to
configure them as FDCP, FDRS, and Dual-Data Rate (DDR) registers.
Each register has an independent CE signal. The OTCLK1 and
OTCLK2 clock pins are shared between the output and tristate enable
register. A separate clock (ICLK1 and ICLK2) drives the input
register. The set and reset signals (SR and REV) are shared by the
three registers.

Virtex, Virtex-E, Virtex-II, and Spartan-II devices no longer have
primitives that correspond to the synchronous elements in the IOBs.
There are a few ways to infer usage of these FFs if the rules for
pulling them into the IOB are followed. The following rules apply.

• All FFs that are to be pulled into the IOB must have a fanout of 1.
This applies to output and tristate enable registers. For example,
if there is a 32 bit bidirectional bus, then the tristate enable signal
must be replicated in the original design so that it will have a
fanout of 1.
Synthesis and Simulation Design Guide 4-69

Synthesis and Simulation Design Guide
• In Virtex/E and Spartan-II devices, all FFs must share the same
clock and reset signal. They can have independent clock enables.

• In Virtex-II devices, output and tristate enable registers must
share the same clock. All FFs must share the same set and reset
signals.

One way you can pull FFs into the IOB is to use the IOB=TRUE
setting. Another way is to pull FFs into the IOB using the map -pr
command, which will be discussed in a later section. Some synthesis
tools will apply the IOB=TRUE attribute and allow you to merge an
FF to an IOB by setting an attribute. Refer to your synthesis tool docu-
mentation for the correct attribute and settings.

In FPGA Compiler II, you can set the attribute through the FPGA
Compiler II constraints editor for each port into which a flip-flop
should be merged. For tristate enable flip-flops, the default value for
’Use I/O Reg’ will need to be set to TRUE. This will cause the
IOB=TRUE constraint to be written on every flip-flop in the design.

LeonardoSpectrum, through ISE, can push registers into IOBs. Right
click on the Synthesize process, select Properties, select the
Architecture Options tab and enable the Map to IOB registers setting.

In standalone LeonardoSpectrum, you can select MAP IOB Registers
from the Technology tab in the GUI or set the following attribute in
your TCL script:

set virtex_map_iob_registers TRUE

In Synplify, attach the syn_useioff attribute to the module or
architecture of top-level in one of these ways:

• Add the attribute in SCOPE. The constraint file syntax looks like
this:

define_global_attribute syn_useioff 1

• Add the attribute in the VHDL/Verilog top-level source code as
follows:
4-70 Xilinx Development System

Architecture Specific Coding Style for Virtex
♦ VHDL Example

architecture rtl of test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture
is true;

♦ Verilog example

module test(d, clk, q)
/* synthesis syn_useioff = 1 */;

In XST, you can use the map -pr option, the -iob option or the IOB
constraint in your HDL code or the UCF to place the flip-flops in the
IOBs.

In XST, right click on the Synthesis process, select Properties, select
the Xilinx Specific Options tab, then select either Auto or Yes for Pack
I/O Registers into IOBs. To insert the IOB constraint in the HDL code,
refer to the Constraints Guide.

Using Dual Data Rate IOB Registers
The following VHDL and Verilog examples show how to infer dual
data rate registers for inputs only. See the Using IOB Register and
Latch section for an attribute to enable I/O register inference in your
synthesis tool. The dual data rate register primitives (the
synchronous set/reset with clock enable FDDRRSE, and
asynchronous set/reset with clock enable FDDRCPE) must be
instantiated in order to utilize the dual data rate registers in the
outputs. Please refer to the Instantiating Components section for
information on instantiating primitives.

• VHDL Example

library ieee;
use ieee.std_logic_1164.all;

entity ddr_input is

port (clk : in std_logic;
d : in std_logic;
rst : in std_logic;
q1 : out std_logic;
q2 : out std_logic);

end ddr_input;
Synthesis and Simulation Design Guide 4-71

Synthesis and Simulation Design Guide
architecture behavioral of ddr_input is

begin

q1reg : process (clk, rst)

begin

if rst=’1’ then
q1 <= ’0’;
elsif clk’event and clk=’1’ then
q1 <= d;

end if;

end process;

q2reg : process (clk, rst)

begin

if rst=’1’ then
q2 <= ’0’;
elsif clk’event and clk=’0’ then
q2 <= d;

end if;

end process;

end behavioral;

• Verilog Example

module ddr_input (data_in, data_out, clk, rst);

input data_in, clk, rst;
output data_out;
reg q1, q2;

always @ (posedge clk or posedge rst)
begin

if (rst)
q1=1’b0;
else
q1 = data_in;

end
4-72 Xilinx Development System

Architecture Specific Coding Style for Virtex
always @ (negedge clk or posedge rst)
begin

if (rst)
q2=1’b0;
else
q2 = data_in;

end

assign data_out = q1 & q2;

end module

Using Output Enable IOB Register

The following VHDL and Verilog examples illustrate how to infer an
output enable register. See the above section for an attribute to turn
I/O register inference in synthesis tools.

Note If using FPGA Compiler II to synthesize the examples below,
open up FPGA Compiler II’s constraints editor, select the Ports tab
and change the default Use I/O Reg option from NONE to TRUE.
Doing so will place an IOB=TRUE constraint on every flip-flop in the
design. There is no option to specify only the output enable registers.
Synthesis and Simulation Design Guide 4-73

Synthesis and Simulation Design Guide
• VHDL Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity tri_state is
Port (data_in_p : in std_logic_vector(7 downto 0);

clk : in std_logic;
tri_state_a: in std_logic;
tri_state_b :in std_logic;

data_out : out std_logic_vector(7 downto 0));
end tri_state;
architecture behavioral of tri_state is
signal data_in : std_logic_vector(7 downto 0);
signal data_in_r :std_logic_vector(7 downto 0);
signal tri_state_cntrl:std_logic_vector(7 downto

0);
signal temp_tri_state:std_logic_vector(7 downto 0);
begin

G1: for I in 0 to 7 generate
temp_tri_state(I) <= tri_state_a AND

tri_state_b; -- create duplicate input signal
end generate;

process (tri_state_cntrl, data_in_r) begin
 G2: for J in 0 to 7 loop

if (tri_state_cntrl(J) = ’0’) then
-- tri-state data_out

data_out(J) <= data_in_r(J);

else data_out(J) <= ’Z’;
end if;

end loop;
end process;

process(clk) begin
if clk’event and clk=’1’ then

data_in <= data_in_p;-- register for input
data_in_r <= data_in;-- register for output
for I in 0 to 7 loop
tri_state_cntrl(I) <= temp_tri_state(I);
-- register tri-state
end loop;

end if;
end process;

end behavioral;
4-74 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example

//
// Inferring output enable register //
// October 2000 //
//
module tri_state (data_in_p, clk, tri_state_a,
tri_state_b, data_out);
 input[7:0] data_in_p;
 input clk;
 input tri_state_a;
 input tri_state_b;
 output[7:0] data_out;
 reg[7:0] data_out;
 reg[7:0] data_in;
 reg[7:0] data_in_r;
 reg[7:0] tri_state_cntrl;
 wire[7:0] temp_tri_state;
 assign temp_tri_state[0] = tri_state_a &
tri_state_b ; // create duplicate input signal
 assign temp_tri_state[1] = tri_state_a &
tri_state_b ;
 assign temp_tri_state[2] = tri_state_a &
tri_state_b ;
 assign temp_tri_state[3] = tri_state_a &
tri_state_b ;
 assign temp_tri_state[4] = tri_state_a &
tri_state_b ;
 assign temp_tri_state[5] = tri_state_a &
tri_state_b ;
 assign temp_tri_state[6] = tri_state_a &
tri_state_b ;
 assign temp_tri_state[7] = tri_state_a &
tri_state_b ;
// exemplar attribute temp_tri_state
preserve_signal TRUE
Synthesis and Simulation Design Guide 4-75

Synthesis and Simulation Design Guide
 always @(tri_state_cntrl or data_in_r)
 begin
 begin : xhdl_1
 integer J;
 for(J = 0; J <= 7; J = J + 1)
 begin : G2
 if (!(tri_state_cntrl[J]))
 begin
 data_out[J] <= data_in_r[J] ;
 end
 else // tri-state data_out
 begin
 data_out[J] <= 1’bz ;
 end
 end
 end
 end
 always @(posedge clk)
 begin
 data_in <= data_in_p ;

// register for input
 data_in_r <= data_in ;

// register for output
tri_state_cntrl[0] <= temp_tri_state[0] ;
tri_state_cntrl[1] <= temp_tri_state[1] ;
tri_state_cntrl[2] <= temp_tri_state[2] ;
tri_state_cntrl[3] <= temp_tri_state[3] ;
tri_state_cntrl[4] <= temp_tri_state[4] ;
tri_state_cntrl[5] <= temp_tri_state[5] ;
tri_state_cntrl[6] <= temp_tri_state[6] ;
tri_state_cntrl[7] <= temp_tri_state[7] ;

 end
endmodule

Using -pr Option with MAP

Use the –pr (pack registers) option when running MAP. The –pr {i | o
| b} (input | output | both) option specifies to the MAP program to
move registers into IOBs when possible. For example: map -pr b
<design_name.ngd>
4-76 Xilinx Development System

Architecture Specific Coding Style for Virtex
Virtex-E IOBs
Virtex-E has the same IOB structure and features as Virtex and
Spartan-II devices except for the available I/O standards.

Additional I/O Standards

Virtex-E devices have two additional I/O standards: LVPECL and
LVDS.

Because LVDS and LVPECL require two signal lines to transmit one
data bit, it is handled differently from any other I/O standards. A
UCF or an NGC file with complete pin loc information must be
created to ensure that the I/O banking rules are not violated. If a UCF
or NGC file is not used, PAR will issue errors.

The input buffer of these two I/O standards may be placed in a wide
number of IOB locations. The exact locations are dependent on the
package that is used. The Virtex-E package information lists the
possible locations as IO_L#P for the P-side and IO_L#N for the N-side
where # is the pair number. Only one input buffer is required to be
instantiated in the design and placed on the correct IO_L#P location.
The N-side of the buffer will be reserved and no other IOB will be
allowed to be placed on this location.

The output buffer may be placed in a wide number of IOB locations.
The exact locations are dependent on the package that is used. The
Virtex-E package information lists the possible locations as IO_L#P
for the P-side and IO_L#N for the N-side where # is the pair number.
However, both output buffers are required to be instantiated in the
design and placed on the correct IO_L#P and IO_L#N locations. In
addition, the output (O) pins must be inverted with respect to each
other. (one HIGH and one LOW). Failure to follow these rules will
lead to DRC errors in the software.

The following examples show VHDL and Verilog coding for LVDS I/
O standards targeting a V50ECS144 device. An AUCF example is also
provided.

• VHDL Example.

library IEEE;

use IEEE.std_logic_1164.all;

entity LVDSIO is
Synthesis and Simulation Design Guide 4-77

Synthesis and Simulation Design Guide
port (CLK, DATA, Tin: in STD_LOGIC;

IODATA_p, IODATA_n: inout STD_LOGIC;

Q_p, Q_n : out STD_LOGIC

);

end LVDSIO;

architecture BEHAV of LVDSIO is

component IBUF_LVDS is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component OBUF_LVDS is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component IOBUF_LVDS is port (I : in STD_LOGIC;

T : in STD_LOGIC;

IO : inout STD_LOGIC;

O : out STD_LOGIC);

end component;

component INV is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component IBUFG_LVDS is port(I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component BUFG is port(I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

signal iodata_in : std_logic;

signal iodata_n_out: std_logic;
4-78 Xilinx Development System

Architecture Specific Coding Style for Virtex
signal iodata_out: std_logic;

signal DATA_int : std_logic;

signal Q_p_int : std_logic;

signal Q_n_int : std_logic;

signal CLK_int : std_logic;

signal CLK_ibufgout : std_logic;

signal Tin_int : std_logic;

begin

UI1: IBUF_LVDS port map (I => DATA, O =>
DATA_int);

UI2: IBUF_LVDS port map (I => Tin, O =>
Tin_int);

UO_p: OBUF_LVDS port map (I => Q_p_int, O =>
Q_p);

UO_n: OBUF_LVDS port map (I => Q_n_int, O =>
Q_n);

UIO_p: IOBUF_LVDS port map (I => iodata_out, T
=> Tin_int, IO => iodata_p,

O => iodata_in);

UIO_n: IOBUF_LVDS port map (I => iodata_n_out,
T => Tin_int, IO => iodata_n,

O => open);

UINV: INV port map (I => iodata_out, O =>

iodata_n_out);

UIBUFG : IBUFG_LVDS port map (I => CLK, O =>

CLK_ibufgout);

UBUFG : BUFG port map (I => CLK_ibufgout, O =>

CLK_int);

My_D_Reg: process (CLK_int, DATA_int)
Synthesis and Simulation Design Guide 4-79

Synthesis and Simulation Design Guide
begin

if (CLK_int’event and CLK_int=’1’) then

Q_p_int <= DATA_int;

end if;

end process; -- End My_D_Reg

iodata_out <= DATA_int and iodata_in;

Q_n_int <= not Q_p_int;

end BEHAV;

• Verilog Example.

module LVDSIOinst (CLK, DATA, Tin,

IODATA_p, IODATA_n, Q_p, Q_n) ;

input CLK, DATA, Tin;

inout IODATA_p, IODATA_n;

output Q_p, Q_n;

wire iodata_in;

wire iodata_n_out;

wire iodata_out;

wire DATA_int;

reg Q_p_int;

wire Q_n_int;

wire CLK_int;

wire CLK_ibufgout;

wire Tin_int;

IBUF_LVDS UI1 (.I(DATA), .O(DATA_int));

IBUF_LVDS UI2 (.I(Tin), .O (Tin_int));

OBUF_LVDS UO_p (.I(Q_p_int), .O(Q_p));
4-80 Xilinx Development System

Architecture Specific Coding Style for Virtex
OBUF_LVDS UO_n (.I(Q_n_int), .O(Q_n));

IOBUF_LVDS UIO_p (.I(iodata_out),.T(Tin_int),
.IO(IODATA_p),.O (iodata_in));

IOBUF_LVDS UIO_n (.I (iodata_n_out),
.T(Tin_int),.IO(IODATA_n),.O ());

INV UINV (.I(iodata_out), .O(iodata_n_out));

IBUFG_LVDS UIBUFG (.I(CLK), .O(CLK_ibufgout));

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)

begin

Q_p_int <= DATA_int;

end

assign iodata_out = DATA_int && iodata_in;

assign Q_n_int = ~Q_p_int;

endmodule

• UCF example targeting V50ECS144

NET CLK LOC = A6; #GCLK3

NET DATA LOC = A4; #IO_L0P_YY

NET Q_p LOC = A5; #IO_L1P_YY

NET Q_n LOC = B5; #IO_L1N_YY

NET iodata_p LOC = D8; #IO_L3P_yy

NET iodata_n LOC = C8; #IO_L3N_yy

NET Tin LOC = F13; #IO_L10P
Synthesis and Simulation Design Guide 4-81

Synthesis and Simulation Design Guide
The following examples use the IOSTANDARD attribute on I/O
buffers as a work around for LVDS buffers. This example can also be
used with other synthesis tools to configure I/O standards with the
IOSTANDARD attribute.

• VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

entity flip_flop is

port(d: in std_logic;

clk : in std_logic;

q : out std_logic;

q_n : out std_logic);

end flip_flop;

architecture flip_flop_arch of flip_flop is

component IBUF

port(I: in std_logic;

O: out std_logic);

end component;

component OBUF

port(I: in std_logic;

O: out std_logic);

end component;

attribute IOSTANDARD : string;

attribute LOC : string;

attribute IOSTANDARD of u1 : label is "LVDS";

attribute IOSTANDARD of u2 : label is "LVDS";

attribute IOSTANDARD of u3 : label is "LVDS";
4-82 Xilinx Development System

Architecture Specific Coding Style for Virtex
--

-- Pin location A5 on the cs144

-- package represents the

-- ’positive’ LVDS pin.

-- Pin location D8 represents the

-- ’positive’ LVDS pin.

-- Pin location C8 represents the

-- ’negative’ LVDS pin.

--

attribute LOC of u1 : label is "A5";

attribute LOC of u2 : label is "D8";

attribute LOC of u3 : label is "C8";

signal d_lvds, q_lvds, q_lvds_n : std_logic;

begin

u1: IBUF port map (d,d_lvds);

u2: OBUF port map (q_lvds,q);

u3: OBUF port map (q_lvds_n,q_n);

process (clk) begin

if clk’event and clk = ’1’ then

q_lvds <= d_lvds;

end if;

end process;

q_lvds_n <= not(q_lvds);

end flip_flop_arch;
Synthesis and Simulation Design Guide 4-83

Synthesis and Simulation Design Guide
• Verilog Example.

module flip_flop (d, clk, q, q_n);

/*********************************/

// Pin location A5 on the cs144

// package represents the

// ’positive’ LVDS pin.

// Pin location D8 represents the

// ’positive’ LVDS pin.

// Pin location C8 represents the

// ’negative’ LVDS pin.

/*********************************/

input d;//synopsys attribute LOC "A5"

input clk;

output q;//synopsys attribute LOC "D8"

output q_n;//synopsys attribute LOC "C8"

wire d,clk,d_lvds,q;

reg q_lvds;

IBUF u1 (.I(d), .O(d_lvds));

//synopsys attribute IOSTANDARD "LVDS"

OBUF u2 (.I(q_lvds), .O(q));

//synopsys attribute IOSTANDARD "LVDS"

OBUF u3 (.I(q_lvds_n), .O(q_n));

//synopsys attribute IOSTANDARD "LVDS"

always @(posedge clk) q_lvds=d_lvds;

assign q_lvds_n=~q_lvds;

endmodule

Reference Xilinx Answer Database in http://support.xilinx.com for
more information.
4-84 Xilinx Development System

http://support.xilinx.com

Architecture Specific Coding Style for Virtex
In LeonardoSpectrum and Synplify, you can instantiate the selectI/O
components or use the attribute discussed in the “Inputs” section, but
make sure that the output and its inversion are declared and config-
ured properly.

Virtex-II IOBs
Virtex-II offers more Select I/O configuration than Virtex/E and
Spartan-II as shown in Table 5-3. IOSTANDARD and synthesis tools’
specific attributes can be used to configure the Select I/O.

Additionally, Virtex-II provides digitally controlled impedance (DCI)
I/Os which are useful in improving signal integrity and avoiding the
use of external resistors. This option is only available for most of the
single ended I/O standards. To access this option you can instantiate
the 'DCI' suffixed I/Os from the library such as HSTL_IV_DCI.

For low-voltage differential signaling, additional IBUFDS, OBUFDS,
OBUFTDS, and IOBUFDS components are available. These compo-
nents simplify the task of instantiating the differential signaling stan-
dard.

Differential Signaling in Virtex-II

Differential signaling in Virtex-II can be configured using IBUFDS,
OBUFDS, and OBUFTDS. The IBUFDS is a two-input one-output
buffer. The OBUFDS is a one-input two-output buffer. Refer to the
Libraries Guide for the component diagram and description.

LVDS_25, LVDS_33, LVDSEXT_33, and LVPECL_33 are valid
IOSTANDARD values to attach to differential signaling buffers. If no
IOSTANDARD is attached, the default is LVDS_33.

The following is the VHDL and Verilog example of instantiating
differential signaling buffers.
Synthesis and Simulation Design Guide 4-85

Synthesis and Simulation Design Guide
• VHDL Example

--

-- LVDS_33_IO.VHD Version 1.0 --

-- Example of a behavioral description of --

-- differential signal I/O standard using --

-- LeonardoSpectrum attribute.--

-- HDL Synthesis Design Guide for FPGAs --

-- October 2000 --

--

library IEEE;

use IEEE.std_logic_1164.all;

--use exemplar.exemplar_1164.all;

entity LVDS_33_IO is

port (CLK_p, CLK_n, DATA_p, DATA_n, Tin_p,

Tin_n: in STD_LOGIC;

datain2_p, datain2_n : in STD_LOGIC;

ODATA_p, ODATA_n: out STD_LOGIC;

Q_p, Q_n : out STD_LOGIC);

end LVDS_33_IO;

architecture BEHAV of LVDS_33_IO is

component IBUFDS is port (I : in STD_LOGIC;

IB: in STD_LOGIC;

O : out STD_LOGIC);

end component;

component OBUFDS is port (I : in STD_LOGIC;

O : out STD_LOGIC;

OB : out STD_LOGIC);

end component;
4-86 Xilinx Development System

Architecture Specific Coding Style for Virtex
component OBUFTDS is port (I : in STD_LOGIC;

T : in STD_LOGIC;

O : out STD_LOGIC;

OB: out STD_LOGIC);

end component;

component IBUFGDS is port(I : in STD_LOGIC;

IB: in STD_LOGIC;

O : out STD_LOGIC);

end component;

component BUFG is port(I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

signal datain2 : std_logic;

signal odata_out: std_logic;

signal DATA_int : std_logic;

signal Q_int : std_logic;

signal CLK_int : std_logic;

signal CLK_ibufgout : std_logic;

signal Tin_int : std_logic;

begin

UI1: IBUFDS port map (I => DATA_p, IB => DATA_n,
O => DATA_int);

UI2: IBUFDS port map (I => datain2_p,
IB => datain2_n, O => datain2);

UI3: IBUFDS port map (I => Tin_p, IB => Tin_n,
O => Tin_int);

UO1: OBUFDS port map (I => Q_int, O => Q_p,
OB => Q_n);

UO2: OBUFTDS port map (I => odata_out,
T => Tin_int, O => odata_p, OB => odata_n);
Synthesis and Simulation Design Guide 4-87

Synthesis and Simulation Design Guide
UIBUFG : IBUFGDS port map (I => CLK_p,
IB => CLK_n, O => CLK_ibufgout);

UBUFG : BUFG port map (I => CLK_ibufgout,
O => CLK_int);

My_D_Reg: process (CLK_int, DATA_int)

begin

if (CLK_int’event and CLK_int=’1’) then

Q_int <= DATA_int;

end if;

end process; -- End My_D_Reg

odata_out <= DATA_int and datain2;

end BEHAV;
4-88 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example

//--

// LVDS_33_IO.v Version 1.0 --

// Example of a behavioral description of --

// differential signal I/O standard --

// HDL Synthesis Design Guide for FPGAs --

// October 2000 --

//--

module LVDS_33_IO (CLK_p, CLK_n, DATA_p, DATA_n,

DATAIN2_p, DATAIN2_n, Tin_p, Tin_n, ODATA_p,

ODATA_n, Q_p, Q_n) ;

input CLK_p, CLK_n, DATA_p, DATA_n,

DATAIN2_p, DATAIN2_n, Tin_p, Tin_n;

output ODATA_p, ODATA_n;

output Q_p, Q_n;

wire datain2;

wire odata_in;

wire odata_out;

wire DATA_int;

reg Q_int;

wire CLK_int;

wire CLK_ibufgout;

wire Tin_int;

IBUFDS UI1 (.I(DATA_p), .IB(DATA_n),
.O(DATA_int));

IBUFDS UI2 (.I(Tin_p), .IB(Tin_n),
.O (Tin_int));

IBUFDS UI3 (.I(DATAIN2_p), .IB(DATAIN2_n),
.O(datain2));
Synthesis and Simulation Design Guide 4-89

Synthesis and Simulation Design Guide
OBUFDS UO1 (.I(Q_int), .O(Q_p), .OB(Q_n));

OBUFTDS UO2 (.I(odata_out), .T(Tin_int),
.O(ODATA_p),.OB(ODATA_n));

IBUFGDS UIBUFG (.I(CLK_p), .IB(CLK_n),
.O(CLK_ibufgout));

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)

begin

Q_int <= DATA_int;

end

assign odata_out = DATA_int && datain2;

endmodule

Encoding State Machines
The traditional methods used to generate state machine logic result in
highly-encoded states. State machines with highly-encoded state
variables typically have a minimum number of flip-flops and wide
combinatorial functions. These characteristics are acceptable for PAL
and gate array architectures. However, because FPGAs have many
flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and
density.

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create
state machines with one flip-flop per state and decreased width of
combinatorial logic. One-hot encoding is usually the preferred
method for large FPGA-based state machine implementation. For
small state machines (fewer than 8 states), binary encoding may be
more efficient. To improve design performance, you can divide large
(greater than 32 states) state machines into several small state
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the
three coding methods (binary, enumerated type, and one-hot) you
can use to create state machines. All three examples contain the same
Case statement. To conserve space, the complete Case statement is
4-90 Xilinx Development System

Architecture Specific Coding Style for Virtex
only included in the binary encoded state machine example; refer to
this example when reviewing the enumerated type and one-hot
examples.

Some synthesis tools allow you to add an attribute, such as
type_encoding_style, to your VHDL code to set the encoding style.
This is a synthesis vendor attribute (not a Xilinx attribute). Refer to
your synthesis tool documentation for information on attribute-
driven state machine synthesis.

Using Binary Encoding
The state machine bubble diagram in the following figure shows the
operation of a seven-state machine that reacts to inputs A through E
as well as previous-state conditions. The binary encoded method of
coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a
design that has been previously encoded (for example, binary
encoded) and synthesize it to the appropriate decoding logic and
registers. These designs use three flip-flops to implement seven
states.

Figure 4-4 State Machine Bubble Diagram

X6102

State1

A•B•C

State2

Multi

State3

Contig

State7

Contig

State5

Multi

State6

Contig,Single

State4

Multi, Contig

A+D

A•B•C

E

E

D

D
A•B•C
Synthesis and Simulation Design Guide 4-91

Synthesis and Simulation Design Guide
Binary Encoded State Machine VHDL Example

The following is a binary encoded state machine VHDL example.

-- BINARY.VHD Version 1.0 --
-- Example of a binary encoded state machine --
-- May 2001 --

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity binary is
 port (CLOCK, RESET : in STD_LOGIC;
 A, B, C, D, E: in BOOLEAN;

SINGLE, MULTI, CONTIG: out STD_LOGIC);
end binary;

architecture BEHV of binary is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE:type is "001 010 011 100 101
110 111";

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
 begin
 if (RESET=’1’) then
 CS <= S1;
 elsif (CLOCK’event and CLOCK = ’1’) then
 CS <= NS;

end if;
end process; --End REG_PROC

COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI <= ’0’;
4-92 Xilinx Development System

Architecture Specific Coding Style for Virtex
CONTIG <= ’0’;
SINGLE <= ’0’;
if (A and not B and C) then

NS <= S2;
elsif (A and B and not C) then

NS <= S4;
else

NS <= S1;
end if;

when S2 =>
 MULTI <= ’1’;

CONTIG <= ’0’;
SINGLE <= ’0’;
if (not D) then

NS <= S3;
else

NS <= S4;
end if;

 when S3 =>
MULTI <= ’0’;
CONTIG <= ’1’;
SINGLE <= ’0’;
if (A or D) then

NS <= S4;
else

NS <= S3;
end if;

when S4 =>
MULTI <= ’1’;
CONTIG <= ’1’;
SINGLE <= ’0’;
if (A and B and not C) then

NS <= S5;
else

NS <= S4;
end if;

 when S5 =>
MULTI <= ’1’;
CONTIG <= ’0’;
SINGLE <= ’0’;
Synthesis and Simulation Design Guide 4-93

Synthesis and Simulation Design Guide
NS <= S6;
when S6 =>

MULTI <= ’0’;
CONTIG <= ’1’;
SINGLE <= ’1’;
if (not E) then

NS <= S7;
else

NS <= S6;
 end if;

when S7 =>
MULTI <= ’0’;
CONTIG <= ’1’;
SINGLE <= ’0’;
if (E) then

NS <= S1;
else

NS <= S7;
end if;

end case;
 end process; -- End COMB_PROC
end BEHV;
4-94 Xilinx Development System

Architecture Specific Coding Style for Virtex
 Binary Encoded State Machine Verilog Example

///
// BINARY.V Version 1.0 //
// Example of a binary encoded state machine //
// May 2001 //
///
module binary (CLOCK, RESET, A, B, C, D, E, SINGLE, MULTI, CONTIG);

input CLOCK, RESET;
input A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;
// Declare the symbolic names for states
parameter [2:0]

S1 = 3’b001,
S2 = 3’b010,
S3 = 3’b011,
S4 = 3’b100,
S5 = 3’b101,
S6 = 3’b110,
S7 = 3’b111;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1’b1)
CS = S1;

else
CS = NS;

end
always @ (CS or A or B or C or D or D or E)
begin
case (CS)

S1 :
Synthesis and Simulation Design Guide 4-95

Synthesis and Simulation Design Guide
begin
MULTI = 1’b0;
CONTIG = 1’b0;
SINGLE = 1’b0;

if (A && ~B && C)
NS = S2;

else if (A && B && ~C)
NS = S4;

else
NS = S1;

end
S2 :
begin

MULTI = 1’b1;
CONTIG = 1’b0;
SINGLE = 1’b0;

if (!D)
NS = S3;

else
NS = S4;

end
S3 :

 begin
MULTI = 1’b0;
CONTIG = 1’b1;
SINGLE = 1’b0;
if (A || D)

NS = S4;
else

NS = S3;
end

S4 :
begin

MULTI = 1’b1;
CONTIG = 1’b1;
SINGLE = 1’b0;
if (A && B && ~C)

NS = S5;
else

NS = S4;
end
4-96 Xilinx Development System

Architecture Specific Coding Style for Virtex
S5 :
begin

MULTI = 1’b1;
CONTIG = 1’b0;
SINGLE = 1’b0;
NS = S6;
end

S6 :
begin

MULTI = 1’b0;
CONTIG = 1’b1;
SINGLE = 1’b1;
if (!E)

NS = S7;
else

NS = S6;
end
S7 :
begin

MULTI = 1’b0;
CONTIG = 1’b1;
SINGLE = 1’b0;
if (E)

NS = S1;
else

NS = S7;
end

endcase
end

endmodule

Using Enumerated Type Encoding
The recommended encoding style for state machines depends on
which synthesis tool you are using. Some synthesis tools encode
better than others depending on the device architecture and the size
of the decode logic. You can explicitly declare state vectors or you can
allow your synthesis tool to determine the vectors. Xilinx recom-
mends that you use enumerated type encoding to specify the states
and use the Finite State Machine (FSM) extraction commands to
extract and encode the state machine as well as to perform state mini-
mization and optimization algorithms. The enumerated type method
Synthesis and Simulation Design Guide 4-97

Synthesis and Simulation Design Guide
of encoding the seven-state machine is shown in the following VHDL
and Verilog examples. The encoding style is not defined in the code,
but can be specified later with the FSM extraction commands. Alter-
natively, you can allow your compiler to select the encoding style that
results in the lowest gate count when the design is synthesized. Some
synthesis tools automatically find finite state machines and compile
without the need for specification.

Note Refer to the previous VHDL and Verilog Binary Encoded State
Machine examples for the complete Case statement portion of the
code.

Enumerated Type Encoded State Machine VHDL
Example

Library IEEE;
use IEEE.std_logic_1164.all;
entity enum is

port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end enum;

architecture BEHV of enum is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
 begin
 if (RESET=’1’) then
 CS <= S1;
 elsif (CLOCK’event and CLOCK = ’1’) then
 CS <= NS;
 end if;
 end process; --End SYNC_PROC
 COMB_PROC: process (CS, A, B, C, D, E)
4-98 Xilinx Development System

Architecture Specific Coding Style for Virtex
begin
 case CS is
 when S1 =>
 MULTI <= ’0’;
 CONTIG <= ’0’;
 SINGLE <= ’0’;
.
.
.

Enumerated Type Encoded State Machine Verilog
Example

///
// ENUM.V Version 1.0 //
// Example of an enumerated encoded state machine//
// May 2001 //
///

module enum (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG);

input CLOCK, RESET;
input A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0]

S1 = 3’b000,
S2 = 3’b001,
S3 = 3’b010,
S4 = 3’b011,

 S5 = 3’b100,
 S6 = 3’b101,

S7 = 3’b110;

// Declare current state and next state variables
reg [2:0] CS;
Synthesis and Simulation Design Guide 4-99

Synthesis and Simulation Design Guide
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1’b1)
 CS = S1;
 else
 CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin
case (CS)
 S1 :
 begin
 MULTI = 1’b0;
 CONTIG = 1’b0;
 SINGLE = 1’b0;
 if (A && ~B && C)
 NS = S2;
 else if (A && B && ~C)
 NS = S4;
 else
 NS = S1;
 end
.
.
.

4-100 Xilinx Development System

Architecture Specific Coding Style for Virtex
Using One-Hot Encoding
One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. One-hot
encoding is usually the preferred method for large FPGA-based state
machine implementation.

The following examples show a one-hot encoded state machine. Use
this method to control the state vector specification or when you
want to specify the names of the state registers. These examples use
one flip-flop for each of the seven states. If you are using FPGA
Compiler II, use enumerated type, and avoid using the “when
others” construct in the VHDL Case statement. This construct can
result in a very large state machine.

Note Refer to the previous VHDL and Verilog Binary Encoded State
Machine examples for the complete Case statement portion of the
code.

One-hot Encoded State Machine VHDL Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
port (CLOCK, RESET : in STD_LOGIC;

A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end one_hot;

architecture BEHV of one_hot is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is
"0000001 0000010 0000100 0001000 0010000 0100000 1000000 ";

signal CS, NS: STATE_TYPE;

begin
Synthesis and Simulation Design Guide 4-101

Synthesis and Simulation Design Guide
SYNC_PROC: process (CLOCK, RESET)
begin

if (RESET=’1’) then
CS <= S1;

elsif (CLOCK’event and CLOCK = ’1’) then
CS <= NS;
end if;

end process; --End SYNC_PROC
COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI <= ’0’;
CONTIG <= ’0’;
SINGLE <= ’0’;

if (A and not B and C) then
NS <= S2;

elsif (A and B and not C) then
NS <= S4;

else
NS <= S1;

end if;
.
.
.

4-102 Xilinx Development System

Architecture Specific Coding Style for Virtex
One-hot Encoded State Machine Verilog Example

 ///
// ONE_HOT.V Version 1.0 //
// Example of a one-hot encoded state machine‘ //
// Xilinx HDL Synthesis Design Guide for FPGAs //
// May 2001 //
//

module one_hot (CLOCK, RESET, A, B, C, D, E,
 SINGLE, MULTI, CONTIG);

input CLOCK, RESET;
input A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [6:0]

S1 = 7'b0000001,
S2 = 7'b0000010,
S3 = 7'b0000100,
S4 = 7'b0001000,
S5 = 7'b0010000,
S6 = 7'b0100000,
S7 = 7'b1000000;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

 always @ (posedge CLOCK or posedge RESET)
 begin
 if (RESET == 1'b1)
 CS = S1;
 else
 CS = NS;
end
Synthesis and Simulation Design Guide 4-103

Synthesis and Simulation Design Guide
always @ (CS or A or B or C or D or D or E)
begin

case (CS)
 S1 :
 begin
 MULTI = 1’b0;
 CONTIG = 1’b0;
 SINGLE = 1’b0;
 if (A && ~B && C)
 NS = S2;
 else if (A && B && ~C)
 NS = S4;
 else
 NS = S1;
end
 .
 .
 .

Accelerating FPGA Macros with One-Hot Approach
Most synthesis tools provide a setting for finite state machine (FSM)
encoding. This setting will prompt synthesis tools to automatically
extract state machines in your design and perform special optimiza-
tions to achieve better performance. The default option for FSM
encoding is “One-Hot” for most synthesis tools. However, this setting
can be changed to other encoding such as binary, gray, sequential, etc.

In FPGA Compiler II, FSM encoding is set to “One-Hot” by default.
To change this setting, select Synthesis-> Options -> Project Tab.
Available options are: One-Hot, Binary, and Zero One-Hot.

In LeonardoSpectrum, FSM encoding is set to “Auto” by default,
which differs depending on the Bit Width of your state machine. To
change this setting to a specific value, select the Input tab. Available
options are: Binary, One-Hot, Random, Gray, and Auto.

In Synplify, the Symbolic FSM Complier option can be accessed from
the main GUI. When set, the FSM Compiler extracts the state
machines as symbolic graphs, and then optimizes them by re-
encoding the state representations and generating a better logic opti-
mization starting point for the state machines. This usually results in
one-hot encoding. However, you may override the default on a
4-104 Xilinx Development System

Architecture Specific Coding Style for Virtex
register by register basis with the syn_encoding directive/attribute.
Available options are: One-Hot, Gray, Sequential, and Safe.

In XST, FSM encoding is set to Auto by default. Available options are:
Auto, One-Hot, Compact, Gray, Johnson, Sequential, and User.

Note XST will only recognize enumerated encoding if the encoding
option is set to User.

Summary of Encoding Styles
In the three previous examples, the state machine’s possible states are
defined by an enumeration type. Use the following syntax to define
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal});

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows.

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;

The state machine described in the three previous examples has
seven states. The possible values of the signals CS (Current_State)
and NS (Next_State) are S1, S2, ... , S6, S7.

To select an encoding style for a state machine, specify the state
vectors. Alternatively, you can specify the encoding style when the
state machine is compiled. Xilinx recommends that you specify an
encoding style. If you do not specify a style, your compiler selects a
style that minimizes the gate count. For the state machine shown in
the three previous examples, the compiler selected the binary
encoded style: S1=“000”, S2=”001”, S3=”010”, S4=”011”, S5=”100”,
S6=”101”, and S7=”110”.

You can use the FSM extraction tool to change the encoding style of a
state machine. For example, use this tool to convert a binary-encoded
state machine to a one-hot encoded state machine.

Note Refer to your synthesis tool documentation for instructions on
how to extract the state machine and change the encoding style.
Synthesis and Simulation Design Guide 4-105

Synthesis and Simulation Design Guide
Initializing the State Machine
When creating a state machine, especially when you use one-hot
encoding, add the following lines of code to your design to ensure
that the FPGA is initialized to a Set state.

• VHDL Example

SYNC_PROC: process (CLOCK, RESET)

begin

 if (RESET=’1’) then

CS <= s1;

• Verilog Example

always @ (posedge CLOCK or posedge RESET)

begin

if (RESET == 1’b 1)

CS = S1;

Alternatively, you can assign an INIT=S attribute to the initial
state register to specify the initial state. Refer to your synthesis
tool documentation for information on assigning this attribute.

In the Binary Encode State Machine example, the RESET signal
forces the S1 flip-flop to be preset (initialized to 1) while the other
flip-flops are cleared (initialized to 0).

Implementing Operators and Generate Modules
Xilinx FPGAs feature carry logic elements that can be used for
optimal implementation of operators and generate modules.
Synthesis tools infer the carry logic automatically when a specific
coding style or operator is used.

Adder and Subtracter
Synthesis tools will infer carry logic in Virtex/E/II and Spartan-II
devices when an adder and Subtracter is described (+ or - operator).
4-106 Xilinx Development System

Architecture Specific Coding Style for Virtex
Multiplier
Synthesis tools will utilize the carry logic by inferring XORCY,
MUXCY, and MULT_AND for Virtex, Virtex-E and Spartan-II when a
multiplier is described.

When a Virtex-II/II Pro part is being targeted an embedded 18x18
two’s complement multiplier primitive called a MULT18X18 will be
inferred by the synthesis tools. For synchronous multiplications,
LeonardoSpectrum, Synplify, and XST will infer a MULT18X18S
primitive.

LeonardoSpectrum features a pipeline multiplier that involves
putting levels of registers in the logic to introduce parallelism and, as
a result, improve speed. A certain construct in the input RTL source
code description is required to allow the pipelined multiplier feature
to take effect. This construct will infer XORCY, MUXCY, and
MULT_AND primitives for Virtex, Virtex-E, Spartan-II, Virtex-II, and
Virtex-II Pro. The following example shows this construct.

• VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity multiply is
generic (size :integer := 16; level:integer:=4);

port (
clk : in std_logic;
Ain : in std_logic_vector (size-1 downto 0);
Bin : in std_logic_vector (size-1 downto 0);
Qout : out std_logic_vector (2*size-1 downto 0));
end multiply;
architecture RTL of multiply is
type levels_of_registers is array (level-1 downto

0) of unsigned (2*size-1 downto 0);
signal reg_bank :levels_of_registers;
signal a, b : unsigned (size-1 downto 0);

begin
Qout <= std_logic_vector (reg_bank (level-1));
process
begin

wait until clk’event and clk = ’1’;
Synthesis and Simulation Design Guide 4-107

Synthesis and Simulation Design Guide
a <= unsigned(Ain);
b <= unsigned(Bin);
reg_bank (0) <= a * b;
for i in 1 to level-1 loop

reg_bank (i) <= reg_bank (i-1);
end loop;

end process;
end architecture RTL;

The following is a Synchronous Multiplier VHDL Example coded for
Synplify and XST:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity xcv2_mult18x18s is
Port (a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);
clk : in std_logic;
prod : out std_logic_vector(15 downto 0));

end xcv2_mult18x18s;

architecture arch_ xcv2_mult18x18s of
xcv2_mult18x18s is

begin
process(clk) is begin
if clk’event and clk = ’1’ then

prod <= a*b;
end if;

end process;
end arch_ xcv2_mult18x18s;
4-108 Xilinx Development System

Architecture Specific Coding Style for Virtex
The following is a Synchronous Multiplier VHDL Example coded for
LeonardoSpectrum:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity xcv2_mult18x18s is
 port(clk: in std_logic;
 a: in std_logic_vector(7 downto 0);
 b: in std_logic_vector(7 downto 0);
 prod: out std_logic_vector(15 downto 0));
end xcv2_mult18x18s;

architecture arch_ xcv2_mult18x18s of
xcv2_mult18x18 is

 signal reg_prod : std_logic_vector(15 downto 0);
begin
process(clk)
begin
if(rising_edge(clk))then

reg_prod <= a * b;
prod <= reg_prod;

end if;
end process;
end arch_ xcv2_mult18x18s;
Synthesis and Simulation Design Guide 4-109

Synthesis and Simulation Design Guide
• Verilog Example.

module multiply (clk, ain, bin, q);
parameter size = 16;
parameter level = 4;
input clk;
input [size-1:0] ain, bin;
output [2*size-1:0] q;
reg [size-1:0] a, b;
reg [2*size-1:0] reg_bank [level-1:0];
integer i;
always @(posedge clk)

begin
a <= ain;
b <= bin;

end
always @(posedge clk)

reg_bank[0] <= a * b;
always @(posedge clk)

for (i = 1;i < level; i=i+1)
reg_bank[i] <= reg_bank[i-1];

assign q = reg_bank[level-1];
endmodule // multiply

The following is a Synchronous Multiplier Verilog Example coded for
Synplify and XST:

module mult_sync(a,b,clk,prod);
 input [7:0] a;
 input [7:0] b;
 input clk;
 output [15:0] prod;
 reg [15:0] prod;

 always @(posedge clk) prod <= a*b;
endmodule
4-110 Xilinx Development System

Architecture Specific Coding Style for Virtex
The following is a Synchronous Multiplier Verilog Example coded for
LeonardoSpectrum:

module xcv2_mult18x18s (a,b,clk,prod);
 input [7:0] a;
 input [7:0] b;
 input clk;
 output [15:0] prod;
 reg [15:0] reg_prod, prod;

 always @(posedge clk) begin
 reg_prod <= a*b;
 prod <= reg_prod;
endmodule

Counters
When describing a counter in HDL, the arithmetic operator ’+’ will
infer the carry chain. The synthesis tools will then infer the MUXCY
element for the counter.

count <= count + 1; -- This will infer MUXCY

This implementation will provide a very effective solution especially
for all purpose counters.

Below is an example of a loadable binary counter:
Synthesis and Simulation Design Guide 4-111

Synthesis and Simulation Design Guide
• VHDL Example

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

port (d : in std_logic_vector (7 downto 0);

ld, ce, clk, rst : in std_logic;

q : out std_logic_vector (7 downto 0));

end counter;

architecture behave of counter is

signal count : std_logic_vector (7 downto 0);

begin

 process (clk, rst)

 begin

if rst = ’1’ then

count <= (others => ’0’);

elsif rising_edge(clk) then

if ld = ’1’ then

count <= d;

elsif ce = ’1’ then

count <= count + ’1’;

end if;

end if;

end process;

q <= count;

end behave;
4-112 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example

module counter(d, ld, ce, clk, rst, q);
input [7:0] d;
input ld, ce, clk, rst;
output [7:0] q;
reg [7:0] count;
always @(posedge clk or posedge rst)

begin
if (rst)

count <= 0;
else if (ld)

count <= d;
else if (ce)

count <= count + 1;
end

assign q = count;
endmodule

For applications that require faster counters, LFSR can implement
high performance and area efficient counters. LFSR will require very
minimal logic (only an XOR or XNOR feedback).

For smaller counters it is also effective to use the Johnson encoded
counters. This type of counter does not use the carry chain but
provides a fast performance.

The following is an example of a sequence for a 3 bit johnson counter.

000

001

011

111

110

100
Synthesis and Simulation Design Guide 4-113

Synthesis and Simulation Design Guide
• VHDL Example

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity johnson is

generic (size : integer := 3);

port (clk:in std_logic;
reset:in std_logic;
qout:out std_logic_vector(size-1 downto 0));

end johnson;

architecture RTL of johnson is

signal q : std_logic_vector(size-1 downto 0);

begin -- RTL

process(clk, reset)

begin

if reset = ’1’ then

q <= (others => ’0’);

elsif clk’event and clk=’1’ then

for i in 1 to size - 1 loop

q(i) <= q(i-1);

end loop; -- i

q(0) <= not q(size-1);

end if;

end process;

qout <= q;

end RTL;
4-114 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example

module johnson (clk, reset, q);

parameter size = 4;

input clk, reset;

output [size-1:0] q;

reg [size-1:0] q;

integer i;

always @(posedge clk or posedge reset)

if (reset)

q <= 0;

else

begin

for (i=1;i<size;i=i+1)

q[i] <= q[i-1];

q[0] <= ~q[size-1];

end

endmodule // johnson
Synthesis and Simulation Design Guide 4-115

Synthesis and Simulation Design Guide
Comparator
Magnitude comparators ’>’ or ’<’ will infer carry chain logic and
result in fast implementations in Xilinx devices. Equality comparator
’==’ will be implemented using LUTs.

• VHDL Example

-- Unsigned 8-bit greater or equal comparator.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity compar is

port(A,B : in std_logic_vector(7 downto 0);

 cmp : out std_logic);

end compar;

architecture archi of compar is

begin

cmp <= ’1’ when A >= B else ’0’;

end archi;

• Verilog example

// Unsigned 8-bit greater or equal comparator.

module compar(A, B, cmp);

input [7:0] A;

input [7:0] B;

output cmp;

assign cmp = A >= B ? 1’b1 : 1’b0;

endmodule
4-116 Xilinx Development System

Architecture Specific Coding Style for Virtex
Encoder and Decoders
Synthesis tools might infer MUXF5 and MUXF6 for encoder and
decoder in Virtex/E/II and Spartan-II devices. Virtex-II devices
feature additional components, MUXF7 and MUXF8 to use with the
encoder and decoder.

LeonardoSpectrum will infer MUXCY when an if-then-else priority
encoder is described in the code. This will result in a faster encoder.

LeonardoSpectrum Priority Encoding HDL Example

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity prior is

generic (size: integer := 8);
port(
clk: in std_logic;

cond1 : in std_logic_vector(size downto 1);
cond2 : in std_logic_vector(size downto 1);
data : in std_logic_vector(size downto 1);
q : out std_logic);

end prior;

architecture RTL of prior is
signal data_ff, cond1_ff, cond2_ff: std_logic_vector(size

downto 1);
begin

process(clk)
begin
if clk’event and clk= ’1’ then

data_ff <= data;
cond1_ff <= cond1;
cond2_ff <= cond2;

end if;
end process;
process(clk)

begin
if (clk’event and clk = ’1’) then

if (cond1_ff(1)= ’1’ and cond2_ff(1)= ’1’) then
q <= data_ff(1);
Synthesis and Simulation Design Guide 4-117

Synthesis and Simulation Design Guide
elsif (cond1_ff(2)= ’1’ and cond2_ff(2)= ’1’) then
q <= data_ff(2);

elsif (cond1_ff(3)= ’1’ and cond2_ff(3)=’1’) then
q <= data_ff(3);

elsif (cond1_ff(4)= ’1’ and cond2_ff(4)= ’1’) then
q <= data_ff(4);

elsif (cond1_ff(5)= ’1’ and cond2_ff(5)=’1’) then
q <= data_ff(5);

elsif (cond1_ff(6)= ’1’ and cond2_ff(6)=’1’) then
q <= data_ff(6);

elsif (cond1_ff(7)= ’1’ and cond2_ff(7)= ’1’) then
q <= data_ff(7);

elsif (cond1_ff(8)= ’1’ and cond2_ff(8)=’1’) then
q <= data_ff(8);

else
q <= ’0’;

end if;
end if;

end process;
end RTL;
4-118 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Verilog Example.

module prior(clk, cond1, cond2, data, q);
parameter size = 8;
input clk;
input [1:size] data, cond1, cond2 ;
output q;
reg [1:size] data_ff, cond1_ff, cond2_ff;
reg q;
always @(posedge clk)
begin

data_ff = data;
cond1_ff = cond1;
cond2_ff = cond2;

end
always @(posedge clk)

if (cond1_ff[1] && cond2_ff[1])
q = data_ff[1];

else if (cond1_ff[2] && cond2_ff[2])
q = data_ff[2];

else if (cond1_ff[3] && cond2_ff[3])
q = data_ff[3];

else if (cond1_ff[4] && cond2_ff[4])
q = data_ff[4];

else if (cond1_ff[5] && cond2_ff[5])
q = data_ff[5];

else if (cond1_ff[6] && cond2_ff[6])
q = data_ff[6];

else if (cond1_ff[7] && cond2_ff[7])
q = data_ff[7];

else if (cond1_ff[8] && cond2_ff[8])
q = data_ff[8];

else q = 1’b0;
endmodule // prior
Synthesis and Simulation Design Guide 4-119

Synthesis and Simulation Design Guide
Implementing Memory
Virtex/E and Spartan-II FPGAs provide distributed on-chip RAM or
ROM memory capabilities. CLB function generators can be config-
ured as ROM (ROM16X1, ROM32X1); edge-triggered, single-port
(RAM16X1S, RAM32X1S) RAM; or dual-port (RAM16x1D) RAM.
Level sensitive RAMs are not available for the Virtex/E and Spartan-
II families.

Virtex-II CLB function generators are much larger and can be config-
ured as larger ROM and edge-triggered, single port and dual port
RAM. Available ROM primitive components in Virtex-II are
ROM16X1 and ROM32X1. Available single port RAM primitives
components in Virtex-II are RAM16X1S, RAM16X2S, RAM16X4S,
RAM16X8S, RAM32X1S, RAM32X2S, RAM32X4S, RAM32X8S,
RAM64X1S, RAM64X2S, and RAM128X1S. Available dual port RAM
primitive components in Virtex-II are RAM16X1D, RAM32X1D, and
RAM64X1D.

In addition to distributed RAM and ROM capabilities, Virtex/E/II
and Spartan-II FPGAs provide edge-triggered Block SelectRAM+ in
large blocks. Virtex/E and Spartan-II devices provide 4096(4k) bits:
RAMB4_Sn and RAMB4_Sm_Sn. Virtex-II devices provide larger
Block SelectRAM+ in 16384 (16k) bit size: RAMB16_Sn and
RAMB16_Sm_Sn, where Sm and Sn are configurable port widths. See
the “Libraries Guide” for more information on these components.

The edge-triggered capability simplifies system timing and provides
better performance for RAM-based designs. This RAM can be used
for status registers, index registers, counter storage, constant coeffi-
cient multipliers, distributed shift registers, LIFO stacks, latching, or
any data storage operation. The dual-port RAM simplifies FIFO
designs.

Implementing Block SelectRAM+
Virtex/E/II and Spartan-II FPGAs incorporate several large Block
SelectRAM+ memories. These complement the distributed Selec-
tRAM+ that provide shallow RAM structures implemented in CLBs.
The Block SelectRAM is a True Dual-Port RAM which allows for
large, discrete blocks of memory.

Block SelectRAM+ memory blocks are organized in columns. All
Virtex and Spartan-II devices contain two such columns, one along
4-120 Xilinx Development System

Architecture Specific Coding Style for Virtex
each vertical edge. In Virtex-E, the Block SelectRAM+ column is
inserted every 12 CLB columns. In Virtex-EM (Virtex-E with extended
memory), the Block SelectRAM+ column is inserted every 4 CLB
columns. In Virtex-II, there are at least four Block SelectRAM+
columns and a column is inserted every 12 CLB columns in larger
devices.

Instantiating Block SelectRAM+

The following coding examples provide VHDL and Verilog coding
styles for FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.

Instantiating Block SelectRAM+ VHDL Example

• FPGA Compiler II, LeonardoSpectrum, and XST

With FPGA Compiler II, LeonardoSpectrum, and XST you can
instantiate a RAMB* cell as a blackbox. The INIT_** attribute can
be passed as a string in the HDL file as well as the script file. The
VHDL Code Example below shows how to pass INIT in the
VHDL file.

♦ LeonardoSpectrum

With LeonardoSpectrum you can pass an INIT string in a
LeonardoSpectrum command script. The following code
sample illustrates this method.

set_attribute -instance "inst_ramb4_s4" -name
INIT_00 -type string -value
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100"

library IEEE;
use IEEE.std_logic_1164.all;

entity spblkrams is
port(CLK : in std_logic;
EN : in std_logic;
ST : in std_logic;
WE : in std_logic;
ADDR : in std_logic_vector(11 downto 0);
DI : in std_logic_vector(15 downto 0);
Synthesis and Simulation Design Guide 4-121

Synthesis and Simulation Design Guide
DORAMB4_S4 : out std_logic_vector(3 downto 0);
DORAMB4_S8 : out std_logic_vector(7 downto 0));

end;
architecture struct of spblkrams is
component RAMB4_S4
port (DI : in STD_LOGIC_VECTOR (3 downto 0);

EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR (9 downto 0);

DO : out STD_LOGIC_VECTOR (3 downto 0));
end component;
component RAMB4_S8
port (DI : in STD_LOGIC_VECTOR (7 downto 0);

EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR (8 downto 0);

DO : out STD_LOGIC_VECTOR (7 downto 0));
end component;
attribute INIT_00: string;
attribute INIT_00 of INST_RAMB4_S4: label is
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100";
attribute INIT_00 of INST_RAMB4_S8: label is
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100";
begin

INST_RAMB4_S4 : RAMB4_S4 port map (
DI => DI(3 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(9 downto 0),
DO => DORAMB4_S4
);

INST_RAMB4_S8 : RAMB4_S8 port map (
DI => DI(7 downto 0),
EN => EN,
4-122 Xilinx Development System

Architecture Specific Coding Style for Virtex
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(8 downto 0),
DO => DORAMB4_S8
);

end struct;

♦ Synplify

With Synplify you can instantiate the RAMB* cells by using
the Xilinx family library supplied with Synplify. The
following code example will illustrate instantiation of a
RAMB* cell.

library IEEE;
use IEEE.std_logic_1164.all;
library virtex;
use virtex.components.all;
library synplify;
use synplify.attributes.all;

entity RAMB4_S8_synp is
generic (INIT_00, INIT_01 : string :=

"000
00000000000000");

port (WE, EN, RST, CLK : in std_logic;
ADDR : in std_logic_vector(8 downto 0);
DI : in std_logic_vector(7 downto 0);
DO : out std_logic_vector(7 downto 0));

end RAMB4_S8_synp;
architecture XILINX of RAMB4_S8_synp is

component RAMB4_S8
port (WE, EN, RST, CLK: in STD_LOGIC;

ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));

end component;
attribute xc_props of u1 : label is "INIT_00=" &
INIT_00 & ",INIT_01=" & INIT_01;
begin
U1 : RAMB4_S8
Synthesis and Simulation Design Guide 4-123

Synthesis and Simulation Design Guide
port map (WE => WE, EN => EN, RST => RST, CLK =>
CLK, ADDR => ADDR, DI => DI, DO => DO);

end XILINX;

library IEEE;
use IEEE.std_logic_1164.all;

entity block_ram_ex is
port (CLK, WE : in std_logic;

ADDR : in std_logic_vector(8 downto 0);
DIN : in std_logic_vector(7 downto 0);
DOUT : out std_logic_vector(7 downto 0));

end block_ram_ex;

architecture XILINX of block_ram_ex is
component RAMB4_S8_synp
generic(INIT_00, INIT_01 : string :=

"000
00000000000000");
port (WE, EN, RST, CLK: in STD_LOGIC;

ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));

end component;
begin
U1 : RAMB4_S8_synp
generic map (
INIT_00 =>
"0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0
23456789ABCDEF",
INIT_01 =>
"FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210F
DCBA9876543210")
port map (WE => WE, EN => ’1’, RST => ’0’, CLK =>
CLK, ADDR => ADDR, DI => DIN,

DO => DOUT);
end XILINX;
4-124 Xilinx Development System

Architecture Specific Coding Style for Virtex
Instantiating Block SelectRAM+ Verilog Example

Verilog examples of Block SelectRAM+ instantiation are described
below.

• FPGA Compiler II

With FPGA Compiler II the INIT attribute has to be set in the
HDL code. See the following example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),
.ADDR(ADDR), .DI(DIN), .DO(DOUT));
//synopsys attribute

INIT_00 “1F1E1D1C1B1A1918171615141312111

00F0E0D0C0B0A0980706050403020100”

endmodule

• LeonardoSpectrum

With LeonardoSpectrum the INIT attribute can be set in the HDL
code or in the command line. See the following example.

set_attribute -instance "inst_ramb4_s4" -name
INIT_00 -type string value
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080
06050403020100"

• LeonardoSpectrum block_ram_ex Verilog example

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;
RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),
.ADDR(ADDR), .DI(DIN), .DO(DOUT));
Synthesis and Simulation Design Guide 4-125

Synthesis and Simulation Design Guide
//exemplar attribute U0 INIT_00
1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A090

80706050403020100

endmodule

• Synplicity block_ram_ex Verilog example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;
// synthesis translate_off
defparam

U0.INIT_00 =

256’h0123456789ABCDEF0123456789ABCDEF0

123456789ABCDEF0123456789ABCDEF,

U0.INIT_01 =

256’hFEDCBA9876543210FEDCBA9876543210FED

CBA9876543210FEDCBA9876543210;

// synthesis translate_on

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT))

/* synthesis

xc_props="INIT_00=0123456789ABCDEF0123

456789ABCDEF0123456789ABCDEF0123456789ABCDEF,

INIT_01=FEDCBA9876543210FEDCBA9876543210FEDCBA

9876543210FEDCBA9876543210"*;

endmodule
4-126 Xilinx Development System

Architecture Specific Coding Style for Virtex
• XST

With XST, the INIT attribute must set in the HDL code. See the
following example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT));

//synthesis attribute INIT_00 of U0 is
“1F1E1D1C1B1A1918171615141312111
00F0E0D0C0B0A0980706050403020100”
endmodule

Instantiating Block SelectRAM+ in Virtex-II

Virtex-II devices provide 16384-bit data memory and 2048-bit parity
memory, totaling to 18Mbit memory in each Block SelectRAM+.
These RAMB16_Sn (single port) and RAMB16_Sm_Sn (dual port)
blocks are configurable to various width and depth. The Virtex-II
Handbook provides VHDL and Verilog templates for Virtex-II Block
SelectRAM+ instantiations. You can also refer to the “Libraries Guide”
for a more detailed component and attribute description.

Inferring Block SelectRAM+

The following coding examples provide VHDL and Verilog coding
styles for FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.
For Virtex/E and Spartan-II devices, the RAMB4_Sn or
RAMB4_Sm_Sn will be inferred. For Virtex-II devices, RAMB16_Sn
or RAMB16_Sm_Sn will be inferred.
Synthesis and Simulation Design Guide 4-127

Synthesis and Simulation Design Guide
Inferring Block SelectRAM VHDL Example

Block SelectRAM+ can be inferred by some synthesis tools. Inferred
RAM must be initialized in the UCF file. Not all Block SelectRAM+
features can be inferred. Those features will be pointed out in this
section.

• FPGA Compiler II

RAM inference is not supported by FPGA Compiler II.

• LeonardoSpectrum

LeonardoSpectrum can map your memory statements in Verilog or
VHDL to the Block SelectRAMs on all Virtex devices. The following is
a list of the details for Block SelectRAM+ in LeonardoSpectrum.

♦ Virtex Block SelectRAMs are completely synchronous - both
read and write operations are synchronous.

♦ LeonardoSpectrum infers single port RAMs - RAMs with
both read and write on the same address - and dual port
RAMs - RAMs with separate read and write addresses.

♦ Virtex Block SelectRAMs support RST (reset) and ENA
(enable) pins. Currently, LeonardoSpectrum does not infer
RAMs which use the functionality of the RST and ENA pins.

♦ By default, RAMs will be mapped to Block SelectRAM+ if
possible. You can disable mapping to Block SelectRAM+ by
setting the attribute block_ram to false.
4-128 Xilinx Development System

Architecture Specific Coding Style for Virtex
• LeonardoSpectrum VHDL Example.

library ieee, exemplar;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ram_example1 is
generic(data_width: integer:= 8;

address_width:integer := 8;
mem_depth: integer:= 256);

port (
data: in std_logic_vector(data_width-1 downto 0);
address: in unsigned(address_width-1 downto 0);
we, clk: in std_logic;
q: out std_logic_vector(data_width-1 downto 0)
);

end ram_example1;

architecture ex1 of ram_example1 is

type mem_type is array (mem_depth-1 downto 0) of
std_logic_vector (data_width-1 downto 0);

signal mem: mem_type;
signal raddress : unsigned(address_width-1

downto 0);
begin
l0: process (clk, we, address)
begin
if (clk = ’1’ and clk’event) then

raddress <= address;
if (we = ’1’) then

mem(to_integer(raddress)) <= data;
end if;

end if;
end process;
l1: process (clk, address)
begin
if (clk = ’1’ and clk’event) then

q <= mem(to_integer(address));
end if;

end process;
end ex1;
Synthesis and Simulation Design Guide 4-129

Synthesis and Simulation Design Guide
• LeonardoSpectrum VHDL Example dual port Block SelectRAM,

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity dualport_ram is
 port (clka : in std_logic;
 clkb : in std_logic;
 wea : in std_logic;
 addra : in std_logic_vector(4 downto 0);
 addrb : in std_logic_vector(4 downto 0);
 dia : in std_logic_vector(3 downto 0);
 dob : out std_logic_vector(3 downto 0));
end dualport_ram;

architecture dualport_ram_arch of dualport_ram is
 type ram_type is array (31 downto 0) of

std_logic_vector (3 downto 0);
 signal ram : ram_type;

 attribute block_ram : boolean;
 attribute block_ram of RAM : signal is TRUE;

begin
 write: process (clka)
 begin
 if (clka’event and clka = ’1’) then
 if (wea = ’1’) then
 ram(conv_integer(addra)) <= dia;
 end if;
 end if;
 end process write;

 read: process (clkb)
 begin
 if (clkb’event and clkb = ’1’) then
 dob <= ram(conv_integer(addrb));
 end if;
 end process read;

end dualport_ram_arch;
4-130 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Synplify

You can enable the usage of Block SelectRAMs by setting the
attribute syn_ramstyle to "block_ram". Place the attribute on the
output signal driven by the inferred RAM. Remember to include
the range of the output signal (bus) as part of the name.

For example,

define_attribute {a|dout[3:0]} syn_ramstyle
"block_ram"

The following are limitations of inferring Block selectRAMs:

♦ ENA/ENB pins currently are inaccessible. The are always
tied to “1”.

♦ RSTA/RSTB pins currently are inaccessible. They are always
inactive.

♦ Automatic inference is not yet supported. The syn_ramstyle
attribute is required for inferring Block SelectRAMs.

♦ Initialization of RAMs is not supported.

♦ Dual port with Read-Write on a port is not supported.

• Synplify VHDL Example.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_example1 is
generic(data_width: integer:= 8;

address_width:integer := 8;
mem_depth: integer:= 256);

port (data: in std_logic_vector(data_width-1
downto 0);
address: in std_logic_vector(address_width-1
downto 0);

we, clk: in std_logic;
q: out std_logic_vector(data_width-1 downto

0));
end ram_example1;

architecture rtl of ram_example1 is
Synthesis and Simulation Design Guide 4-131

Synthesis and Simulation Design Guide
type mem_array is array (mem_depth-1 downto 0)
of std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is

"block_ram";
signal raddress :

std_logic_vector(address_width-1
downto 0);

begin
l0: process (clk)
begin
if (clk = ’1’ and clk’event) then
raddress <= address;

if (we = ’1’) then
mem(CONV_INTEGER(address)) <= data;

end if;
end if;
end process;
q <= mem(CONV_INTEGER(raddress));

end rtl;

• VHDL Example for Synplify 7.0

In Synplify 7.0, the same conditions exist as with the previous
release except that there is a new coding style for Block Select
RAM inference in VHDL.
4-132 Xilinx Development System

Architecture Specific Coding Style for Virtex
The following is a Synplify 7.0 VHDL Example.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_example1 is
generic(data_width: integer:= 8;
 address_width:integer := 8;
 mem_depth: integer:= 256);
port (data: in std_logic_vector(data_width-1 downto

0);
 address: in std_logic_vector(address_width-1

downto 0);
 en, we, clk: in std_logic;
 q: out std_logic_vector(data_width-1 downto

0));
end ram_example1;

architecture rtl of ram_example1 is

type mem_array is array (mem_depth-1 downto 0) of
std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is

"block_ram";
signal raddress : std_logic_vector(address_width-1

downto 0);

begin
l0: process (clk) begin

 if (clk = ’1’ and clk’event) then
 if (we = ’1’) then
 mem(CONV_INTEGER(address)) <= data;
 q <= mem(CONV_INTEGER(address));
 end if;
 end if;
end process;
end rtl;
Add after the first Synplify example:
Synthesis and Simulation Design Guide 4-133

Synthesis and Simulation Design Guide
• Verilog Example for Synplify 7.0

In Synplify 7.0, the same conditions exist as with the previous
release except that there is a new coding style for Block Select
RAM inference in Verilog.

The following is a Synplify 7.0 VHDL Example.

module sp_ram(din, addr, we, clk, dout);

parameter data_width=16,address_width=10,
mem_elements=600;

input [data_width-1:0] din;
input [address_width-1:0] addr;
input rst, we, clk;
output [data_width-1:0] dout;

reg [data_width-1:0] mem[mem_elements-1:0]
/*synthesis syn_ramstyle = "block_ram" */;

reg [data_width-1:0] dout;

always @(posedge clk)
begin
if (we)

mem[addr] <= din;
dout <= mem[addr];

end
endmodule
4-134 Xilinx Development System

Architecture Specific Coding Style for Virtex
• XST

XST can infer both dual and single port Block Select RAM+.

♦ Single Port Block Memory Inference:

XST does not infer single port block memory if a reset pin has
been used, or an enable pin has been used.

The following is an XST single port Block Select RAM+
VHDL example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ram_example1 is
generic(data_width: integer:= 8;
 address_width:integer := 9;
 mem_depth: integer:= 512);
port (data: in std_logic_vector(data_width-1 downto 0);
 address: in unsigned(address_width-1 downto 0);
 we, clk: in std_logic;
 q: out std_logic_vector(data_width-1 downto 0));
end ram_example1;
architecture ex1 of ram_example1 is
type mem_type is array (mem_depth-1 downto 0) of std_logic_vector
(data_width-1 downto 0);
signal mem: mem_type;
signal raddress : unsigned(address_width-1 downto 0);

begin
l0: process (clk, we, address)
 begin
 if (clk’event and clk = ’1’) then
 raddress <= address;
 if (we = ’1’) then
 mem(to_integer(address)) <= data;
 end if;
 end if;
end process;

q <= mem(to_integer(raddress));
end ex1;
Synthesis and Simulation Design Guide 4-135

Synthesis and Simulation Design Guide
♦ Dual Port Block Memory Inference :

XST infers some functions of Dual Port Block SelectRAM. In
general, XST does not infer Block SelectRAMs if aspect ratios
of port A and port B are different; if independent clocks have
been used for port A and port B; if an enable pin or a reset pin
has been used in the memory blocks; or if a write enable pin
is used in both the ports.

The following is an XST dual port Block Select RAM+ VHDL
example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_ram_example1 is
generic (data_width : integer := 48;
 address_width : integer := 8;
 mem_depth : integer := 256);
port (dia: in std_logic_vector(data_width-1 downto 0);
 address_a, address_b: in unsigned(address_width-1 downto 0);
 we, clk: in std_logic;
 doa : out std_logic_vector(data_width-1 downto 0);
 dob : out std_logic_vector(data_width-1 downto 0));
end dual_port_ram_example1;
architecture ex1 of dual_port_ram_example1 is
type mem_type is array (mem_depth-1 downto 0) of

std_logic_vector(data_width-1 downto 0);
signal mem : mem_type;
signal raddress_a : unsigned(address_width-1 downto 0);
signal raddress_b : unsigned(address_width-1 downto 0);
begin
process (clk)
 begin
 if (clk’event and clk = ’1’) then
 raddress_a <= address_a;
 raddress_b <= address_b;
 if (we = ’1’) then
 mem(to_integer(address_a)) <= dia;
 end if;
 end if;
 end process;
4-136 Xilinx Development System

Architecture Specific Coding Style for Virtex
doa <= mem(to_integer(raddress_a));
dob <= mem(to_integer(raddress_b));

end ex1;

Inferring Block SelectRAM Verilog Example

The following coding examples provide Verilog coding styles for
FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II

FPGA Compiler II does not infer RAMs. All RAMs must be
instantiated via primitives or cores.

• LeonardoSpectrum

Refer to the VHDL example in the section above for restrictions
in inferring Block SelectRAM+.

• LeonardoSpectrum Verilog Example

module ram(din, we, addr, clk, dout);
parameter data_width=7,

address_width=6,mem_elements=64;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0];

/* Exemplar attribute mem block_ram FALSE. This
comment sets the block_ram attribute to FALSE on
the signal mem.The block_ram attribute must be
set on the memory signal.*/

reg [address_width - 1:0] addr_reg;
always @(posedge clk)
begin

addr_reg <= addr;
if (we)
mem[addr] <= din;

end
assign dout = mem[addr_reg];

endmodule
Synthesis and Simulation Design Guide 4-137

Synthesis and Simulation Design Guide
• Synplify Verilog Example

module sp_ram(din, addr, we, clk, dout);
parameter data_width=16,

address_width=10,mem_elements=600;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0] /
*synthesis syn_ramstyle = "block_ram" */;
reg [address_width - 1:0] addr_reg;
always @(posedge clk)
begin

addr_reg <= addr;
if (we)

mem[addr] <= din;
end
assign dout = mem[addr_reg];

endmodule
4-138 Xilinx Development System

Architecture Specific Coding Style for Virtex
• XST

Refer to the VHDL example in the section above for restrictions
in inferring Block SelectRAM+.

♦ The following is an XST single port Block select RAM+
Verilog example:

module ram(din, we, addr, clk, dout);
 parameter data_width=7,
 address_width=6,mem_elements=64;
 input [data_width-1:0] din;
 input [address_width-1:0] addr;
 input we, clk;
 output [data_width-1:0] dout;
 reg [data_width-1:0] mem[mem_elements-1:0];
 reg [address_width - 1:0] addr_reg;

 always @(posedge clk)
 begin
 addr_reg <= addr;
 if (we) mem[addr] <= din;
 end

 assign dout = mem[addr_reg];
endmodule
Synthesis and Simulation Design Guide 4-139

Synthesis and Simulation Design Guide
♦ The following is an XST Dual port Block Select RAM+ Verilog
example:

module dp_ram(din, we, addr_a, addr_b, clk, doa, dob);
 parameter data_width=48,
 address_width=8,
 mem_depth=256;
 input [data_width-1:0] din;
 input [address_width-1:0] addr_a, addr_b;
 input we, clk;
 output [data_width-1:0] doa, dob;

 reg [data_width-1:0] mem[mem_depth-1:0];
 reg [address_width - 1:0] addr_reg_a, addr_reg_b;

 always @(posedge clk)
 begin
 addr_reg_a <= addr_a;
 addr_reg_b <= addr_b;
 if (we) mem[addr_a] <= din;
 end

 assign doa = mem[addr_reg_a];
 assign dob = mem[addr_reg_b];
endmodule
4-140 Xilinx Development System

Architecture Specific Coding Style for Virtex
Implementing Distributed SelectRAM+

Distributed SelectRAM+ can either be instantiated or inferred.The
following sections describe and give examples of both instantiating
and inferring distributed SelectRAM+.

The following RAM Primitives are available for instantiation.

• Static synchronous single-port RAM (RAM16x1S, RAM32x1S)

Additional single-port RAM available for Virtex-II devices only:
RAM16X2S, RAM16X4S, RAM16X8S, RAM32X1S, RAM32X2S,
RAM32X4S, RAM32X8S, RAM64X1S, RAM64X2S, and
RAM128X1S.

• Static synchronous dual-port RAM (RAM16x1D, RAM32x1D)

Additional dual-port RAM available dual port RAM available for
Virtex-II devices only: RAM64X1D.

For more information on distributed SelectRAM, refer to the
“Libraries Guide”.

Instantiating Distributed SelectRAM+ in VHDL

The following coding examples provide VHDL coding hints for
FPGA Compiler II, LeonardoSpectrum, Synplify and XST.

• FPGA Compiler II and XST

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

--use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));
Synthesis and Simulation Design Guide 4-141

Synthesis and Simulation Design Guide
end ram_16x4s;

architecture xilinx of ram_16x4s is

component RAM16x1S is

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0 : in std_logic;

WE, WCLK : in std_logic);

end component;

attribute INIT: string;

attribute INIT of U0: label is "FFFF";

attribute INIT of U1: label is "ABCD";

attribute INIT of U2: label is "BCDE";

attribute INIT of U3: label is "CDEF";

begin

U0 : RAM16x1S

port map (O => o(0), WE => we, WCLK => clk, D
=> d(0), A0 =>

a(0), A1 => a(1), A2 => a(2), A3 => a(3));

U1 : RAM16x1S

port map (O => o(1), WE => we, WCLK => clk, D

=> d(1), A0 => a(0), A1 => a(1), A2 => a(2),
A3 => a(3));

U2 : RAM16x1S

port map (O => o(2), WE => we, WCLK => clk, D

=> d(2), A0 => a(0), A1 => a(1), A2 => a(2),
A3 => a(3));

U3 : RAM16x1S

port map (O => o(3), WE => we, WCLK => clk, D
=> d(3), A0 =>
4-142 Xilinx Development System

Architecture Specific Coding Style for Virtex
a(0), A1 => a(1), A2 => a(2), A3 => a(3));

end xilinx;

• LeonardoSpectrum

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

entity ram_16x1s is

generic (init_val : string := "0000");

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0: in std_logic;

WE, CLK : in std_logic);

end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute INIT: string;

attribute INIT of u1 : label is init_val;

component RAM16X1S is port (O : out std_logic;

D : in std_logic;

WE: in std_logic;

WCLK: in std_logic;

A0: in std_logic;

A1: in std_logic;

A2: in std_logic;

A3: in std_logic);

end component;

begin
Synthesis and Simulation Design Guide 4-143

Synthesis and Simulation Design Guide
U1 : RAM16X1S port map (O => O,WE => WE,WCLK =>
CLK,D => D,A0 => A0,A1 => A1,A2 => A2,A3 =>
A3);

end xilinx;

library IEEE;

use IEEE.std_logic_1164.all;

--use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is

component ram_16x1s

generic (init_val: string := "0000");

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0 : in std_logic;

WE, CLK : in std_logic);

end component;

begin

U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk,

D => d(0), A0 => a(0), A1 => a(1),

A2 => a(2),A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")
4-144 Xilinx Development System

Architecture Specific Coding Style for Virtex
port map (O => o(1), WE => we, CLK => clk,

D => d(1), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")

port map (O => o(2), WE => we, CLK => clk,

D => d(2), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")

port map (O => o(3), WE => we, CLK => clk,

D => d(3), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

end xilinx;

• Synplify

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

library virtex;

use virtex.components.all;

library synplify;

use synplify.attributes.all;

entity ram_16x1s is

generic (init_val : string := "0000");

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0: in std_logic;

WE, CLK : in std_logic);
Synthesis and Simulation Design Guide 4-145

Synthesis and Simulation Design Guide
end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute xc_props: string;

attribute xc_props of u1 : label is "INIT=" &
init_val;

begin

U1 : RAM16X1S port map (O => O, WE => WE, WCLK
=>

CLK, D => D, A0 => A0, A1 => A1, A2 => A2, A3 =>
A3);

end xilinx;

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk : in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is
4-146 Xilinx Development System

Architecture Specific Coding Style for Virtex
component ram_16x1s

generic (init_val: string := "0000");

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0 : in std_logic;

WE, CLK : in std_logic);

end component;

begin

U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk,

D =>d(0), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")

port map (O => o(1), WE => we, CLK => clk,

D => d(1), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")

port map (O => o(2), WE => we, CLK => clk,

D => d(2), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")

port map (O => o(3), WE => we, CLK => clk,

D => d(3), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

end xilinx;
Synthesis and Simulation Design Guide 4-147

Synthesis and Simulation Design Guide
Instantiating Distributed SelectRAM+ in Verilog

The following coding provides Verilog coding hints for FPGA
Compiler II, Synplify, LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation

// -- the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for

// Post P&R simulation.

// synopsys translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA",

RAM2.INIT="FFFF", RAM3.INIT="5555";

// synopsys translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

// Use the xc_props attribute

// to pass the INIT property

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK)) ;

/* synopsys attribute INIT "5555" */
4-148 Xilinx Development System

Architecture Specific Coding Style for Virtex
RAM16X1S RAM2 (.O (DATA_OUT[2]),
.D (DATA_BUS[2]),.A3 (ADDR[3]),
.A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "FFFF" */

RAM16X1S RAM1 (.O (DATA_OUT[1]),
.D (DATA_BUS[1]),.A3 (ADDR[3]),
.A2 (ADDR[2]), .A1 (ADDR[1]),.A0 (ADDR[0]),
.WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "AAAA" */

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D
(DATA_BUS[0]),.A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK));

/* synopsys attribute INIT "0101" */

endmodule

module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);

output O;

input D;

input A3;

input A2;

input A1;

input A0;

input WE;

input WCLK;

endmodule
Synthesis and Simulation Design Guide 4-149

Synthesis and Simulation Design Guide
• LeonardoSpectrum

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation

// -- the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for

// Post P&R simulation.

// exemplar translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA",
RAM2.INIT="FFFF", RAM3.INIT="5555";

// exemplar translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D
(DATA_BUS[3]),.A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* exemplar attribute RAM3 INIT 5555 */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D
(DATA_BUS[2]),.A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* exemplar attribute RAM2 INIT FFFF */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D
(DATA_BUS[1]),.A3 (ADDR[3]), .A2 (ADDR[2]),
4-150 Xilinx Development System

Architecture Specific Coding Style for Virtex
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),

.WCLK (CLK))

/* exemplar attribute RAM1 INIT AAAA */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D
(DATA_BUS[0]),.A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* exemplar attribute RAM0 INIT 0101 */;

endmodule

module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);

output O;

input D;

input A3;

input A2;

input A1;

input A0;

input WE;

input WCLK;

endmodule

• Synplify

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

‘include "virtex.v"

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation
Synthesis and Simulation Design Guide 4-151

Synthesis and Simulation Design Guide
// -- the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for

// Post P&R simulation.

// synthesis translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA",

RAM2.INIT="FFFF", RAM3.INIT="5555";

// synthesis translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to pass the INIT

// property

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=5555" */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D
(DATA_BUS[2]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=FFFF" */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D
(DATA_BUS[1]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=AAAA" */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D
(DATA_BUS[0]),
4-152 Xilinx Development System

Architecture Specific Coding Style for Virtex
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=0101" */;

endmodule

• XST

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation --

// the defparam will not synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for

// Post P&R simulation.

// synthesis translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA",
RAM2.INIT="FFFF", RAM3.INIT="5555";

// synthesis translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4’hz;

// Instantiation of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to

// pass the INIT property

// synthesis attribute INIT of RAM2 is "FFFF"

// synthesis attribute INIT of RAM1 is "AAAA"
Synthesis and Simulation Design Guide 4-153

Synthesis and Simulation Design Guide
// synthesis attribute INIT of RAM0 is "0101"

RAM16X1S RAM3 (.O (DATA_OUT[3]),
.D (DATA_BUS[3]),.A3 (ADDR[3]),.A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK))

/* synthesis xc_props="INIT=5555" */;

RAM16X1S RAM2 (.O (DATA_OUT[2]),
.D (DATA_BUS[2]),.A3 (ADDR[3]),.A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]), .WE (WE),
.WCLK (CLK));

RAM16X1S RAM1 (.O (DATA_OUT[1]),
.D (DATA_BUS[1]),.A3 (ADDR[3]),.A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]),.WE (WE),
.WCLK (CLK));

RAM16X1S RAM0 (.O (DATA_OUT[0]),
.D (DATA_BUS[0]),.A3 (ADDR[3]),.A2 (ADDR[2]),
.A1 (ADDR[1]),.A0 (ADDR[0]),.WE (WE),
.WCLK (CLK));

endmodule

Inferring Distributed SelectRAM+ in VHDL

The following coding examples provide VHDL and Verilog coding
styles for FPGA Compiler II, LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II

FPGA Compiler II does not infer RAMs.

• LeonardoSpectrum, Synplify, and XST

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, dual-port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
4-154 Xilinx Development System

Architecture Specific Coding Style for Virtex
entity ram_32x8d_infer is
generic(d_width : integer := 8;

addr_width : integer := 5;
mem_depth : integer := 32);

port (o : out STD_LOGIC_VECTOR(d_width - 1
downto 0);

we, clk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1

downto 0);
raddr, waddr : in

STD_LOGIC_VECTOR(addr_width - 1 downto 0));
end ram_32x8d_infer;

architecture xilinx of ram_32x8d_infer is
type mem_type is array (mem_depth - 1 downto

0) of STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
process(clk, we, waddr)
begin

if (rising_edge(clk)) then
if (we = ’1’) then

mem(conv_integer(waddr)) <= d;
end if;
end if;

end process;
process(raddr)
begin

o <= mem(conv_integer(raddr));
end process;

end xilinx;

• The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, single-port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram_32x8s_infer is
generic(d_width : integer := 8;

addr_width : integer := 5;
mem_depth : integer := 32);
Synthesis and Simulation Design Guide 4-155

Synthesis and Simulation Design Guide
port (o : out STD_LOGIC_VECTOR(d_width - 1
downto 0);

we, wclk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1

downto 0);
addr : in STD_LOGIC_VECTOR(addr_width - 1

downto 0));
end ram_32x8s_infer;

architecture xilinx of ram_32x8s_infer is
type mem_type is array (mem_depth - 1 downto

0) of STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
process(wclk, we, addr)
begin

if (rising_edge(wclk)) then
if (we = ’1’) then
mem(conv_integer(addr)) <= d;
end if;

end if;
end process;
o <= mem(conv_integer(addr));

end xilinx;

Inferring Distributed SelectRAM+ in Verilog

The following coding examples provide Verilog coding hints for
FPGA Compiler II, Synplify, LeonardoSpectrum, and XST.

• FPGA Compiler II

FPGA Compiler II does not infer RAMs.

• LeonardoSpectrum, Synplify, and XST

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, dual-port RAM example.

module ram_32x8d_infer (o, we, d, raddr, waddr,
clk);

parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, clk;
input [d_width - 1:0] d;
4-156 Xilinx Development System

Architecture Specific Coding Style for Virtex
input [addr_width - 1:0] raddr, waddr;

reg [d_width - 1:0] o;
reg [d_width - 1:0] mem [(1 << addr_width) 1:0];

always @(posedge clk)
if (we)

mem[waddr] = d;

always @(mem or raddr)
o = mem[raddr];

endmodule

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, single-port RAM example.

module ram_32x8s_infer (o, we, d, addr, wclk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, wclk;
input [d_width - 1:0] d;
input [addr_width - 1:0] addr;

reg [d_width - 1:0] mem [(1 << addr_width) 1:0];

always @(posedge wclk)
if (we)

mem[addr] = d;
assign o = mem[addr];
endmodule

Implementing ROMs
ROMs can be implemented as follows.

• Use RTL descriptions of ROMs

• Instantiate 16x1 and 32x1 ROM primitives

The following examples are RTL VHDL and Verilog ROM coding
examples.
Synthesis and Simulation Design Guide 4-157

Synthesis and Simulation Design Guide
RTL Description of a Distributed ROM VHDL Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Compiler II, Synplify,
and XST.

--
-- Behavioral 16x4 ROM Example
-- rom_rtl.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;

entity rom_rtl is
 port (ADDR: in INTEGER range 0 to 15;
 DATA: out STD_LOGIC_VECTOR (3 downto 0));
end rom_rtl;

architecture XILINX of rom_rtl is
subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’("0000"),
 ROM_WORD’("0001"),
 ROM_WORD’("0010"),
 ROM_WORD’("0100"),
 ROM_WORD’("1000"),
 ROM_WORD’("1100"),
 ROM_WORD’("1010"),
 ROM_WORD’("1001"),
 ROM_WORD’("1001"),
 ROM_WORD’("1010"),
 ROM_WORD’("1100"),
 ROM_WORD’("1001"),
 ROM_WORD’("1001"),
 ROM_WORD’("1101"),
 ROM_WORD’("1011"),
 ROM_WORD’("1111"));

begin

DATA <= ROM(ADDR); -- Read from the ROM
end XILINX;
4-158 Xilinx Development System

Architecture Specific Coding Style for Virtex
RTL Description of a Distributed ROM Verilog
Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Compiler II, Synplify,
and XST.

/*
 * ROM_RTL.V
 * Behavioral Example of 16x4 ROM
*/

module rom_rtl(ADDR, DATA) ;
input [3:0] ADDR ;
output [3:0] DATA ;
reg [3:0] DATA ;

// A memory is implemented
// using a case statement

always @(ADDR)
begin

case (ADDR)
4’b0000 : DATA = 4’b0000 ;
4’b0001 : DATA = 4’b0001 ;
4’b0010 : DATA = 4’b0010 ;
4’b0011 : DATA = 4’b0100 ;
4’b0100 : DATA = 4’b1000 ;
4’b0101 : DATA = 4’b1000 ;
4’b0110 : DATA = 4’b1100 ;
4’b0111 : DATA = 4’b1010 ;
4’b1000 : DATA = 4’b1001 ;
4’b1001 : DATA = 4’b1001 ;
4’b1010 : DATA = 4’b1010 ;
4’b1011 : DATA = 4’b1100 ;
4’b1100 : DATA = 4’b1001 ;
4’b1101 : DATA = 4’b1001 ;
4’b1110 : DATA = 4’b1101 ;
4’b1111 : DATA = 4’b1111 ;

endcase
end
endmodule
Synthesis and Simulation Design Guide 4-159

Synthesis and Simulation Design Guide
With the VHDL and Verilog examples above, synthesis tools create
ROMs using function generators (LUTs and MUXFs) or the ROM
primitives.

Another method for implementing ROMs is instantiating the 16x1 or
32x1 ROM primitives. To define the ROM value, use the Set Attribute
or equivalent command to set the INIT property on the ROM compo-
nent.

Note Refer to your synthesis tool documentation for the correct
syntax.

This type of command writes the ROM contents to the netlist file so
the Xilinx tools can initialize the ROM. The INIT value should be
specified in hexadecimal values. See the VHDL and Verilog RAM
examples in the following section for examples of this property using
a RAM primitive.

Implementing ROMs Using Block SelectRAM
FPGA Compiler II, LeonardoSpectrum and Synplify can infer ROM
using Block SelectRAM.

FPGA Compiler II:

FPGA Compiler II can infer ROMs using Block SelectRAM instead of
LUTs for Virtex, Virtex-E, Virtex-II, and Virtex-II Pro in the following
cases:

• The inference is synchronous.

• For Virtex and Virtex-E, Block SelectRAM will be used to infer
ROM when the address line is at least ten bits, and the data line is
three bits or greater. Also, Block SelectRAM will be used when
the address line is 11 or 12 bits; no minimum data width is
required.

• For Virtex-II and Virtex-II Pro, Block SelectRAM will be used to
infer ROM if the address line is between 10 and 14 bits; no
minimum data width is required.

LeonardoSpectrum:

• In LeonardoSpectrum, synchronous ROMs with address widths
greater than eight bits are automatically mapped to Block
SelectRAM.
4-160 Xilinx Development System

Architecture Specific Coding Style for Virtex
• Asynchronous ROMs and synchronous ROMs (with address
widths less than eight bits) are automatically mapped to
distributed SelectRAM.

Synplify:

Synplify can infer ROMs using Block SelectRAM instead of LUTs for
Virtex, Virtex-E, Virtex-II and Virtex-II Pro in the following cases:

• For Virtex/Virtex-E, the address line must be between 8 to 12 bits.

• For Virtex-II/Pro, the address line must be between 9 to 14 bits.

• The address lines must be registered with a simple flip-flop (no
resets or enables, etc.) or the ROM output can be registered with
enables or sets/resets. However, not both sets/resets and
enables. The flip-flops’ sets/resets can be either synchronous or
asynchronous. In the case where asynchronous sets/resets are
used, Synplify will create registers with the sets/resets and then
either AND or OR these registers with the output of the
BlockRAM.
Synthesis and Simulation Design Guide 4-161

Synthesis and Simulation Design Guide
RTL Description of a ROM VHDL Example Using
Block SelectRAM

Below is some incomplete VHDL that demonstrates the above
inference rules.

library IEEE;
use IEEE.std_logic_1164.all;
entity rom_rtl is
port (ADDR: in INTEGER range 0 to 1023;
 CLK : in std_logic;
 DATA: out STD_LOGIC_VECTOR (3 downto 0));
end rom_rtl;

architecture XILINX of rom_rtl is

subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 1023) of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE’(
ROM_WORD’("0000"),
ROM_WORD’("0001"),
ROM_WORD’("0010"),
ROM_WORD’("0100"),
ROM_WORD’("1000"),
ROM_WORD’("1100"),
ROM_WORD’("1010"),
ROM_WORD’("1001"),
ROM_WORD’("1001"),
ROM_WORD’("1010"),
ROM_WORD’("1100"),
ROM_WORD’("1001"),
ROM_WORD’("1001"),
ROM_WORD’("1101"),
ROM_WORD’("1011"),
ROM_WORD’("1111")
 :
 :
 :
);
4-162 Xilinx Development System

Architecture Specific Coding Style for Virtex
begin
process (CLK) begin
if clk’event and clk = ’1’ then
DATA <= ROM(ADDR); -- Read from the ROM
end if;
end process;
end XILINX;

RTL Description of a ROM Verilog Example using
Block SelectRAM

Below is some incomplete Verilog that demonstrates the above
inference rules:

/*
* This code is incomplete but demonstrates the
* rules for inferring Block RAM for ROMs
* ROM_RTL.V
* Block RAM ROM Example
*/
module rom_rtl(ADDR, CLK, DATA) ;
 input [9:0] ADDR ;
 input CLK ;
 output [3:0] DATA ;
 reg [3:0] DATA ;
// A memory is implemented
// using a case statement
always @(posedge CLK)
begin
 case (ADDR)
 9’b000000000 : DATA = 4’b0000 ;
 9’b000000001 : DATA = 4’b0001 ;
 9’b000000010 : DATA = 4’b0010 ;
 9’b000000011 : DATA = 4’b0100 ;
 9’b000000100 : DATA = 4’b1000 ;
 9’b000000101 : DATA = 4’b1000 ;
 9’b000000110 : DATA = 4’b1100 ;
 9’b000000111 : DATA = 4’b1010 ;
 9’b000001000 : DATA = 4’b1001 ;
 9’b000001001 : DATA = 4’b1001 ;
 9’b000001010 : DATA = 4’b1010 ;
 9’b000001011 : DATA = 4’b1100 ;
Synthesis and Simulation Design Guide 4-163

Synthesis and Simulation Design Guide
 9’b000001100 : DATA = 4’b1001 ;
 9’b000001101 : DATA = 4’b1001 ;
 9’b000001110 : DATA = 4’b1101 ;
 9’b000001111 : DATA = 4’b1111 ;
 :
 :
 :
 endcase
end
endmodule

Implementing FIFO
FIFO can be implemented with FPGA RAMs. Xilinx provide several
Application Notes describing the use of FIFO when implementing
FPGAs. Please refer to the following Xilinx Application Notes for
more information:

• Xilinx XAPP175: “High Speed FIFOs in Spartan-II FPGAs”, applica-
tion note, v1.0 (11/99) (http://www.xilinx.com/xapp/
xapp175.pdf)

• Xilinx XAPP131: “170MHz FIFOs using the Virtex Block Selec-
tRAM+ Feature”, v 1.2 (9/99) (http://www.xilinx.com/xapp/
xapp131.pdf)

Implementing CAM
Content Addressable Memory (CAM) or associative memory is a
storage device which can be addressed by its own contents.

Xilinx provides several Application Notes describing CAM designs
in Virtex FPGAs. Please refer to the following Xilinx Application
Notes for more information:

• XAPP201: “An Overview of Multiple CAM Designs in Virtex Family
Devices” v 1.1(9/99) (http://www.xilinx.com/xapp/
xapp201.pdf)

• XAPP202: “Content Addressable Memory (CAM) in ATM Applica-
tions” v 1.1 (9/99) (http://www.xilinx.com/xapp/xapp202.pdf)

• XAPP203: “Designing Flexible, Fast CAMs with Virtex Family
FPGAs” v 1.1 (9/99) (http://www.xilinx.com/xapp/
xapp203.pdf)
4-164 Xilinx Development System

http://www.xilinx.com/xapp/xapp175.pdf
http://www.xilinx.com/xapp/xapp175.pdf
http://www.xilinx.com/xapp/xapp131.pdf
http://www.xilinx.com/xapp/xapp131.pdf
http://www.xilinx.com/xapp/xapp201.pdf
http://www.xilinx.com/xapp/xapp201.pdf
http://www.xilinx.com/xapp/xapp202.pdf
http://www.xilinx.com/xapp/xapp203.pdf
http://www.xilinx.com/xapp/xapp203.pdf

Architecture Specific Coding Style for Virtex
• XAPP204: “Using Block SelectRAM+ for High-Performance Read/
Write CAMs” v1.1 (10/99) (http://www.xilinx.com/xapp/
xapp204.pdf)

Using CORE Generator to Implement Memory
If you must instantiate memory, use the CORE Generator to create a
memory module larger than 32X1 (16X1 for Dual Port). Imple-
menting memory with the CORE Generator is similar to imple-
menting any module with CORE Generator except for defining the
Memory initialization file. Please reference the memory module
datasheets that come with every CORE Generator module for specific
information on the initialization file.

Implementing Shift Register (Virtex/E/II and
Spartan-II)

The SRL16 is a very efficient way to create shift registers without
using up flip-flop resources. You can create shift registers that vary in
length from one to sixteen bits. The SRL16 is a shift register look up
table (LUT) whose inputs (A3, A2, A1,A0) determine the length of the
shift register. The shift register may be of a fixed, static length or it
may be dynamically adjusted. The shift register LUT contents are
initialized by assigning a four-digit hexadecimal number to an INIT
attribute. The first, or the left-most, hexadecimal digit is the most
significant bit. If an INIT value is not specified, it defaults to a value
of four zeros (0000) so that the shift register LUT is cleared during
configuration. The data (D) is loaded into the first bit of the shift
register during the Low-to-High clock (CLK) transition. During
subsequent Low-to-High clock transitions data is shifted to the next
highest bit position as new data is loaded. The data appears on the Q
output when the shift register length determined by the address
inputs is reached.

The Static Length Mode of SRL16 implements any shift register
length from 1 to 16 bits in one LUT. Shift register length is (N+1)
where N is the input address. Synthesis tools will implement longer
shift registers with multiple SRL16 and additional combinatorial
logic for multiplexing.

In Virtex-II devices, additional cascading shift register LUTs
(SRLC16) are available. SRLC16 supports synchronous shift-out
Synthesis and Simulation Design Guide 4-165

http://www.xilinx.com/xapp/xapp204.pdf
http://www.xilinx.com/xapp/xapp204.pdf

Synthesis and Simulation Design Guide
output of the last (16th) bit. This output has a dedicated connection to
the input of the next SRLC16 inside the CLB. With four slices and
dedicated multiplexers (MUXF5, MUXF6, and so forth) available in
one Virtex-II CLB, up to a 128-bit shift register can be implemented
effectively using SRLC16. Synthesis tools, Synplify 7.1,
LeonardoSpectrum 2002a, and XST can infer the SRLC16. For more
information, please refer to the Virtex-II Handbook.

Dynamic Length Mode can be implemented using SRL16 or SRLC16.
Each time a new address is applied to the 4-input address pins, the
new bit position value is available on the Q output after the time
delay to access the LUT. LeonardoSpectrum, Synplify, and XST can
infer a shift register component. A coding example for a dynamic SRL
is included following the SRL16 inferencing example.
4-166 Xilinx Development System

Architecture Specific Coding Style for Virtex
Inferring SRL16 in VHDL
• FPGA Compiler II, LeonardoSpectrum, Synplify, and XST

-- VHDL example design of SRL16
-- inference for Virtex
-- This design infer 16 SRL16
-- with 16 pipeline delay
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity pipeline_delay is generic (cycle :integer
:= 16;

width :integer := 16);
port (input :in std_logic_vector(width - 1

downto 0);
clk :in std_logic;
output :out std_logic_vector(width - 1 downto

0));
end pipeline_delay;
architecture behav of pipeline_delay is
type my_type is array (0 to cycle -1) of
std_logic_vector(width -1 downto 0);
signal int_sig :my_type;

begin
main :process (clk)
begin

if clk’event and clk = ’1’ then
int_sig <= input & int_sig(0 to cycle - 2);
end if;

end process main;
output <= int_sig(cycle -1);
end behav;
Synthesis and Simulation Design Guide 4-167

Synthesis and Simulation Design Guide
Inferring SRL16 in Verilog
Use the following coding example for FPGA Compiler II,
LeonardoSpectrum, Synplify, and XST.

• FPGA Compiler II, LeonardoSpectrum, Synplify, and XST

// Verilog Example SRL
//This design infer 3 SRL16 with 4 pipeline delay
module srle_example (clk, enable, data_in,
result);
parameter cycle=4;
parameter width = 3;
input clk, enable;
input [0:width] data_in;
output [0:width] result;
reg [0:width-1] shift [cycle-1:0];
integer i;
always @(posedge clk)
begin

if (enable == 1) begin
for (i = (cycle-1);i >0; i=i-1) shift[i] =

shift[i-1];
shift[0] = data_in;
end

end
assign result = shift[cycle-1];
endmodule
4-168 Xilinx Development System

Architecture Specific Coding Style for Virtex
Inferring Dynamic SRL16 in VHDL
• LeonardoSpectrum, Synplify and XST

library IEEE;
use IEEE.std_logic_1164.all;

entity srltest is
port (inData: std_logic_vector(7 downto 0);
 clk, en : in std_logic;
 outStage : in integer range 3 downto 0;
 outData: out std_logic_vector(7 downto 0));
end srltest;

architecture rtl of srltest is

type dataAryType is array(3 downto 0) of
std_logic_vector(7 downto 0);

signal regBank : dataAryType;

begin
outData <= regBank(outStage);
process(clk, inData) begin

if (clk’event and clk = ’1’) then
 if (en=’1’) then
 regBank <= (regBank(2 downto 0) & inData);
 end if;
end if;
end process;
end rtl;
Synthesis and Simulation Design Guide 4-169

Synthesis and Simulation Design Guide
Inferring Dynamic SRL16 in Verilog
• LeonardoSpectrum, Synplify and XST

module test_srl(clk, enable, dataIn, result, addr);

input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;

reg [3:0] regBank[15:0];
integer i;

always @(posedge clk) begin
 if (enable == 1) begin
 for (i=15; i>0; i=i-1) begin
 regBank[i] <= regBank[i-1];
 end
 regBank[0] <= dataIn;
 end
end
assign result = regBank[addr];
endmodule

Implementing LFSR
The SRL (Shift Register LUT) implements very efficient shift registers
and can be used to implement Linear Feedback Shift Registers. Xilinx
Application Note XAPP 210 describes the implementation of Linear
Feedback Shift Registers (LFSR) using the Virtex SRL macro. One half
of a CLB can be configured to implement a 15-bit LFSR, one CLB can
implement a 52-bit LFSR, and with two CLBs a 118-bit LFSR is imple-
mented.

The XApp 210 can be downloaded from the following Xilinx web site.

http://support.xilinx.com/xapp/xapp210.pdf
4-170 Xilinx Development System

http://support.xilinx.com/xapp/xapp210.pdf

Architecture Specific Coding Style for Virtex
Implementing Multiplexers
A 4-to-1 multiplexer can be efficiently implemented in a single
Virtex/E/II and Spartan-II family slice. The six input signals (four
inputs, two select lines) use a combination of two LUTs and MUXF5
available in every slice. Up to 9 input functions can be implemented
with this configuration.

In the Virtex/E and Spartan-II families, larger multiplexers can be
implemented using two adjacent slices in one CLB with its dedicated
MUXF5s and a MUXF6.

Virtex-II slices contain dedicated two-input multiplexers (one
MUXF5 and one MUXFX per slice). MUXF5 is used to combine two
LUTs. MUXFX can be used as MUXF6, MUXF7, and MUXF8 to
combine 4, 8, and 16 LUTs, respectively. Please refer to the Virtex-II
Handbook for more information on designing large multiplexes in
Virtex-II. This book can be found on the Xilinx website at
http://www.xilinx.com.

In addition, you can use internal tristate buffers (BUFTs) to
implement large multiplexers. Large multiplexers built with BUFTs
have the following advantages.

• Can vary in width with only minimal impact on area and delay

• Can have as many inputs as there are tristate buffers per hori-
zontal longline in the target device

• Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog
designs of a 5-to-1 multiplexer built with gates. Typically, the gate
version of this multiplexer has binary encoded selector inputs and
requires three select inputs (SEL<2:0>). The schematic representation
of this design is shown in the “5-to-1 MUX Implemented with Gates”
figure.

Some synthesis tools include commands that allow you to switch
between multiplexers with gates or with tristates. Check with your
synthesis vendor for more information.

The VHDL and Verilog designs provided at the end of this section
show a 5-to-1 multiplexer built with tristate buffers. The tristate
buffer version of this multiplexer has one-hot encoded selector inputs
and requires five select inputs (SEL<4:0>). The schematic representa-
Synthesis and Simulation Design Guide 4-171

http://www.xilinx.com

Synthesis and Simulation Design Guide
tion of these designs is shown in the “5-to-1 MUX Implemented with
Gates” figure.

Mux Implemented with Gates VHDL Example
The following example shows a MUX implemented with Gates.

-- MUX_GATE.VHD
-- 5-to-1 Mux Implemented in Gates
-- May 2001

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is

port (SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC;

SIG: out STD_LOGIC);
end mux_gate;

architecture RTL of mux_gate is
begin

SEL_PROCESS: process (SEL,A,B,C,D,E)
begin

case SEL is
when "000" => SIG <= A;
when "001" => SIG <= B;
when "010" => SIG <= C;
when "011" => SIG <= D;
when others => SIG <= E;

end case;
end process SEL_PROCESS;

end RTL;
4-172 Xilinx Development System

Architecture Specific Coding Style for Virtex
Mux Implemented with Gates Verilog Example
The following example shows a MUX implemented with Gates.

/* MUX_TBUF.V
* May 2002 */
module mux_tbuf (A,B,C,D,E,SEL,SIG);
input A,B,C,D,E;
input [4:0] SEL;
output SIG;

 assign SIG = (SEL[0]==1’b0) ? A : 1’bz;
 assign SIG = (SEL[1]==1’b0) ? B : 1’bz;
 assign SIG = (SEL[2]==1’b0) ? C : 1’bz;
 assign SIG = (SEL[3]==1’b0) ? D : 1’bz;
 assign SIG = (SEL[4]==1’b0) ? E : 1’bz;

endmodule
Synthesis and Simulation Design Guide 4-173

Synthesis and Simulation Design Guide
Figure 4-5 5-to-1 MUX Implemented with Gates

Wide MUX Mapped to MUXFs
Synthesis tools will use MUXF5 and MUXF6, and for Virtex-II and
Virtex-II Pro will use MUXF7 and MUXF8 to implement wide
multiplexers. These MUXes can, respectively, be used to create a 5, 6,
7 or 8 input function or a 4-to-1, 8-to-1, 16-to-1 or a 32-to-1
multiplexer.

SIG

A
B
C
D
E

SEL<0>

SEL<2>
SEL<1>

X6229
4-174 Xilinx Development System

Architecture Specific Coding Style for Virtex
Mux Implemented with BUFTs VHDL Example
The following example shows a MUX implemented with BUFTs.

-- MUX_TBUF.VHD
-- 5-to-1 Mux Implemented in 3-State Buffers
-- May 2001

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD_LOGIC_VECTOR (4 downto 0);
A,B,C,D,E: in STD_LOGIC;

SIG: out STD_LOGIC);
end mux_tbuf;

architecture RTL of mux_tbuf is
begin

SIG <= A when (SEL(0)=’0’) else ’Z’;
SIG <= B when (SEL(1)=’0’) else ’Z’;
SIG <= C when (SEL(2)=’0’) else ’Z’;
SIG <= D when (SEL(3)=’0’) else ’Z’;
SIG <= E when (SEL(4)=’0’) else ’Z’;

end RTL;

Mux Implemented with BUFTs Verilog Example
The following example shows a MUX implemented with BUFTs.

/* MUX_TBUF.V
 * May 2001 */

module mux_tbuf (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [4:0] SEL;
output SIG;
reg SIG;

always @ (SEL or A)
Synthesis and Simulation Design Guide 4-175

Synthesis and Simulation Design Guide
begin
if (SEL[0]==1’b0)

SIG=A;
else

SIG=1’bz;
end

always @ (SEL or B)
begin

if (SEL[1]==1’b0)
SIG=B;

else
SIG=1’bz;

end

always @ (SEL or C)
begin

if (SEL[2]==1’b0)
SIG=C;

else
SIG=1’bz;

end

always @ (SEL or D)
begin

if (SEL[3]==1’b0)
SIG=D;

else
SIG=1’bz;

end

always @ (SEL or E)
begin

if (SEL[4]==1’b0)
SIG=E;

else
SIG=1’bz;

end
endmodule
4-176 Xilinx Development System

Architecture Specific Coding Style for Virtex
Figure 4-6 5-to-1 MUX Implemented with BUFTs

Using Pipelining
You can use pipelining to dramatically improve device performance.
Pipelining increases performance by restructuring long data paths
with several levels of logic and breaking it up over multiple clock
cycles. This method allows a faster clock cycle and, as a result, an
increased data throughput at the expense of added data latency.
Because the Xilinx FPGA devices are register-rich, this is usually an
advantageous structure for FPGA designs because the pipeline is
created at no cost in terms of device resources. Because data is now
on a multi-cycle path, special considerations must be used for the rest
of your design to account for the added path latency. You must also
be careful when defining timing specifications for these paths.

SEL<0>

SEL<1>

SEL<2>

SEL<3>

SEL<4>

A

B

C

D

E

SIG

X6228
Synthesis and Simulation Design Guide 4-177

Synthesis and Simulation Design Guide
Some synthesis tools have limited capability for constraining multi-
cycle paths or translating these constraints to Xilinx implementation
constraints. Check your synthesis tool documentation for information
on multi-cycle paths. If your tool cannot translate the constraint but
can synthesize to a multi-cycle path, you can add the constraint to the
UCF file.

Before Pipelining
In the following example, the clock speed is limited by the clock-to
out-time of the source flip-flop; the logic delay through four levels of
logic; the routing associated with the four function generators; and
the setup time of the destination register.

Figure 4-7 Before Pipelining

After Pipelining
This is an example of the same data path in the previous example
after pipelining. Because the flip-flop is contained in the same CLB as
the function generator, the clock speed is limited by the clock-to-out
time of the source flip-flop; the logic delay through one level of logic;
one routing delay; and the setup time of the destination register. In
this example, the system clock runs much faster than in the previous
example.

X8339

Function
Generator

QD
QDFunction

Generator
Function

Generator

Slow_Clock

Function
Generator
4-178 Xilinx Development System

Architecture Specific Coding Style for Virtex
Figure 4-8 After Pipelining

Design Hierarchy
HDL designs can either be synthesized as a flat module or as many
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.

• Easier and faster verification/simulation

• Allows several engineers to work on one design at the same time

• Speeds up design compilation

• Reduces design time by allowing design module re-use for this
and future designs.

• Allows you to produce designs that are easier to understand

• Allows you to efficiently manage the design flow

Disadvantages to building hierarchical designs are as follows.

• Design mapping into the FPGA may not be as optimal across
hierarchical boundaries; this can cause lesser device utilization
and decreased design performance

• Design file revision control becomes more difficult

• Designs become more verbose

Most of the disadvantages listed above can be overcome with careful
design consideration when choosing the design hierarchy.

X8340

Function
Generator

QD
QD QDFunction

Generator
Function

Generator

Fast_Clock

Function
Generator

QD QD
Synthesis and Simulation Design Guide 4-179

Synthesis and Simulation Design Guide
 Using Synthesis Tools with Hierarchical Designs
By effectively partitioning your designs, you can significantly reduce
compile time and improve synthesis results. Here are some recom-
mendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance
together to reduce the gate count. However, to increase design speed,
do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic to Same
Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to
allow the synthesis tool to optimize an entire critical path in a single
operation. Boolean optimization does not operate across hierarchical
boundaries. Therefore, if a critical path is partitioned across bound-
aries, logic optimization is restricted. In addition, constraining
modules is difficult if combinatorial logic is not restricted to the same
level of hierarchy.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with
different functions at different levels of the hierarchy. Design speed is
the first priority of optimization algorithms. To achieve a design that
efficiently utilizes device area, remove timing constraints from design
modules.

Restrict Combinatorial Logic that Drives a Register to
Same Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that
drives a register to the same hierarchical block.
4-180 Xilinx Development System

Architecture Specific Coding Style for Virtex
Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on
your computer configuration; the time required to complete each
optimization run; if the design is worked on by a design team; and
the target FPGA routing resources. Although smaller blocks give you
more control, you may not always obtain the most efficient design.
For the final compilation of your design, you may want to compile
fully from the top down. Check with your synthesis vendor for
guidelines.

Register All Outputs

Arrange your design hierarchy so that registers drive the module
output in each hierarchical block. Registering outputs makes your
design easier to constrain because you only need to constrain the
clock period and the ClockToSetup of the previous module. If you
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also,
registering the outputs of your design hierarchy can eliminate any
possible problems with logic optimization across hierarchical bound-
aries.

Restrict One Clock to Each Module or to Entire
Design

By restricting one clock to each module, you only need to describe the
relationship between the clock at the top level of the design hierarchy
and each module clock. By restricting one clock to the entire design,
you only need to describe the clock at the top level of the design hier-
archy.

Note See your synthesis tool documentation for more information on
optimizing logic across hierarchical boundaries and compiling hierar-
chical designs.
Synthesis and Simulation Design Guide 4-181

Synthesis and Simulation Design Guide
4-182 Xilinx Development System

Chapter 5

Virtex-II Pro Considerations

This chapter includes coding techniques to help you improve
synthesis results. It includes the following sections.

• “Introduction”

• “Using Smart Models to Simulate Virtex-II Pro Designs”

• “Virtex-II Pro Board Support Package”

• “Debugging Tools for Virtex-II Pro Designs”

Introduction
This chapter highlights some of the outstanding features of Xilinx
Virtex-II Pro FPGAs. The Virtex-II Pro family is a platform FPGA for
designs that are based on IP cores and customized modules. The
family incorporates multi-gigabit transceivers and PowerPC CPU
cores in Virtex-II Pro Series FPGA architecture. The intent of this
chapter is to point the user to the information necessary to take
advantage of these features.

The programable logic portion of the Virtex-II Pro family is based on
Virtex-II. While it is not bitstream or pin compatible, it can be
programmed using the same methods as Virtex-II, and Virtex-II
designs can be into Virtex-II Pro devices. In general, for details
specific to Virtex-II Pro, see the Virtex II Pro Handbook and the
Rocket I/O Transceiver User Guide.
Synthesis and Simulation Design Guide 5-1

Synthesis and Simulation Design Guide
Summary of Virtex-II Pro Features
• High-performance Platform FPGA solution including

♦ Up to sixteen Rocket I/O embedded multi-gigabit
transceiver blocks (based on Mindspeed’s SkyRail
technology)

♦ Up to four IBM® PowerPC® RISC processor blocks

• Based on Virtex-II Platform FPGA technology

♦ Flexible logic resources

♦ SRAM-based in-system configuration

♦ Active Interconnect technology

♦ SelectRAM memory hierarchy

♦ Dedicated 18-bit x 18-bit multiplier blocks

♦ High-performance clock management circuitry

♦ SelectI/O-Ultra technology

♦ Digitally Controlled Impedance (DCI) I/O

Using Smart Models to Simulate Virtex-II Pro
Designs

Smart Models are an encrypted version to the actual HDL code.
These models allow the user to simulate with the actual functionality
without having access to the code itself. The Xilinx Virtex-II Pro
family of devices gives the designer many new features, such as
IBM’s PowerPC microprocessor and the GigaBit I/O. However,
simulation of these new features requires the use of Bus-Functional
models and Synopsys Smart Models along with the user design. This
section gives the Virtex-II Pro simulation flow. It is assumed that the
reader is familiar with the Xilinx FPGA simulation flow.

Simulation Components
The Virtex-II Pro device consists of several components. Each
component has it’s own simulation model, and the individual
simulation models must be correctly interconnected to get the
5-2 Xilinx Development System

Virtex-II Pro Considerations
simulation to work as expected. Following are the components that
need to be simulated:

• FPGA Logic: This consists of either the RTL design constructed
by the designer, or the back-annotated structural design created
by the Xilinx implementation tools.

• IBM PowerPC microprocessor: The microprocessor is simulated
using SWIFT interface.

• IBM CoreConnect bus: This Processor Local Bus (PLB) is
simulated using HDL simulation models.

• GigaBit I/O: This is simulated using SWIFT interface.

Overview of Virtex-II Pro Simulation Flow
The HDL simulation flow comprising Synopsys Smart Models
consists of three steps:

1. Instantiate the PowerPC and/or Gigabit I/O wrapper used for
simulation and synthesis. During synthesis, the transceiver is
treated as a "black box." This requires that a wrapper be used that
describes the modules port.

2. Install the Verilog Model Compiler (VMC) Smart Models, if
needed. See “Installing Smart Models from Xilinx
Implementation Tools” section for details on installing Smart
Models. The Smart Models are included in the Virtex-II Pro
Design Kit and the Xilinx software.

a) The IBM PowerPC and GigaBit I/O Smart models come
installed with the Virtex-II Pro Design Kit.

b) The Xilinx software includes the Smart Model image,
however the Smart Models are not installed. The user must
install the Smart Models in the Xilinx Software tree in order
to perform a simulation using the Smart Models. Finally, the
models must be installed if your simulator is not currently
supported or if additional Smart Models are needed.

3. Use the VMC models along with your design in an HDL
simulator that supports the SWIFT interface.

You can find The Instantiation wrapper files for the PowerPC and
Gigabit I/O can in the Virtex-II Pro Development Kit, and the Rocket
I/O User Guide.
Synthesis and Simulation Design Guide 5-3

Synthesis and Simulation Design Guide
The flow is shown in Figure 1.

Figure 5-1 Figure 1: HDL Simulation Flow for Virtex-II Pro
Devices

Smart Models
The Xilinx Virtex-II Pro simulation flow uses the Synopsys VMC
models (Smart Models) for simulating the IBM PowerPC
microprocessor and GigaBit I/O. VMC models are simulator-
independent models that are derived from the actual design and are
therefore accurate evaluation models. To simulate these models, a
simulator that supports the SWIFT interface must be used.

Synopsys Logic Modeling uses the SWIFT interface to deliver models.
SWIFT is a simulator- and platform-independent API developed by
Synopsys and adopted by all major simulator vendors, including
Synopsys, Cadence, Mentor Graphics, Model Technology and others,
as a way of linking simulation models to design tools.

When running a back-annotated simulation, the precompiled Smart
Models support gate-level, pin-to-pin, and back-annotation timing.
Gate-level timing distributes the delays throughout the design, and
all internal paths are accurately distributed. Multiple timing versions
can be provided for different speed parts. Pin-to-pin timing is less
accurate, but is faster since only a few top-level delays must be
processed. Back-annotation timing allows the model to accurately
process the interconnect delays between the model and the rest of the
design. It can be used with either gate-level or pin-to-pin timing, or
by itself.

X9821

1
VHDL/Verliog
with PPC and

GT Instantiations

2
Install Smart
5-4 Xilinx Development System

Virtex-II Pro Considerations
You can find more details about Smart Models and the SWIFT
interface in "Design Flow" volume of the Virtex-II Pro Platform FPGA
Developers Kit, and on the Synopsys web site at
http://www.synopsys.com/products/lm/doc/smartmodel.html.

Supported Simulators
A simulator with Smart Model capability is required to use the Smart
Models. While any HDL simulator that supports the Synopsys SWIFT
interface should be able to handle the Virtex-II Pro simulation flow,
the following HDL simulators are officially supported by Xilinx for
Virtex-II Pro simulation.

Solaris

• MTI Modelsim SE (5.5 and newer)

• Cadence NC-Verilog

• Cadence Verilog-XL

• Synopsys VCS

NT or 2000

• MTI Modelsim SE (5.5 and newer)

Required Software
To setup the simulation, install the Xilinx implementation tools and
the Xilinx Virtex-II Pro Design kit along with the simulator you will
be using.

Solaris 2.6/2.7

• Xilinx Implementation Tools

• Xilinx Virtex-II Pro Software Kit. Details are available at http://
www.xilinx.com/virtex2pro

• IBM CoreConnect Software. Details are available at http://
www.xilinx.com/ipcenter/processor_central/
register_coreconnect.htm

• HDL Simulator that can simulate both VHDL/Verilog and SWIFT
interface.
Synthesis and Simulation Design Guide 5-5

http://www.synopsys.com/products/lm/doc/smartmodel.html
http://www.xilinx.com/virtex2pro
http://www.xilinx.com/virtex2pro
http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm
http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm

Synthesis and Simulation Design Guide
Windows NT, 2000

• Xilinx Implementation Tools

• Xilinx Virtex-II Pro software kit. Details are available at http://
www.xilinx.com/virtex2pro

• IBM CoreConnect Software. Details are available at http://
www.xilinx.com/ipcenter/processor_central/
register_coreconnect.htm

• HDL Simulator that can simulate both VHDL/Verilog and SWIFT
interface.

Installing Smart Models from Xilinx Implementation
Tools

The Smart Models come precompiled with the Xilinx implementation
tools, but they are not installed. This allows you to install the PPC405
and GT Smart models with additional Smart Models incorporated in
the design. Compile all Smart models into a common library for the
simulator to use.

Note The Smart Models are installed as part of the Virtex-II Pro
Development Kit. If additional Smart Models are not required, do not
reinstall the models.

Solaris 2.6/2.7/2.8

STEP 1 - BEGIN SMART MODEL INSTALLATION

Run the sl_admin.csh program from the $XILINX/verilog/
smartmodel/sol/image directory using the following commands:

$ cd $XILINX/verilog/smartmodel/sol/image

$ sl_admin.csh

STEP 2 - SELECT SMART MODELS TO INSTALL

a) The sl_admin GUI and Set Library Directory popup will
appear. Change the default directory from "image/pcnt" to
"installed". Click OK. If the directory does not exist, the
program will ask if you want to create it, click OK.

b) The sl_admin GUI and the Install From... popup will appear.
Click Open to use the default directory.
5-6 Xilinx Development System

http://www.xilinx.com/virtex2pro
http://www.xilinx.com/virtex2pro
http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm
http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm

Virtex-II Pro Considerations
c) Next, the Select Models to Install popup will appear. Click
Add All to select all models. Click Continue.

d) Next, the Select Platforms for Installation popup will appear.
For Platforms, select Sun-4. For EDAV Packages, select
Other. Click Install.

e) When the words “Install complete" appear, and the status
line (bottom line of the sl_admin GUI) goes to Ready,
installation is complete.

At this point the Smart Models have been installed. Exit the GUI by
using the File->Exit pull down menu, or use the GUI to perform
other operations such as accessing documentation and running
checks on your newly installed library.

To properly use the newly compiled models, set the LMC_HOME
variable to the image directory. For example:

Setenv LMC_HOME $XILINX/verilog/smartmodel/sol/
installed

Windows NT, 2000

STEP 1 - BEGIN SMART MODEL INSTALLATION

Run the sl_admin.exe program from the
verilog\smartmodel\nt\image\pcnt directory.

STEP 2 - SELECT SMART MODELS TO INSTALL

• The sl_admin GUI and a popup for "Set Library Directory" will
appear. Change the default directory from "image\pcnt" to
"installed". Click OK. If the directory does not exist, the program
will ask if you want to create it, click OK.

• Next, click Install on the left side of the sl_admin window.
This will allow you choose the models to install.

• When the Install From... pop up appears, click Browse, and
select sim_models\xilinx\verilog\smartmodel\nt\image
directory. Click OK to select that directory

• The Select Models to Install popup will appear. Click Add All,
then OK
Synthesis and Simulation Design Guide 5-7

Synthesis and Simulation Design Guide
• Then the Choose Platform window will appear. For Platforms,
select Wintel. For EDAV Packages, select Other. Click OK to
install.

• From the sl_admin window, you should see "Loading: gt_swift",
and "Loading: ppc405_swift". When the words "Install complete"
appear, installation is complete.

At this point, the smart models have been installed. Exit the GUI
using the File->Exit menu, or use the GUI to perform other
operations such as bringing up documentation and running checks
on your newly installed library.

To properly use the newly compiled models, set the LMC_HOME
variable to the image directory. For example:

Set LMC_HOME=$Xilinx$\verilog\smartmodel
\nt\installed

For details specific to Virtex-II Pro, see the Virtex II Pro Handbook.

Running Simulation
This section describes how to setup and run simulation on the
various supported simulators.

MTI Modelsim SE - Solaris 2.6/2.7/2.8

Simulator Setup

Although Modelsim SE supports the SWIFT interface, some
modifications must be made to the default Modelsim setup to enable
this feature. The Modelsim install directory contains an initialization
file called modelsim.ini. In this initialization file, users can edit GUI
and Simulator settings to default to their preferences. Parts of this
modelsim.ini file must be edited to work properly along with the
Virtex-II Pro device simulation models.

The following changes are needed in the modelsim.ini file. These
changes can be made to the modelsim.ini file located in the
$MODEL_TECH directory. An alternative to making these edits is to
change the MODELSIM environment variable setting in the MTI
setup script to point to the modelsim.ini file located in the each
example’s design directory.
5-8 Xilinx Development System

Virtex-II Pro Considerations
1. After the lines

; Simulator resolution

; Set to fs, ps, ns, us, ms, or sec with optional
prefix of 1, 10, or 100.

Edit the Statement that follows from Resolution = ns to
Resolution = ps

2. After the lines

; Specify whether paths in simulator commands
should be described

; in VHDL or Verilog format. For VHDL,
PathSeparator = /

; for Verilog, PathSeparator = .

Comment the following statement called PathSeparator = / by
adding a ";" at the start of the line.

3. After the line

; List of dynamically loaded objects for Verilog
PLI applications add the following statement:

Veriuser = $MODEL_TECH/libswiftpli.sl ;;
$DENALI/mtipli.so

4. After the line

; Logic Modeling’s SmartModel SWIFT software
(Sun4 Solaris 2.x)add the following
statements:

libsm = $MODEL_TECH/libsm.sl

libswift = $LMC_HOME/lib/sun4Solaris.lib/
libswift.so

Note It is important to make the changes in the order in which the
commands appear in the modelsim.ini. The simulation may not work
if the order recommended above is not followed.

After editing the modelsim.ini file, add the following Environment
variable to the MTI Modelsim SE setup script:

setenv MODELSIM /<path_to_modelsim.ini_script>/
modelsim.ini
Synthesis and Simulation Design Guide 5-9

Synthesis and Simulation Design Guide
If the MODELSIM environment variable is not set properly, MTI
might not use this .ini file, due to which the initialization settings
required for simulation will not be read by the simulator. Set up the
MTI SE simulation environment by souring the MTI SE setup script
from the terminal.

Running Simulation

In the $xilinx/verilog/smartmodel/sol/simulation/mtiverilog
directory there are several files to help setup and run a simulation
utilizing the SWIFT interface.

• modelsim.ini - example modelsim.ini file used to setup Modelsim
for SWIFT interface support. This file contains the changes
outlined above. We suggest that you make the changes to the
modelsim.ini file located in the $MODEL_TECH directory,
because of the library mappings included in this file.

• Setup - Script used to set the user environment for simulation
and implementation. Here is an example of the variables set:

setenv XILINX <Xilinx path>

setenv MODEL_TECH <MTI path>

setenv LM_LICENSE_FILE
<modelsim_license.dat>;$LM_LICENSE_FILE

setenv LMC_HOME ${XILINX}/verilog/smartmodel/
sol/image

setenv PATH ${LMC_HOME}/bin:${LMC_HOME}/lib/
pcnt.lib:${MODEL_TECH}/bin:${XILINX}/bin/
sol:{PATH}

The user is responsible for changing the parameters included <>
to match the systems configuration.

• Simulate - An example Modelsim simulation script. Illustrates
which files need to be compiled and loaded for simulation. This
file can be modified to simulate a design by including the design
and testbench files appropriately. If the users modelsim.ini file is
being used, which contains the system mappings, the vmap
commands can be commented out or deleted from this file.

• run.do - used by the simulate script to run the complete
simulation.
5-10 Xilinx Development System

Virtex-II Pro Considerations
Once each of these files has been properly updated, the simulation
can be run by sourcing the setup and simulate files.

MTI Modelsim SE - Windows NT/2000

Simulator Setup

Although Modelsim SE supports the SWIFT interface, some
modifications must be made to the default Modelsim setup to enable
this feature. The Modelsim install directory contains an initialization
file called modelsim.ini. In this initialization file, users can edit GUI
and Simulator settings to default to their preferences. Parts of this
modelsim.ini file must be edited to work properly along with the
Virtex-II Pro device simulation models.

The following changes are needed in the modelsim.ini file. These
changes can be made to the modelsim.ini file located in the
MODEL_TECH directory. An alternative to making these edits is to
change the MODELSIM environment variable setting in the MTI
setup script to point to the modelsim.ini file located in the each
example’s design directory.

1. After the lines

; Simulator resolution
; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10,
or 100.

Change the Statement that follows from:

Resolution = ns

to:

Resolution = ps

2. After the lines:

; Specify whether paths in simulator commands should be described
; in VHDL or Verilog format. For VHDL, PathSeparator = /
; for Verilog, PathSeparator = .

Comment out the following statement

PathSeparator = /

by adding a ";" at the start of the line.

3. After the line:
Synthesis and Simulation Design Guide 5-11

Synthesis and Simulation Design Guide
; List of dynamically loaded objects for Verilog PLI applications

Add the following statement:

Veriuser = %MODEL_TECH%/libswiftpli.dll

4. After the line:

; Logic Modeling’s SmartModel SWIFT software (Windows NT)

add the following statements:

libsm = %MODEL_TECH%/libsm.dll
libswift = %LMC_HOME%/lib/pcnt.lib/libswift.dll

Note It is important to make these changes in the order in which the
commands appear in the modelsim.ini. The simulation may not work
if the order recommended is not followed.

After editing the modelsim.ini file, add the following Environment
variable to the MTI Modelsim SE setup script:

set MODELSIM=<path_to_modelsim.ini_script>\modelsim.ini

If the MODELSIM environment variable is not set properly, MTI
might not use this .ini file, due to which the initialization settings
required for simulation will not be read by the simulator. Set up the
MTI SE simulation environment by sourcing the MTI SE setup script
from the terminal.

Running Simulation

In the $XILINX\verilog\smartmodel\sol\simulation\mtiverilog
directory there are several files to help setup and run a simulation
utilizing the SWIFT interface.

• modelsim.ini - example modelsim.ini file used to setup Modelsim
for SWIFT interface support. This file contains the changes
outlined above. We suggest that you make the changes to the
modelsim.ini file located in the $MODEL_TECH directory,
because of the library mappings included in this file.

• setup - Description of variables, which a user must set for correct
simulation and implementation. Here is an example of the
variables set:

set XILINX <Xilinx path>
5-12 Xilinx Development System

Virtex-II Pro Considerations
set LMC_HOME
%XILINX%\verilog\smartmodel\sol\image

set MODEL_TECH <MTI path>

set LM_LICENSE_FILE
<license.dat>;%LM_LICENSE_FILE%

set path
%LMC_HOME%\bin;%LMC_HOME%\lib\pcnt.lib;%MODEL
_TECH%\bin;%XILINX%\bin\nt;%path%

Note The user is responsible for changing the parameters
included <> to match the systems configuration.

• simulate.bat - An example Modelsim simulation script. Illustrates
which files must be compiled and loaded for simulation. This file
can be modified to simulate a design by including the design and
testbench files appropriately. If the users modelsim.ini file is
being used, which contains the system mappings, the vmap
commands can be commented out or deleted from this file.

• run.do - used by the simulate script to run the complete
simulation.

Once each of these files has been properly updated, run the
simulation run by double clicking on simulate.bat.

Cadence Verilog-XL - Solaris 2.6/2.7/2.8

Running Simulation

A Verilog-XL simulation incorporating the SWIFT interface can
initiated in two ways.

1. In the $XILINX/verilog/smartmodel/sol/simulation/verilogxl
directory there are several files to help setup and run a simulation
utilizing the SWIFT interface.

setup - Description of variables, which a
user must set for correct simulation and
implementation. Here is an example of the
variables set:

setenv XILINX <Xilinx path>

setenv LM_LICENSE_FILE
<verilogxl_license.dat>:${LM_LICENSE_FILE}
Synthesis and Simulation Design Guide 5-13

Synthesis and Simulation Design Guide
setenv CDS_INST_DIR <Cadence path>

setenv LD_LIBRARY_PATH ${V2PRO}/source/
sim_models/Xilinx/verilog/smartmodel/sol/
installed/lib/
sun4Solaris.lib:${LD_LIBRARY_PATH}

setenv LMC_CDS_VCONFIG ${CDS_INST_DIR}/
tools.sun4v/verilog/bin/vconfig

setenv LM_LICENSE_FILE
<license.dat>:${LM_LICENSE_FILE}

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/
tools/bin $PATH

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included
<> to match the systems configuration. The
LD_LIBRARY_PATH variable must be pointing to the Smart
Model installation directory.

♦ simulate - An example Verilog-XL compilation simulation
script. Illustrates which files need to be compiled and loaded
for simulation. This file can be modified to simulate a design
by including the design and testbench files appropriately.
The user should add +loadpli1=swiftpli:swift_boot a verilog
directive to the simulate script. For example:

verilog +loadpli1=swiftpli:swift_boot \

Once each of these files has been properly updated, the
simulation can be run.

2. This flow is requires administrative privileges and is not
recommended.

In the $XILINX/verilog/smartmodel/sol/simulation/verilogxl
directory there are several files to help setup and run a simulation
utilizing the smart models. A description of each file follows.

♦ readme - Outlines the steps of the secondary flow to utilize
the SWIFT interface.

a) edit the setup file, as described below, to setup environment
for Verilog-XL.

source setup
5-14 Xilinx Development System

Virtex-II Pro Considerations
Note The following step is not required if the models have been
installed.

b)

cd $XILINX/verilog/smartmodel/sol/image

Enter: sl_admin.csh

c)

Enter: pliwiz

Config Session Name - xilinx

Verilog-XL

Stand Alone

SWIFT Interface

Finish

No

d)

cp -p $CDS_INST_DIR/tools/pliwizard/src/
Makefile.xl.sun4v .

e)

edit Makefile_pliwiz.xl

f)

change $(INSTALL_DIR)/tools/pliwizard/src/
Makefile.xl.sun4v to ./Makefile.xl.sun4v

g)

edit Makefile.xl.sun4v

Change CC = cc to CC = gcc

h)

make all

i) edit the simulate file

source simulate
Synthesis and Simulation Design Guide 5-15

Synthesis and Simulation Design Guide
♦ setup - Description of variables, which a user must set for
correct simulation and implementation. Here is an example
of the variables set:

setenv XILINX <Xilinx path>

setenv LM_LICENSE_FILE
<verilogxl_license.dat>:${LM_LICENSE_FILE}

setenv CDS_INST_DIR <Cadence path>

setenv LD_LIBRARY_PATH ${V2PRO}/source/
sim_models/Xilinx/verilog/smartmodel/sol/
installed/lib/
sun4Solaris.lib:${LD_LIBRARY_PATH}

setenv LMC_CDS_VCONFIG ${CDS_INST_DIR}/
tools.sun4v/verilog/bin/vconfig

setenv LM_LICENSE_FILE
<license.dat>:${LM_LICENSE_FILE}

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/
tools/bin $PATH

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included
<> to match the systems configuration. The
LD_LIBRARY_PATH variable must be pointing to the Smart
Model installation directory.

♦ ¨ simulate - An example Verilog-XL compilation simulation
script. Illustrates which files need to be compiled and loaded
for simulation. This file can be modified to simulate a design
by including the design and testbench files appropriately.
5-16 Xilinx Development System

Virtex-II Pro Considerations
Cadence NC-Verilog - Solaris 2.6/2.7/2.8

Running Simulation

In the $XILINX/verilog/smartmodel/sol/simulation/ncverilog
directory there are several files to help setup and run a simulation
utilizing the SWIFT interface.

• Setup - Description of variables, which a user must set for correct
simulation and implementation. Here is an example of the
variables set:

setenv XILINX <Xilinx path>

setenv CDS_INST_DIR <Cadence path>

setenv LM_LICENSE_FILE
<license.dat>:$LM_LICENSE_FILE

setenv LMC_HOME $XILINX/verilog/smartmodel/sol/
image

setenv LMC_CONFIG $LMC_HOME/data/solaris.lmc

setenv LD_LIBRARY_PATH $CDS_INST_DIR/
tools.sun4v/lib:$LD_LIBRARY_PATH

setenv LMC_CDS_VCONFIG $CDS_INST_DIR/
tools.sun4v/verilog/bin/vconfig

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/
tools/bin ${PATH}

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included <>
to match the systems configuration.

• ¨ Simulate - An example NC-Verilog compilation simulation
script. Illustrates which files need to be compiled and loaded for
simulation. This file can be modified to simulate a design by
including the design and testbench files appropriately.
Synthesis and Simulation Design Guide 5-17

Synthesis and Simulation Design Guide
Once each of these files has been properly updated, the
simulation can be run.

Synopsys VCS - Solaris 2.6/2.7/2.8

Running Simulation

In the $XILINX/verilog/smartmodel/sol/simulation/vcs directory
there are several files to help setup and run a simulation utilizing the
SWIFT interface.

• Setup - Description of variables, which a user must set for correct
simulation and implementation. Here is an example of the
variables set:

setenv XILINX <Xilinx path>

setenv VCS_HOME <VCS path>

setenv LM_LICENSE_FILE
<license.dat>:${LM_LICENSE_FILE}

setenv LMC_HOME ${XILINX}/verilog/smartmodel/
sol/image

setenv LMC_CONFIG ${LMC_HOME}/data/solaris.lmc

setenv VCS_CC gcc

setenv PATH ${LMC_HOME}/bin ${VCS_HOME}/bin
${PATH}

setenv PATH ${XILINX}/bin/sol ${PATH}

The user is responsible for changing the parameters included <>
to match the systems configuration.

• Simulate - Example Verilog-XL compilation simulation script.
Illustrates which files need to be compiled and loaded for
simulation. This file can be modified to simulate a design by
including the design and testbench files appropriately.

Once each of these files has been properly updated, the
simulation can be run.
5-18 Xilinx Development System

Virtex-II Pro Considerations
Virtex-II Pro Board Support Package
The Virtex-II Pro Board Support Package (BSP) is located in the
$V2PRO/source/sw/libs/bsp installation directory. The BSP is a set
of software modules combined into the bsp.a library. On one hand,
the BSP offers an interface to peripheral devices and to low-level
PowerPC core functions. A stand-alone application uses this interface
to access the hardware. On the other hand, the BSP is required when
an application is linked with the C library. In this case the BSP
provides functionality that allows the C library to access the
hardware.

For details on the BSP, see the "Software IP and Applications" volume
of the Virtex-II Pro Platform FPGA Developer’s Kit.

Debugging Tools for Virtex-II Pro Designs

Xilinx GNU Embedded Software Tools
Xilinx has created a specific version of the popular GNU compiler/
debugger tool chain for the Virtex-II Pro Platform FPGA. This tool
technology has world-wide support via the internet, open
community and the general public license (GPL) process. Xilinx
supports the general installation of this tool chain. An abundance of
documentation is available on the web and third party companies can
offer consulting services for supporting GNU. This strategy allows
Xilinx to support software design for both the IBM PPC405 hard core
and Xilinx MicroBlaze soft core processors with one tool chain
technology. Xilinx provides separate compiler/debugger versions for
both the PowerPC and for the Xilinx MicroBlaze processor cores
based on the same GNU technology.

For more information on the GNU Software tools, see the "Software
Development Tools" volume of the Virtex-II Pro Platform FPGA
Developer’s Kit. Also, see the GNU Project website at http://
www.gnu.org.

GDB Debugger
GDB, or the GNU Project Debugger, is a source code debugging tool
for C/C++ language design. The public has access to this technology
via a general public license process which promotes the advancement
and improvement of the technology.
Synthesis and Simulation Design Guide 5-19

http://www.gnu.org
http://www.gnu.org

Synthesis and Simulation Design Guide
Xilinx has created a specific version of the GDB debugger to be mated
up with the GCC C/C++ compiler for the Virtex-II Pro Platform
FPGA with embedded PPC405. This debugger is used with GCC
designs to start, stop and step through one’s C/C++ program to
debug its behavior. The debugger provides the user with visibility
into the program’s execution and helps the engineer identify bugs.
This tool also allows the user to attempt to correct some types of
problems without necessarily recompiling all of the code. Without an
effective debugger, the engineer is left to experiment with the code in
a trial and error fashion when they encounter a problem.

The GDB software debugger for the Virtex-II Pro with embedded
PPC405 will be matched up with a Xilinx version of the GNU GCC
C/C++ software compiler. Code can be downloaded and debugged
on an embedded target via the Xilinx Parallel Cable IV.

Xilinx will provide GDB customer support on the installation process
for those engineers using the Xilinx GDB with the Virtex-II Pro. Broad
based support for the GNU technology is available at http://
www.gnu.org/. Or, for more general information, try http://
www.fsf.org/software/gdb/gdb.html. More information is also
available in the "Software Development Tools" volume of the Virtex-II
Pro Platform FPGA Developer’s Kit.

ChipScope Pro
As the density of FPGA devices increases, so does the impracticality
of attaching test equipment probes to these devices under test. The
ChipScope™ Pro tools integrate key logic analyzer hardware
components with the target design inside the Virtex-II device. The
ChipScope Pro tools communicate with these components and
provide the designer with a complete logic analyzer, without the
need for cumbersome probes or expensive test equipment. For details
on using the ChipScope Pro tools, see the ChipScope Pro Software
and Cores User Manual
5-20 Xilinx Development System

http://www.gnu.org/
http://www.gnu.org/
http://www.gnu.org/
http://www.fsf.org/software/gdb/gdb.html
http://www.fsf.org/software/gdb/gdb.html

Virtex-II Pro Considerations
Wind River Embedded Tools
Xilinx worked with Wind River Systems to provide a set of software
tools for targeting the PPC405 in the Platform FPGAs. A specific
Xilinx-Edition (XE) version of the Wind River tools (compiler,
software debugger and JTAG run control hardware probe) has been
created for Xilinx distribution via an OEM agreement.

Wind River provides end-to-end development and debugging
solutions for IBM PowerPC microprocessors. The WindRiver solution
includes real-time operating systems, embedded middle-ware, a
optimized Diab compiler, a SingleStep debug tool suite, Tornado
Tools 2 and Tornado Tools 3 development environments, high
performance visionPROBE II and visionICE On-Chip hardware,
reference design boards, board support packages, visionWARE boot
services, professional services and integrated vertical market
solutions.

The Wind River Xilinx Edition includes the leading embedded
software development tools SingleStep Debugger, Diab C/C++
Compiler and the visionPROBE II target connection.

Tool Description

ChipScope Pro Core Generator Provides netlists and instantiation
templates for the Integrated
Controller Pro (ICON Pro) core
and the Integrated Logic Analyzer
Pro (ILA Pro) core.

ChipScope Pro Analyzer Provides device configuration,
trigger setup, and trace display for
the ILA Pro core. The ILA Pro core
provides the trigger and trace
capture capability. The ICON Pro
core communicates to the dedi-
cated Boundary Scan
pins.
Synthesis and Simulation Design Guide 5-21

Synthesis and Simulation Design Guide
SingleStep Debugger - Xilinx Edition

The SingleStep Debugger - Xilinx Edition provides all the embedded
IBM Power PC 405 processor SW debugging functionality, including
a high-level of hardware awareness

SingleStep Debugger with vision, Xilinx Edition, from Wind River is a
comprehensive hardware/software debugging solution. It includes
the following features:

• A complete hardware-assisted debugging solution for board
bring-up, driver/firmware development and C/C++ application
debugging in control via

• BDM/JTAG port

• Unique processor specific register interface to enable configuring
and initializing integrated peripherals

• On-chip hardware breakpoint support

• Real-time target control via on-chip debugging technology

• High-speed binary downloads to target

• Built in hardware diagnostics

• Flash memory programming

• Statistical performance analysis (Full Edition)

• Support for Diab and gnu compilers

• Available LA TRACE option provides real-time trace through
integration with logic analyzers

• RTOS API kit enables creation of kernel awareness libraries for
the RTOS of your choice (Full Edition)

• Off the shelf, kernel awareness libraries available for VxWorks,
pSOS+ and other third party RTOS (Full Edition)

• Rich command line interface plus a powerful scripting language
for automated tests

• JTAG programming window to debug multiple devices on a scan
chain

• Integrated support for task-aware debugging with dedicated
window per task views enables effective debugging of
multitasking applications
5-22 Xilinx Development System

Virtex-II Pro Considerations
IBM PowerPC 405GP Specific Features

• Register Definition File to display all IBM PowerPC 405 registers
in the register window

• Hardware Breakpoints: Full support for hardware breakpoints as
implemented by the PPC405GP including 4 hardware instruction
address, 2 data instruction address and 2 data value breakpoints

• On-Chip trace: Support for instruction completion, branch taken,
interrupt, trap, instruction stream exceptions in SingleStep with
vision

• Support for instruction completion, branch taken, exception
taken, trap instruction, unconditional, instruction address
compare, data address compare, data value compare and
imprecise debug events

Other Software Tools
The following are other useful software development/debugging
tools. Contact the individual tool vendors for information on these
tools.

• Endeavor Interactive Co-simulation Model for Virtex-II Pro Post-
simulation Environment. More information on Endeavor is
available at http://www.endeav.com

• Mentor Graphics Seamless Hardware/Software Co-Verification
Environment.

Embedded systems rely on an integrated relationship between
software and hardware. To address this problem, Mentor
Graphics has developed the Seamless Co-Verification
Environment (CVE). Seamless CVE enables designers to link
software execution to the hardware simulation and co-simulate
the hardware and software. This tool allows software integration
early in the design cycle, without having to wait for the hardware
prototype to be built. More information on Seamless is available
at http://www.mentor.com/seamless/.
Synthesis and Simulation Design Guide 5-23

http://www.mentor.com/seamless/
http://www.indeav.com/seamless/

Synthesis and Simulation Design Guide
5-24 Xilinx Development System

Chapter 6

Simulating Your Design

This chapter describes the basic HDL simulation flow using the
Alliance software. It includes the following sections.

• “Introduction”

• “Adhering to Industry Standards”

• “Simulation Points”

• “VHDL/Verilog Libraries and Models”

• “Compiling HDL Libraries”

• “Running NGD2VHDL and NGD2VER”

• “Understanding the Global Reset and Tristate for Simulation”

• “Simulating VHDL”

• “Simulating Verilog”

• “RTL Simulation Using Xilinx Libraries”

• “Timing Simulation”

• “Simulation Flows”

• “IBIS”

• “STAMP”

• “Debugging Timing Problems”
Synthesis and Simulation Design Guide 6-1

Synthesis and Simulation Design Guide
Introduction
Increasing design size and complexity, as well as recent improve-
ments in design synthesis and simulation tools, have made HDL the
preferred design language of most integrated circuit designers. The
two leading HDL synthesis and simulation languages today are
Verilog and VHDL. Both of these languages have been adopted as
IEEE standards.

The Xilinx implementation tools software is designed to be used with
several HDL synthesis and simulation tools that provide a solution
for programmable logic designs from beginning to end. The Xilinx
software provides libraries, netlist readers, and netlist writers along
with the powerful place and route software that integrates with your
HDL design environment on PC and UNIX workstation platforms.

Adhering to Industry Standards
The standards in the following table are supported by the Xilinx
simulation flow.

The Xilinx Series software currently supports the Verilog IEEE 1364
2001 Standard, VHDL IEEE Standard 1076-1993 and IEE Standard
1076.4-2000 for Vital (Vital 2000), and SDF version 3.0.

Note Although the Xilinx HDL netlisters produce IEEE-STD-1076-93
VHDL code or IEEE-STD-1364-2001 Verilog code, that does not
restrict the use of newer or older standards for the creation of
testbenches or other simulation files. If the simulator being used
supports both older and newer standards, then generally, both
standards can be used in these simulation files. Be sure to indicate to
the simulator during code compilation which standard was used for
the creation of the file.

Table 6-1 Standards Supported by Xilinx Simulation Flow

Description Version

VHDL Language IEEE-STD-1076-1993

VITAL Modeling Standard IEEE-STD-1076.4-2000

Verilog Language IEEE-STD-1364-2001

Standard Delay Format (SDF) OVI 3.0

Std_logic Data Type IEEE-STD-1164-93
6-2 Xilinx Development System

Simulating Your Design
Xilinx currently tests and supports the following simulators for
VHDL and Verilog simulation:

• VHDL

♦ Model Technology ModelSim

♦ Cadence NC-VHDL

♦ Synopsys Scirocco

• Verilog

♦ Model Technology ModelSim

♦ Cadence Verilog-XL

♦ Cadence NC-Verilog

♦ Synopsys VCS

In general, you should run the most current version of the simulator
available to you.

Xilinx develops its libraries and simulation netlists using IEEE
standards so you should be able to use most modern VHDL and
Verilog simulators. Check with your simulator vendor before you
start to confirm that the proper standards are supported by your
simulator, and to verify the proper settings for your simulator.

The Xilinx VHDL libraries are tied to the IEEE-STD-1076.4-2000
VITAL standard for simulation acceleration. This VITAL 2000 is in
turn based on the IEEE-STD-1076-93 VHDL language. Because of this
the Xilinx libraries must be compiled as 1076-93.

VITAL libraries include some additional processing for timing checks
and back-annotation styles. The UNISIM library turns these timing
checks off for unit delay functional simulation. The SIMPRIM back-
annotation library keeps these checks on by default to allow accurate
timing simulations.
Synthesis and Simulation Design Guide 6-3

Synthesis and Simulation Design Guide
Simulation Points
Xilinx supports functional and timing simulation of HDL designs at
five points in the HDL design flow. The “Primary Simulation Points
for HDL Designs” figure below shows the points of the design flow.
All five points are described in the following section.

1. Register Transfer Level (RTL) simulation, which may include the
following:

♦ RTL Code

♦ Instantiated UNISIM library components

♦ XilinxCoreLib models (CORE Generator)

2. Post-synthesis functional simulation, which may include one of
the following (Optional):

♦ Gate-level netlist containing UNISIM library components
(written by the synthesis tool)

♦ XilinxCoreLib models (CORE Generator)

3. Post-NGDBUILD Simulation (Optional):

♦ Gate-level netlist containing SIMPRIM library components

4. Post-Map with partial back-annotated timing without routing
delays, which may include the following (Optional):

♦ Gate-level netlist containing SIMPRIM library components

♦ Standard Delay Format (SDF) files

5. Post-Place and Route with full back-annotated timing, which
may include the following:

♦ Gate-level netlist containing SIMPRIM library components

♦ Standard Delay Format (SDF) files
6-4 Xilinx Development System

Simulating Your Design
Figure 6-1 Primary Simulation Points for HDL Designs

X9822

HDL RTL
Simulation

Synthesis

Xilinx
Implementation

HDL Timing
Simulation

HDL
Design

Testbench
Stimulus

Post-Synthesis Gate-Level
Functional Simulation

SIMPRIM
Library

UNISIM
Library

XilinxCoreLib
Modules
Synthesis and Simulation Design Guide 6-5

Synthesis and Simulation Design Guide
The Post-NGDBuild and Post-MAP simulations can be used when
the synthesis tool either cannot write VHDL or Verilog, or if the
netlist is not in terms of UNISIM components.

These Xilinx simulation points are described in detail in the following
sections. The libraries required to support the simulation flows are
described in detail in the ““VHDL/Verilog Libraries and Models”
section. The flows and libraries now support closer functional equiv-
alence of initialization behavior between functional and timing simu-
lations.

Different simulation libraries are used to support simulation before
and after running NGDBuild. Prior to NGDBuild, your design is
expressed as a UNISIM netlist containing Unified Library compo-
nents that represents the logical view of the design. After NGDBuild,
your design is a netlist containing SIMPRIMs represents the physical
view of the design. Although these library changes are fairly trans-
parent, there are two important considerations to keep in mind: first,
you must specify different simulation libraries for pre- and post-
implementation simulation, and second, there are different gate-level
cells in pre- and post-implementation netlists.

For Verilog, the Standard Delay Format (SDF) file is automatically
read when the simulator compiles the Verilog simulation netlist.
Within the simulation netlist there is the Verilog system task
$sdf_annotate, which specifies the name of the SDF file to be read.

For VHDL, the user specifies the location of the SDF file and the
instance to annotate it to. The method for doing so is different
depending on the simulator being used. Typically, a command line or
GUI switch is used to read the SDF file.

Table 6-2 Five Simulation Points in HDL Design Flow

Simulation
UNISIM

XilinxCoreLib
Models

SIMPRIM SDF

1. RTL X X

2. Post-Synthesis (Optional) X X

3. Functional Post-
NGDBuild (Optional)

X

4. Functional Post-MAP
(Optional)

X X

5. Post-Route Timing X X
6-6 Xilinx Development System

Simulating Your Design
Register Transfer Level (RTL)
The RTL-level (behavioral) simulation allows the user to verify or
simulate a description at the system or chip level. This first pass
simulation is typically performed to verify code syntax and to
confirm that the code is functioning as intended. At this step, no
timing information is provided and simulation should be performed
in unit-delay mode to avoid the possibility of a race condition.

RTL simulation is not architecture-specific unless the design contains
instantiated UNISIM, or CORE Generator components. To support
these instantiations, Xilinx provides the UNISIM and XilinxCoreLib
libraries. The user can instantiate CORE Generator components if the
user does not want to rely on the module generation capabilities of
the synthesis tool, or if the design requires larger memory structures.

A general suggestion for the initial design creation is to keep the code
behavioral. Avoid instantiating specific components unless necessary.
This allows for more readable code, faster and simpler simulation,
code portability (the ability to migrate to different device families),
and code reuse (the ability to use the same code in future designs).
However, you may find it necessary to instantiate components if the
component is not inferrable (i.e. DCM, GT, PPC405, etc.), or in order
to control the mapping, placement or structure of a function.

Post-Synthesis (Pre-NGDBuild) Gate-Level
Simulation

Most synthesis tools have the ability to write out a post-synthesis
HDL netlist for a design. If the VHDL or Verilog netlists are written
for UNISIM library components, you may then use the netlists to
simulate the design and evaluate the synthesis results. However,
Xilinx does not support this method if the netlists are written in terms
of the vendor’s own simulation models.

The instantiated CORE Generator models are used for any post-
synthesis simulation because these modules are processed as a “black
box” during synthesis. It is important that you maintain the consis-
tency of the initialization behavior with the behavioral model used
for RTL, post-synthesis simulation, and the structural model used
after implementation. In addition, the initialization behavior must
work with the method used for synthesized logic and cores.
Synthesis and Simulation Design Guide 6-7

Synthesis and Simulation Design Guide
Post-NGDBuild (Pre-Map) Gate-Level Simulation
The post-NGDBuild (pre-map) gate-level functional simulation is
used when it is not possible to simulate the direct output of the
synthesis tool. This occurs when the tool cannot write UNISIM-
compatible VHDL or Verilog netlists. In this case, the NGD file
produced from NGDBUILD is the input into one of the Xilinx simula-
tion netlisters, NGD2VER or NGD2VHDL. NGD2VER and
NGD2VHDL create a structural simulation netlist based on SIMPRIM
models.

Like post-synthesis simulation, pre-NGDBuild simulation allows you
to verify that your design has been synthesized correctly, and you can
begin to identify any differences due to the lower level of abstraction.
Unlike the post-synthesis pre-NGDBuild simulation, there are GSR
and GTS nets that must be initialized, just as for post-map and post-
par simulation.

Post-Map Partial Timing (CLB and IOB Block Delays)
You may also perform simulation after mapping the design. Post-
Map simulation occurs before placing and routing. This simulation
will include the block delays for the design but not the routing
delays. This is generally a good metric to test whether the design is
meeting the timing requirements before additional time is spent
running the design through a complete place and route.

As with the post-NGDBuild simulation, NGD2VER or NGD2VHDL
is used to create the structural simulation netlist based on SIMPRIM
models.

When you run one of the simulation netlister tools, NGD2VER or
NGD2VHDL, an SDF file is created. The delays for the design are
stored in the SDF file which contains all block or logic delays.
However, it will not contain any of the routing delays for the design
since the design has not yet been placed and routed.

Timing Simulation Post-Place and Route Full Timing
(Block and Net Delays)

After your design has completed the place and route process in the
Xilinx Implementation Tools, a timing simulation netlist can be
created. It is not until this stage of design implementation that you
6-8 Xilinx Development System

Simulating Your Design
will start to see how your design will behave in the circuit. The
overall functionality of the design was defined in the beginning
stages, but it is not until the design has been placed and routed that
all of the timing information of the design can be accurately calcu-
lated.

The previous simulations that used NGD2VER or NGD2VHDL
created a structural netlist based on SIMPRIM models. However, this
netlist will come from the placed and routed NCD file. This netlist
has GSR and GTS nets that must be initialized. For more information
on initializing the GSR and GRTS nets, please refer to the “Under-
standing the Global Reset and Tristate for Simulation” section in this
chapter.

When you run timing simulation, an SDF file is created as with the
post-MAP simulation. However, this SDF file contains all block and
routing delays for the design.

Providing Stimulus
Before simulation is performed, you should create a testbench or test
fixture to apply the stimulus to the design. A testbench is HDL code
written for the simulator that will instantiate the design netlist(s),
initialize the design and then apply stimuli to verify the functionality
of the design. You can also set up the testbench to display the desired
simulation output to a file, waveform or screen.

The testbench has many advantages over interactive simulation
methods. For one, it allows repeatable simulation throughout the
design process. It also provides documentation of the test conditions.

There are several methods to create a testbench and simulate a
design. A testbench can be very simple in structure and sequentially
apply stimulus to specific inputs. A testbench may also be very
complex, including subroutine calls, stimulus read in from external
files, conditional stimulus or other more complex structures.

The ISE tools will create a template testbench containing the proper
structure, library references, and design instantiation based on your
design files from Project Navigator. This greatly eases testbench
development at the beginning stages of the design.

Alternately, you may use the HDL Bencher tool in ISE to
automatically create a testbench by drawing the intended stimulus
Synthesis and Simulation Design Guide 6-9

Synthesis and Simulation Design Guide
and the expected outputs in a waveform viewer. Please refer to the
ISE and/or HDL Bencher Online Help for more information.

With yet another method, you can use NGD2VER and NGD2VHDL
to create a testbench file. The –tf switch for NGD2VER or –tb switch
for NGD2VHDL will create the test fixture or testbench template. The
Verilog test fixture file has a .tv extension, and the VHDL test bench
file has a .tvhd extension.

Xilinx recommends giving the name testbench to the main module or
entity name in the testbench file. This name is consistent with the
default name used by ISE for calling the testbench when it invokes
the simulator.

VHDL/Verilog Libraries and Models
The five simulation points listed previously require the UNISIM,
CORE Generator (XilinxCoreLib), and SIMPRIM libraries.

The first point, RTL simulation, is a behavioral description of your
design at the register transfer level. RTL simulation is not architec-
ture-specific unless your design contains instantiated UNISIM, or
CORE Generator components. To support these instantiations, Xilinx
provides a functional UNISIM library and a CORE Generator Behav-
ioral XilinxCoreLib library. You can also instantiate CORE Generator
components if you do not want to rely on the module generation
capabilities of your synthesis tool, or if your design requires larger
memory structures.

The second simulation point is post-synthesis (pre-NGDBuild) gate-
level simulation. If the UNISIM library and CORE Generator compo-
nents are used, then both the UNISIM and the XilinxCorLIb libraries
must be used. The synthesis tool must write out the HDL netlist
using UNISIM primitives. Otherwise, the synthesis vendor will
provide its own post-synthesis simulation library.
6-10 Xilinx Development System

Simulating Your Design
The third, fourth, and fifth points (post-NGDBuild, post-map, and
post-route) use the SIMPRIM library. The following table indicates
what library is required for each of the five simulation points

Locating Library Source Files
The following table provides information on the location of the simu-
lation library source files, as well as the order for a typical compila-
tion.

Table 6-3 Simulation Phase Library Information

Simulation Point Compilation Order of Library Required

RTL UNISIM
XilinxCoreLib

Post-Synthesis UNISIM
XilinxCoreLib

Post-NGDBuild SIMPRIM

Post-MAP SIMPRIM

Post-Route SIMPRIM

Table 6-4 Simulation Library Source Files

 Library

Location of Source Files Compile Order

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL

UNISIM
Spartan-II,
Spartan-IIE,
Virtex,
Virtex-E,
Virtex-II,
Virtex-II Pro

$XILINX/
verilog/src/
unisims

 $XILINX/
vhdl/src/
unisims

No special
compilation
order
required for
Verilog
libraries

Required;
typical compilation order:
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd

UNISIM
9500,
CoolRunner,
CoolRunner-II

$XILINX/
verilog/src/
uni9000

 $XILINX/
vhdl/src/
unisims

No special
compilation
order
required for
Verilog
libraries

Required;
typical compilation order:
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd
Synthesis and Simulation Design Guide 6-11

Synthesis and Simulation Design Guide
Using the UNISIM Library
The UNISIM Library, used for functional simulation only, contains
default delays of 100 ps for most components. This library includes
all of the Xilinx Unified Library primitives that are inferred by most
synthesis tools. In addition, the UNISIM Library includes primitives
that are commonly instantiated, such as DCMs, BUFGs and GTs. You
should generally infer most design functionality using behavioral
RTL code unless the desired component is not inferrable by your
synthesis tool, or you wish to take manual control of mapping and/
or placement of a function.

UNISIM Library Structure

The UNISIM library directory structure is different for VHDL and
Verilog. There is only one VHDL library for all Xilinx technologies
because the implementation differences between architectures are not
important for unit delay functional simulation. There are only a few
cases where functional differences occur.

XilinxCoreLib
(FPGA
Families only)

$XILINX/
verilog/src/
XilinxCoreLib

$XILINX/
vhdl/src/
XilinxCoreLib

No special
compilation
order
required for
Verilog
libraries

Compilation order
required;
See the
vhdl_analyze_order file
located in $XILINX/
vhdl/src/Xilinx-
CoreLib/ for the required
compile order

SIMPRIM
(Device
Independent)

$XILINX/
verilog/src/
simprims

 $XILINX/
vhdl/src/
simprims

No special
compilation
order
required for
Verilog
libraries

Required;
typical compilation order:
simprim_Vcomponents.v
hd
simprim_Vpackage.vhd
simprim_VITAL.vhd

Table 6-4 Simulation Library Source Files

 Library

Location of Source Files Compile Order

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL
6-12 Xilinx Development System

Simulating Your Design
For Verilog, each library component is specified in a separate file. The
reason for this is to allow automatic library expansion within Verilog-
XL using the `uselib compiler directive or the –y library specification
switch. All Verilog module names and file names are all upper case
(i.e. module BUFG would be BUFG.v, module IBUF would be
IBUF.v). Since Verilog is a case-sensitive language, ensure that all
UNISIM primitive instantiations adhere to this upper-case naming
convention.

The VHDL UNISIM Library source files are found in $XILINX/vhdl/
src/unisims. The following is a list of VHDL UNISIM Library files.

• unisim_VCOMP.vhd (component declaration file)

• unisim_VPKG.vhd (package file)

• unisim_VITAL.vhd (model file)

The following is a list of Verilog UNISIM Library locations.

• $XILINX/verilog/src/unisims (used for Spartan-II, Spartan-IIE,
Virtex, Virtex-E, Virtex-II, Virtex-II Pro designs)

• $XILINX/verilog/src/uni9000 (used for CPLDs (9500XL/XV,
XPLA3, CoolRunner-II))

Using the CORE Generator XilinxCoreLib Library
The Xilinx CORE Generator is a graphical intellectual property
design tool for creating high-level modules like FIR Filters, FIFOs,
CAMs as well as other advanced IP. You can customize and pre-
optimize modules to take advantage of the inherent architectural
features of Xilinx FPGA devices, such as block multipliers, SRLs, fast
carry logic and on-chip, single-port or dual-port RAM. You can also
select the appropriate HDL model type as output to integrate into
your HDL design.

The CORE Generator HDL library models are used for RTL simula-
tion. The models do not use library components for global signals.

CORE Generator Library Structure

The VHDL CORE Generator library source files are found in
$XILINX/vhdl/src/XilinxCoreLib.

The Verilog CORE Generator library source files are found in
$XILINX/verilog/src/XilinxCoreLib.
Synthesis and Simulation Design Guide 6-13

Synthesis and Simulation Design Guide
Using the SIMPRIM Library
The SIMPRIM library is used for post Ngdbuild (gate level func-
tional), post-Map (partial timing), and post-place-and-route (full
timing) simulations. This library is architecture independent.

SIMPRIM Library Structure

The VHDL SIMPRIM Library source files are found in $XILINX/
vhdl/src/simprims.

The Verilog SIMPRIM Library source files are found in $XILINX/
verilog/src/simprims.

Compiling HDL Libraries
Most simulators require you to compile the HDL libraries before you
can use them for design simulations. The advantages of compiling
HDL libraries are speed of execution and economy of memory.

Xilinx provides an application, to specifically compile the HDL
libraries for all Xilinx-supported simulators. This utility will compile
the UNISIM, XilinxCoreLib and SIMPRIM libraries for all supported
device architectures.

Using compxlib
To compile your HDL libraries using compxlib, follow these steps:

1. Set the XILINX environment variable (if not already set), using
the following command:

Unix:

setenv XILINX path_to_xilinx_software

Windows:

Open the "System Properties/Environment Variables" dialog box
and set the XILINX to

path_to_XILINX_software

Note Compxlib also supports multiple paths in the XILINX
variable. The multiple paths can be defined by separating each
path with a colon ":" as in the following example.
6-14 Xilinx Development System

Simulating Your Design
2. Add $XILINX/bin/sol to the PATH variable (if not already set) as
in the following example:

Unix:

set path = ($XILINX/bin/platform $path)

Note platform can be either sol for 32-bit Solaris, sol64 for 64-bit
Solaris or nt if using Windows or Linux OS.

Windows:

In the "System Properties/Environment Variables" dialog box,
add %XILINX%\bin\nt to the PATH variable.

3. Run compxlib by using the following command:

compxlib -help

Note The -help option displays a brief description for the options
available.

Note Each simulator uses certain environment variables which
must be set before invoking compxlib. Consult your simulator
documentation to ensure that the environment is properly set up
to run your simulator.

4. Run compxlib tool using the following syntax:

compxlib [-h] -s simulator -f [family[:<lib>],
family[:<lib>], ... | all] [-l <language>]
[-o output_directory] [-p <simulator_path>]
[-w]

The following is an example of a command for compiling Xilinx
libraries for MTI_SE:

compxlib -s mti_se -f virtex -l verilog -o

This command will compile all Verilog based libraries on
ModelSim SE for the Virtex family in the current working
directory.

The compiled results will be saved in the following directories:

./unisim_ver

./XilinxCoreLib_ver

./simprim_ver
Synthesis and Simulation Design Guide 6-15

Synthesis and Simulation Design Guide
Running NGD2VHDL and NGD2VER
Xilinx provides programs that will create a netlist file from your
VHDL or Verilog NGD file. You can run either netlist writer from the
Project Navigator, XFLOW, or the command line. Each method is
described below.

Creating a Simulation Netlist
You can create a timing simulation netlist from Project Navigator,
XFLOW, or from the command line, as described in this section.

From Project Navigator

1. Highlight the top level design in the Sources in Project window.

2. In the Processes for Current Source window, click on the “+”
sign next to the Implement Design process, and then click on the
“+” sign next to the Place & Route process.

3. Double-click on Generate Post Place & Route Simulation
Model. Project Navigator will now run through the steps
required to produce the back-annotated simulation netlist.

4. If any default options need to be changed, right-click on the
Generate Post Place & Route Simulation Model process and
select Properties. The following options can be chosen from this
window:

Note Project Navigator will only show the options that apply to
your specific design flow (i.e if you have created a Verilog project,
it will only show you options for creating a Verilog netlist).

♦ Simulation Model Target

The Simulation Model Target property allows you to select
the target simulator for the simulation netlist. All supported
simulators are listed as well as a "generic" Verilog netlist for
other simulators.

♦ Post Translate/Map/Place & Route Simulation Model Name

The Post Translate Simulation Model Name property allows
you to designate a name for the generated Simulation netlist.
This only effects the file name for the written netlist and does
not effect the entity or module name.
6-16 Xilinx Development System

Simulating Your Design
By default, this field is left blank, and the simulation netlist
name will be top_level_name_timesim.

♦ Correlate Simulation Data to Input Design

The Correlate Simulation Data to Input Design property uses
an optional ngm_file file during the back-annotation process.
This is a design file produced by MAP, that contains
information about the original design hierarchy specified by
the KEPP_HIERARCHY constraint.

The By default, this property is set to On (checkbox is
checked)

♦ Bring Out Global Set/Reset Net as a Port

The Bring Out Global Set/Reset Net as a Port property
causes ISE to bring out the Global Reset signal (which is
connected to all flip-flops and latches in the physical design)
as a port on the top-level entity in the output VHDL file.
Specifying the port name allows you to match the port name
you used in the front-end if a ROCBUF component was used.
This option should only be used if the global set/reset net is
not driven by a STARTUP/STARTBUF block. For more
information on this option, refer to the “Understanding the
Global Reset and Tristate for Simulation” section in this
manual.

♦ Global Set/Reset Port Name

The Global Set/Reset Port Name property allows you to
specify a port name to match the port name you used in the
front-end if a ROCBUF component was used.

♦ Bring Out Global Tristate Net as a Port

The Bring out Global Tristate Net as a Port option causes ISE
to bring out the global tristate signal (which forces all FPGA
outputs to the high-impedance state) as a port on the top-
level entity in the output simulation file. Specifying the port
name allows you to match the port name you used in the
front-end if being driven by a TOCBUF. This option should
only be used if the global tristate net is not driven by a
STARTUP/STARTBUF block. For more information on this
option, refer to the “Understanding the Global Reset and
Tristate for Simulation” section in this manual.
Synthesis and Simulation Design Guide 6-17

Synthesis and Simulation Design Guide
♦ Global Tristate Port Name

The Global Tristate Port Name property allows you to specify
a port name to match the port name you used in the front-
end if a TOCBUF component was used.

♦ Generate Testbench File (VHDL Only)

The Generate Testbench File property will create a test bench
file. The file has a .tb extension and will display in the
"Sources in Project" window.

♦ Generate Testfixture File (Verilog Only)

The Generate Testfixture File property generates a test fixture
file. The file has a .tv extension, and it is a ready-to-use
template test fixture Verilog file bases on the input NGD or
NGA file.

The following options will appear if the Advanced Process Settings
are enabled in Project Navigator.

♦ Rename Top Level Entity to (VHDL Only)

This option allows you to change the name of the top-level
entity in the structural VHDL file. By default, the output files
inherit the top entity name from the input design file.

♦ Rename Top Level Module to (Verilog only)

This option allows you to change the name of the top-level
module in the structural Verilog file. By default, the output
files inherit the top module name from the input design file.

♦ Rename Top Level Architecture To (VHDL Only)

This option allows you to rename the architecture name
generated by ISE. The default architecture name for each
entity in the netlist is STRUCTURE.

♦ Change Device Speed To

This option allows you to change the targeted speed grade
for the output simulation netlist without re-running place
and route.

♦ Retain Hierarchy

This option, when disabled, will remove all hierarchy in the
output simulation, and write out a flat design.
6-18 Xilinx Development System

Simulating Your Design
The default for this option is ON.

♦ Rename Design Instance in Testbench File To

This option specifies the name of the top-level design
instance name appearing within the output testbench file if
the "Generate Testbench/Testfixture File" option is selected.
The option allows you to match the top-level instance name
to the name specified in your RTL testbench file. The default
name for the testbench instance is UUT.

♦ Reset on Configuration (ROC) Pulse Width (VHDL Only)

This option specifies the pulse width, in nanoseconds, for the
ROC component in the simulation netlist. You must specify a
positive integer to stimulate the component properly. This
option is disabled if you are controlling the global reset via a
port (using the "Bring Out Global Set/Reset Net as a Port"
option). For more information on this option, refer to the
“Understanding the Global Reset and Tristate for
Simulation” section in this manual. By default, the ROC
pulse width is set to 100 ns.

♦ Tristate on Configuration (TOC) Pulse Width (VHDL Only)

This option specifies the pulse width, in nanoseconds, for the
TOC component. You must specify a positive integer to
stimulate the component properly. This option is disabled if
you are controlling the global tristate via a port (using the
"Bring Out Global Tristate Net as a Port" option). For more
information on this option, refer to the “Understanding the
Global Reset and Tristate for Simulation” section in this
manual. By default, the TOC pulse width is set to 0 ns.

♦ Include 'uselib Directive in Verilog File (Verilog Only)

The Include 'uselib Directive in Verilog File property causes
ISE to write a library path pointing to the SIMPRIM library
into the output Verilog (.v) file. In general, Xilinx only
suggests that you use this option with the Verilog-XL
simulator when simulations will be performed on the same
network as where the ISE software exists. By default this field
is set to off (checkbox is blank)

♦ Path Used in $SDF_annotate (Verilog Only)
Synthesis and Simulation Design Guide 6-19

Synthesis and Simulation Design Guide
This option allows you to specify a path to the SDF file that
you want written to the $sdf_annotate function in the Verilog
netlist file. If a full path is not specified, it writes the full path
of the current work directory and the SDF file name to the
$sdf_annotate file.

ISE only generates an SDF file if the input is an NGA file,
which contains timing information. This option is allowed on
an NGA file but not an NGD file.

The default path for the SDF file is in the same directory in
which the Verilog simulation netlist resides.

♦ Global Disable of X-generation for Simulation (VHDL Only)

This option is used to disable X-generation by all registers in
the design when a timing violation occurs. If this option is
set, all registers in the design will retain their last value when
a timing violation occurs. For more information on this
option, refer to the “Disabling ‘X’ Propagation” section in this
manual. The default value for this option is OFF.

From XFLOW

To display the available options for XFLOW, and for a complete list of
the XFLOW option files, type "flow" at the prompt without any
arguments. For complete descriptions of the options and the option
files, see the Development System Reference Guide.

1. Open a command terminal and change directory to the project
directory.

2. Type the following at the command prompt:

♦ To create a functional simulation (Post NGD) netlist:

> xflow -fsim <option_file>.opt <design_name>

♦ To create a timing simulation (Post PAR) netlist:

> xflow -tsim <option_file>.opt <design_name>

XFLOW will run the appropriate programs with the options specified
in the option file. To change the options, run xflow first with the
-norun switch to have xflow copy the option file(s) to the project
directory. Then edit the appropriate option file to modify the run
parameters for the flow. For more information on running XFLOW,
see the Development System Reference Guide.
6-20 Xilinx Development System

Simulating Your Design
From Command Line

♦ Post-NGD simulation

To run a post NGD simulation, perform the following
command line operations:

ngdbuild options design

For Verilog:

ngd2ver options design.ngd

For VHDL:

ngd2vhdl options design.ngd

♦ Post MAP simulation

To run a post MAP simulation perform the following
command-line operations:

ngdbuild options design

map options design.ngd

ngdanno options design.ncd [design.ngm]

For Verilog:

ngd2ver options design.nga

For VHDL:

ngd2vhdl options design.nga
Synthesis and Simulation Design Guide 6-21

Synthesis and Simulation Design Guide
♦ Post PAR simulation

To run a post PAR simulation the following command line
operations should be performed:

ngdbuild options design

map options design.ngd

par options design_map.ncd

ngdanno options design.ncd [design.ngm]

For Verilog:

ngd2ver options design.nga

For VHDL:

ngd2vhdl options design.nga

Disabling ‘X’ Propagation
During a timing simulation, when a timing violation occurs, the
default behavior of a latch, register, RAM or other synchronous
element is to output an ’X’ to the simulator. The reason for this is that
when a timing violation occurs, it is not known what the actual
output value should be. The output of the register could retain its
previous value, update to the new value, or perhaps go metastable in
which a definite value is not settled upon until sometime after the
clocking of the synchronous element. Since this value cannot be
determined, accurate simulation results cannot be guaranteed, and so
the element will output an ’X’ to represent an unknown value. The ’X’
output will remain until the next clock cycle in which the next
clocked value will update the output if another violation does not
occur.

Sometimes this situation can have a drastic effect on simulation. For
example, an ’X’ generated by one register can be propagated to others
on subsequent clock cycles, causing large portions of the design
under test to become ’unknown’. If this happens on a synchronous
path in the design, you can ensure a properly operating circuit by
analyzing the path, and fixing any timing problems associated with
this or other paths in the design. If however, this path is an asynchro-
nous path in the design, and you cannot avoid timing violations, you
can disable the ’X’ propagation on synchronous elements during
timing violations, so that these elements will not output an ’X’. When
6-22 Xilinx Development System

Simulating Your Design
’X’ propagation is disabled, the previous value is retained at the
output of the register. Please understand that in the actual silicon, the
register may have very well changed to the ’new’ value, and that
disabling ’X’ propagation may yield simulation results that do not
match the silicon behavior. Exercise caution when using this option;
you should only use it when you cannot otherwise avoid timing
violations.

Using the ASYNC_REG Attribute

ASYNC_REG is a new constraint in the Xilinx software that helps
identify asynchronous registers in the design and disable ’X’ propaga-
tion for those particular registers. If the attribute ASYNC_REG is
attached to a register in the front-end design by either an attribute in
HDL code or by a constraint in the UCF, during timing simulation,
those registers will retain the previous value, and will not output an
’X’ to simulation. A timing violation error should still occur, so use
caution as the new value may have very well been clocked in.

The following are limitations to the ASYNC_REG attribute for this
release:

• Applies only to Virtex-II and Virtex-II Pro architectures.

• Applies only to CLB and IOB registers and latches.

• It is invalid on RAMS, SRLs or other synchronous elements.

If clocking in asynchronous data cannot be avoided, it is suggested
that you only do so on IOB or CLB registers. Clocking in asynchro-
nous signals to RAM or SRL elements has less deterministic results,
and therefore should be avoided. Refer to the Constraints Guide for
more information on using the ASYNC_REG constraint.

Using Global Switches

Use global switches that disable ’X’ propagation for all components in
the simulation.

Verilog

For Verilog, use the +no_notifier switch from within your simulator.
When a timing violation occurs, the simulator puts out a message,
but the synchronous element will retain its previous value.
Synthesis and Simulation Design Guide 6-23

Synthesis and Simulation Design Guide
VHDL

For VHDL if the simulator does not have a switch to disable ’X’
propagation, NGD2VHDL can create a netlist in which this behavior
is disabled. By invoking NGD2VHDL with the –xon FALSE switch,
the previous value should be retained during a timing violation. If
the simulation netlist is created within the ISE environment, use the
"Global Disable of X-generation for Simulation" option in the
advanced process properties options for Generate Post-Map
Simulation Model.

Use With Care

Xilinx highly recommends that you only disable ‘X’ propagation on
paths that are truly asynchronous where it is impossible to meet
synchronous timing requirements. This capability is present for simu-
lation in the event that timing violation cannot be avoided, such as
when a register must input asynchronous data. Use extreme caution
when disabling 'X' propagation as simulation results may no longer
properly reflect what is happening in the silicon.

MIN/TYP/MAX Simulation
The Standard Delay Format (SDF) file allows you to specify three sets
of delay values for simulation. These are Minimum, Typical, and
Maximum (worst case), typically abbreviated as MIN:TYP:MAX. Set
the appropriate switch in your simulator to specify which set of delay
values the simulator will use. Consult your simulator's
documentation to determine the appropriate switch. By default,
Xilinx uses two sets of delay values generated by NGD2VHDL or
NGD2VER and written to the SDF files. Xilinx uses the worst case
values for the speed grade of the target architecture at the maximum
operating temperature, the minimum voltage, and various process
variations to populate the MAX and TYP delay sets in the SDF file.
Use this value set for most timing simulation runs to test circuit
operation and timing.

The MIN field in the SDF file contains values derived from the
relative minimums for the device architecture if they are available.

Relative minimum delays are minimum delays calculated for the
target architecture and speed grade at the specified temperature and
voltage parameters for the design. By default, the worst case values
are used in which case the relative minimum reported will be the
6-24 Xilinx Development System

Simulating Your Design
fastest a particular path can travel when the device is operating at the
worst case temperature and voltage requirements. If the designer
specifies pro-rated values for temperature and/or voltage, the
relative minimum value will adjust accordingly so that it will report
the minimum delays when operating at the specified voltage and/or
temperature. Relative minimums are not supported for all
architectures.

To check to see if a particular device does support the reporting of
relative minimums, execute the speedprint utility from a command
prompt:

speedprint target_device

After running speedprint for the appropriate target device, you
should see a line like the following if relative minimum data is
available:

Relative Min data
This speedfile has relative minimum delay data that

is used to compute external and internal setup
and hold requirements.

Use the MIN delay values when doing a MIN simulation, as the
relative MIN delays should give more meaningful results. These
values should be closer to the practical minimum delays seen in most
design scenarios. However, MIN values should not be used if
absolute process minimum values are needed for verification. In that
case, NGDANNO should be run with the -s min switch.

When an NGA file is created from NGDANNO using the -s min
switch, the resulting SDF file produced from NGD2VER or
NGD2VHDL will have the absolute process minimums in all three
SDF fields: MIN, TYP and MAX. Absolute process MIN values are the
absolute fastest delays that a path can run in the target architecture
given the best operating conditions: lowest temperature, highest
voltage, best possible silicon. Generally, these process minimum
delay values are only useful for checking board-level, chip-to-chip
timing for high-speed data paths in best/worst case conditions.

By default, the worst case delay values are derived from the worst
temperature, voltage, and silicon process for a particular target
architecture. If better temperature and voltage characteristics can be
ensured during the operation of the circuit, you can use prorated
worst case values in the simulation to gain better performance
Synthesis and Simulation Design Guide 6-25

Synthesis and Simulation Design Guide
results. The default would apply worst case timing values over the
specified TEMPERATURE and VOLTAGE within the operating
conditions recommended for the device.

Prorating is a linear scaling operation. It applies to existing speed file
delays, and is applied globally to all delays. The prorating
constraints, VOLTAGE and TEMPERATURE, provide a method for
determining timing delay characteristics based on known
environmental parameters.

The VOLTAGE constraint provides a means of prorating delay
characteristics based on the specified voltage applied to the device.
The UCF syntax is as follows:

VOLTAGE=value[V]

Where value is an integer or real number specifying the voltage and
units is an optional parameter specifying the unit of measure.

The TEMPERATURE constraint provides a means of prorating device
delay characteristics based on the specified junction temperature. The
UCF syntax is as follows:

TEMPERATURE=value[C|F|K]

Where value is an integer or a real number specifying the
temperature. C, K, and F are the temperature units: F is degrees
Fahrenheit, K is degrees Kelvin, and C is degrees Celsius, the default.

The resulting values in the SDF fields when using prorated
TEMPERATURE and/or VOLTAGE values are prorated, relative
minimums in the MIN field and prorated worst case values for the
TYP and MAX fields.

Refer to the The Programmable Logic Data Book to determine the
specific range of valid operating temperatures and voltages for the
target architecture. If the temperature or voltage specified in the
constraint does not fall within the supported range, the constraint is
ignored and an architecture specific default value is used instead. Not
all architectures support prorated timing values. For simulation, the
VOLTAGE and TEMPERATURE constraints will be processed from
the UCF file into the PCF file. The PCF file must then be referenced
when running NGDANNO in order to pass the operating conditions
to the delay annotator.

To generate a simulation netlist using prorating, type the following:
6-26 Xilinx Development System

Simulating Your Design
ngdanno -p design.pcf design.ncd

For VHDL, enter the following:

ngd2vhdl [options] design.nga

For Verilog, enter the following:

ngd2ver [options] design.nga

Note Do not combine both minimum timing and prorating (-s min
and -p). Combining both minimum values would override prorating,
and result in issuing only absolute process MIN values for the
simulation SDF file. Prorating may only be available for select FPGA
families, and it is not intended for military and industrial ranges. It is
applicable only within the commercial operating ranges.

Understanding the Global Reset and Tristate for
Simulation

Xilinx FPGAs have dedicated routing and circuitry that connects to
every register (flip-flops and latches) in the device. The set/reset
circuitry pulses at the end of the configuration mode. This pulse is
automatic and does not need to be programmed. All the flip-flops
and latches receive this pulse through a dedicated global GSR (Global
Set-Reset) net. The registers either set or reset, depending on how the
registers are defined.

For some device families, it is important to address the built-in reset
circuitry behavior in your designs starting with the first simulation to
ensure that the simulations agree at the three primary points.

Xilinx recommends using a local reset instead of the dedicated GSR
circuitry. This is because the implementation tools use the high-speed

NGDANNO Option
MIN:TYP:MAX Field in SDF File

Produced by NGD2VER or NGD2VHDL

default Relative-MIN:MAX:MAX

-s min Process MIN: Process MIN: Process MIN

Prorated voltage/
temperature in
UCF/PCF

Prorated Relative MIN: Prorated: MAX:
Prorated MAX
Synthesis and Simulation Design Guide 6-27

Synthesis and Simulation Design Guide
backbone routing for Reset signals, thus making them faster and
easier to analyze than the dedicated global routing that transports the
GSR signal.

If GSR behavior is not described, the chip will initialize during
configuration, and the post-route netlist will include this net that
must be driven during simulation. This section includes the method-
ology to describe this behavior, as well as the GTS behavior for
output buffers.

In addition to the set/reset pulse, all output buffers are set to a high
impedance state during configuration mode with the dedicated
global output tristate enable (GTS) net.

The GSR net receives a reset-on-configuration pulse from the initial-
ization controller, as shown in the following figure.

Figure 6-2 Built-in FPGA Initialization Circuitry

This pulse occurs during the configuration mode of the FPGA.
However, for ease of simulation, it is usually inserted at time zero of
the test bench, before logical simulation is initiated. The pulse width
is device-dependent and can vary widely, depending on process
voltage and temperature changes. The pulse is guaranteed to be long
enough to overcome all net delays on the reset special-purpose net.

X8352

User
Programmable
Latch/Register

Global Tri-State
(GTS)

User OutputI/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

General Purpose

I/Os Used for
Initialization

GTS
GSR

User
Async.

Reset Global
Set/Reset

(GSR)

Initialization
Controller

User
Programmable

Logic
Resources

QD

CLR
C

CE
6-28 Xilinx Development System

Simulating Your Design
The parameter for the pulse width is TPOR, as described in The
Programmable Logic Data Book.

The tristate-on-configuration circuit shown in the “Built-in FPGA
Initialization Circuitry” also occurs during the configuration mode of
the FPGA. Just as for the reset-on-configuration simulation, it is
usually inserted at time zero of the test bench before logical simula-
tion is initiated. The pulse drives all outputs to the tristate condition
they are in during the configuration of the FPGA. All general-
purpose outputs are affected whether they are regular, tristate, or bi-
directional outputs during normal operation. This ensures that the
outputs do not erroneously drive other devices as the FPGA is being
configured. The pulse width is device-dependent and can vary
widely with process and temperature changes. The pulse is guaran-
teed to be long enough to overcome all net delays on the GTS net. The
generating circuitry is separate from the reset-on-configuration
circuit. The pulse width parameter is TPOR, as described in The
Programmable Logic Data Book. Simulation models use this pulse width
parameter for determining HDL simulation for global reset and
tristate circuitry.

If a global set/reset is desired for behavioral simulation, it must be
included in the behavioral code. Any described register in the code
must have a common signal that will asynchronously set or reset the
register depending on the desired result. Similarly, if a global tristate-
state is desired for simulation, it should be described in the code as
well.

Simulating VHDL

Defining Global Signals in VHDL
In VHDL designs, any signals that are stimulated or monitored from
outside a module must be declared as ports. Global GSR and GTS
signals are used to initialize the simulation and require access ports if
controlled from the test bench. However, the addition of these ports
makes the pre- and post-implementation versions of your design
different, and your original test bench is no longer applicable to both
versions of your design. Since the port lists for the two versions of
your design are different, the socket in the test bench matches only
one of them. To address this issue, five new cells are provided for
Synthesis and Simulation Design Guide 6-29

Synthesis and Simulation Design Guide
VHDL simulation: ROC, ROCBUF, TOC, TOCBUF, and STARTBUF
architecture.

Verilog can simulate global signals, and these signals can be driven
directly from the test bench. However, interpretive Verilog (such as
Verilog-XL) and compiled Verilog (such as MTI, VCS or NC-Verilog)
require a different approach for handling the libraries.

The VHDL global signal simulation methodology does not incorpo-
rate any ports into designs for simulators to mimic the device’s global
reset (GSR) or global tristate (GTS) networks. These signals are not
part of the cell’s pin list, do not appear in the netlist, and are not
implemented in the resulting design. These global signals are
mapped into the equivalent signals in the back-end simulation
model. Using this methodology with schematic designs, you can fully
simulate the silicon’s built-in global networks and implement your
design without causing congestion of the general-purpose routing
resources and degrading the clock speed.

Setting VHDL Global Set/Reset Emulation in
Functional Simulation

When using the VHDL UNISIM library, it is important to control the
global signals for reset and output tristate enable. If you do not
control these signals, your timing simulation results may not match
your functional simulation results because of initialization differ-
ences.

VHDL simulation does not directly support test bench driven
internal global signals. If the test bench drives the global signal, a port
is required. Otherwise, the global net must be driven by a component
within the architecture.

Also, the register components do not have pins for the global signals
because you do not want to wire to these special pre-laid nets.
Instead, you want implementation to use the dedicated network on
the chip.

The VHDL UNISIM library uses special components to drive the
local reset and tristate enable signals. These components use the local
signal connections to emulate the global signal, and also provide the
implementation directives to ensure that the pre-routed wires are
used.
6-30 Xilinx Development System

Simulating Your Design
You can instantiate these special components in the RTL description
to ensure that all functional simulations match the timing simulation
with respect to global signal initialization.

For functional simulation, the global reset and output tristate enable
signals can be emulated in two ways:

• Instantiating the STARTUP architecture library component. This
component is available for the Virtex, Virtex-E, Virtex-II, Virtex-II
Pro, and Spartan-II families.

• Using local reset and tristate enable signals in the design. Special
implementation directives are put on the nets to move them to
special pre-routed nets for global signals.

Global Signal Considerations (VHDL)
The following are important considerations for VHDL simulation,
synthesis, and implementation of global signals in FPGAs.

• The global signals have automatically generated pulses that
always occur even if the behavior is not described in the front-
end description. The back-annotated netlist has these global
signals, to match the silicon, even if the source design does not.

• Xilinx does not recommend using the GSR circuitry in place of
the manual reset. This is because the Virtex, Virtex-II and
Spartan-II device families offer a high-speed backbone routing
for high fanout signals like system reset.This backbone route is
faster than the dedicated GSR circuitry.

• The simulation and synthesis models for registers (flip-flops and
latches) and output buffers do not contain pins for the global
signals. This is necessary to maintain compatibility with sche-
matic libraries that do not require the pin to model the global
signal behavior.

• VHDL does not have a standardized method for handling global
signals that is acceptable within a VITAL-compatible library.

• Intellectual property cores from the CORE Generator are repre-
sented as behavioral models and require a different way to
handle the global signal, yet still maintain compatibility with the
method used for general user-defined logic.
Synthesis and Simulation Design Guide 6-31

Synthesis and Simulation Design Guide
• The design is represented at different levels of abstraction during
the pre- and post-synthesis and implementation phases of the
design process. The solutions work for all three levels and give
consistent results.

• The place and route tools must be given special directives to
identify the global signals in order to use the built-in circuitry
instead of the general-purpose logic.

GSR Network Design Cases
When defining a methodology to control a device’s global set/reset
(GSR) network, you should consider the following three general
cases.

Note Reset-on-Configuration for FPGAs is similar to Power-on-Reset
for ASICs except it occurs during power-up and during configuration
of the FPGA.

Case 1 is defined as follows.

• Automatic pulse generation of the Reset-On-Configuration signal

• No control of GSR through a test bench

• Involves initialization of the sequential elements in a design
during power-on, or initialization during configuration of the
device

• Need to define the initial states of a design’s sequential elements,
and have these states reflected in the implemented and simulated
design

Table 6-5 GSR Design Cases

Name Description

Case 1

Case 1A

Case 1B

Reset-On-Configuration pulse only; no user control of
GSR
Simulation model ROC initializes synchronous
elements
User initializes synchronous elements with ROCBUF
model and simulation vectors

Case 2 User control of GSR after Power-on-Reset using an
external port driving GSR

Case 3 Don’t Care
6-32 Xilinx Development System

Simulating Your Design
• Two sub-cases

♦ In Case 1A, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real
device does when power is first applied).

♦ In Case 1B, you can control the initializing power-on reset
pulse from a test bench without a global reset pin on the
FPGA. This case is applicable when system-level issues make
your design’s initialization synchronous to an off-chip event.
In this case, you provide a pulse that initializes your design
at the start of simulation time, and possibly provide further
pulses as simulation time progresses (perhaps to simulate
cycling power to the device). Although you are providing the
reset pulse to the simulation model, this pulse is not required
for the implemented device. A reset port is not required on
the implemented device, however, a reset port is required in
the behavioral code through which your reset pulse can be
applied with test vectors during simulation.

Using VHDL Reset-On-Configuration (ROC) Cell
(Case 1A)

For Case 1A, the ROC (Reset-On-Configuration) instantiated compo-
nent model is used. This model creates a one-shot pulse for the global
set/reset signal. The pulse width is a generic and can be configured to
match the device and conditions specified. The ROC cell is in the
post-routed netlist and, with the same pulse width, it mimics the pre-
route global set/reset net. The following is an example of an ROC
cell.

The default value for the ROC one-shot pulse is 100 ns. If you wish to
mimic worst case time for Reset on Configuration, you should change
the pulse width to match the TPOR parameter for the target device
from The Programmable Logic Data Book.
Synthesis and Simulation Design Guide 6-33

Synthesis and Simulation Design Guide
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_ROC is

port (CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_ROC;
architecture A of EX_ROC is

signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC

port (O : out std_logic);
end component;

begin
U1 : ROC port map (O => GSR);

UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;
6-34 Xilinx Development System

Simulating Your Design
Using ROC Cell Implementation Model (Case 1A)

Complementary to the previous VHDL model is an implementation
model that guides the place and route tool to connect the net driven
by the ROC cell to the special purpose net.

Timing simulation for the ROC cell is automatically created during
back-annotation if you do not use the –gp or are driving the GSR/
GSRIN pin of an instantiated STARTUP/STARTBUF block in the
design. The ROC component can be instantiated in the front end to
match functionality with GSR (in both functional and timing simula-
tion.) During back-annotation, the entity and architecture for the
ROC cell is placed in your design’s output VHDL file. In the front
end, the entity and architecture are in the UNISIM Library, requiring
only a component instantiation. The ROC cell generates a one-time
initial pulse to drive the GSR net starting at time zero for a specified
pulse width. You can set the pulse width with a generic in the compo-
nent declaration, instantiation mapping or a configuration statement.
The default value of the pulse width is 100 ns. The polarity of this
signal is active high. (Active low resets are handled within the netlist
itself and need to be inverted before using.) Generally, when using
the ROC cell you can perform a timing simulation with the same test-
bench that you used in RTL simulation as long as the driving stim-
ulus is held off for the time the ROC pulse is active.

ROC Model in Four Design Phases (Case 1A)

The following figure shows the progression of the ROC model and its
interpretation in the four main design phases.
Synthesis and Simulation Design Guide 6-35

Synthesis and Simulation Design Guide
Figure 6-3 ROC Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description
registers are inferred from the coding style, and the ROC cell can
be instantiated. If it is not instantiated, the signal is not driven
during simulation or is driven within the architecture by code
that cannot be synthesized. Xilinx recommends instantiation of
the ROC cell during RTL coding because the global signal is
easily identified. This also ensures that GSR behavior at the RTL
level matches the behavior of the post-synthesis and implementa-
tion netlists.

• Synthesized Phase—In this phase, inferred registers are mapped to
a technology and the ROC instantiation is carried from the RTL to
the implementation tools. As a result, consistent global set/reset

X8348

FDPE

Local Set

GSR

ROC

QD

S
CK

FDCE

2. Synthesized

QD

R

O

CK

FDPE

Local Set

Local Set GSR

ROC

QD

S
CK

FDCE

4. Back-Annotated

QD

R

O

CK

QD

S

CK

3. Implemented

QD

GSR

GSR

GSR

CK

Local Set

GSR

ROC

QD

S
CK

1. Behavioral

Inferred

QD

R

O

CK

R

6-36 Xilinx Development System

Simulating Your Design
behavior is maintained between the RTL and synthesized structural
descriptions during simulation.

• Implemented Phase—During implementation, the ROC is removed from
the logical description that is placed and routed as a pre-existing circuit
on the chip. All set/resets for the registers are automatically assumed to
be driven by the global set/reset net so data is not lost.

• Back-annotated Phase—In this phase, the Xilinx VHDL netlist program
assumes all registers are driven by the GSR net and replaces the ROC
cell if the -gp switch is not used during netlisting. NGD2VHDL rewires
it to the GSR nets in the back-annotated netlist. The GSR net is a fully
wired net and the ROC cell is inserted to drive it. You can control the
ROC pulse width by using the -rpw switch for NGD2VHDL or by using
a VHDL configuration statement to modify the generic value of the
instantiated ROC in the simulation netlist.

Using VHDL ROCBUF Cell (Case 1B)

For Case 1B, the ROCBUF (Reset-On-Configuration Buffer) instantiated
component is used. This component creates a buffer for the global set/reset
signal, and provides an input port on the buffer to drive the global set reset
line. This port must be declared in the entity list and driven in RTL simula-
tion. During the place and route process, this port is removed so it is not
implemented on the chip. ROCBUF does not by default reappear in the
post-routed netlist unless the -gp switch is used during NGD2VHDL
netlisting. The nets driven by a ROCBUF must be an active High set/reset.

The following example illustrates how to use the ROCBUF in your designs.
Synthesis and Simulation Design Guide 6-37

Synthesis and Simulation Design Guide
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;
entity EX_ROCBUF is

port (CLOCK, ENABLE, SRP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_ROCBUF;
architecture A of EX_ROCBUF is

signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF

port (I : in std_logic;
O : out std_logic);

end component;
begin

U1 : ROCBUF port map (I => SRP, O => GSR);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;
6-38 Xilinx Development System

Simulating Your Design
ROCBUF Model in Four Design Phases (Case 1B)

The following figure shows the progression of the ROCBUF model
and its interpretation in the four main design phases.

Figure 6-4 ROCBUF Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description
registers are inferred from the coding style, and the ROCBUF cell
is instantiated. Use the ROCBUF cell instead of the ROC cell
when you want test bench control of GSR simulation.

• Synthesized Phase—In this phase, inferred registers are mapped to
a technology and the ROCBUF instantiation is carried from the
RTL to the implementation tools. As a result, consistent global
set/reset behavior is maintained between the RTL and synthe-
sized structural descriptions during simulation.

X8349

FDPE

Local Set

GSR
ROCBUF

QD

S
CK

FDCE

2. Synthesized

QD

R
CK

FDPE

Local Set

Local Set GSR
GSR_PORT *

* With global reset port option

QD

S
CK

FDCE

4. Back-Annotated

QD

R
CK

QD

S

CK

3. Implemented

QD

GSR

GSR

GSR

CK

Local Set

GSR
ROCBUF

QD

S
CK

1. Behavioral

Inferred

QD

R
CK

R

Synthesis and Simulation Design Guide 6-39

Synthesis and Simulation Design Guide
• Implemented Phase—During implementation, the ROCBUF is
removed from the logical description of the design and the global
resources are used for the set/reset function.

• Back-annotated Phase—In this phase, use the NGD2VHDL option,
-gp to replace the port that was previously occupied by the
ROCBUF in the RTL description of the design.

Using VHDL STARTBUF_VIRTEX,
STARTBUF_VIRTEX2 Block or the
STARTBUF_SPARTAN2 Block (Case 2)

The STARTUP_VIRTEX, STARTUP_VIRTEX2 and
STARTUP_SPARTAN2 blocks can be instantiated to identify the GSR
signals for implementation if the global reset or tristate is connected
to a chip pin. However, these cells cannot be simulated as there is no
simulation model for them.

Xilinx recommends that you use the local routing for Virtex devices
as opposed to using the dedicated GSR. If the design resources are
available, using this method will provide better performance perfor-
mance and more predictable design behavior.

Table 6-6 Virtex/E and Spartan-II STARTBUF/STARTUP Pins

STARTBUF
Pin Names

Connection
Points

Virtex/E
STARTUP
Pin Names

Spartan-II
STARTUP
Pin Names

GSRIN Global Set/
Reset Port
of Design

GSR GSR

GTSIN Global
Tristate Port
of Design

GTS GTS

CLKIN Port or
Internal
Logic

CLK CLK

GTSOUT All Output
Buffers
Tristate
Control

N/A N/A
6-40 Xilinx Development System

Simulating Your Design
If you do not plan on bringing the GSR pin out to a device pin, but
want to have access to it for simulation, Xilinx suggests that you use
the ROC or ROCBUF.

GTS Network Design Cases
Just as for the global set/reset net there are three cases for using your
device’s output tristate enable (GTS) network, as shown in the
following table.

Case A is defined as follows.

• Tristating of output buffers during power-on or configuration of
the device

• Output buffers are tristated and reflected in the implemented and
simulated design

• Two sub-cases

♦ In Case A1, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real
device does when power is first applied).

♦ In Case A2, you can control the initializing Tristate-On-
Configuration pulse. This case is applicable when system-
level issues make your design’s configuration synchronous
with an off-chip event. In this case, you provide a pulse to
tristate the output buffers, via the testbench file, at the start of
simulation time, and possibly provide further pulses as simu-

Table 6-7 GTS Design Cases

Name Description

Case A
Case A1

Case A2

Tristate-On-Configuration only; no user control of GTS
Simulation Model TOC tristates output buffers during
configuration or power-up
User initializes sequential elements with TOCBUF
model and simulation vectors

Case B User control of GTS after Tristate-On-Configuration
external PORT driving GTS

Case C Don’t Care
Synthesis and Simulation Design Guide 6-41

Synthesis and Simulation Design Guide
lation time progresses (perhaps to simulate cycling power to
the device).

Using VHDL Tristate-On-Configuration (TOC)

The timing for the TOC cell is automatically created if you do not use
NGD2VHDL option –tp or you drive the GTS/GTSIN port of an
instantiated STARTUP/STARTBUF block. The entity and architecture
for the TOC cell is placed in the design’s output VHDL file. The TOC
cell generates a one-time initial pulse to drive the GSR net starting at
time ‘0’ for a user-defined pulse width. The pulse width can be modi-
fied either by using the -tpw switch for NGD2VHDL or by using a
configuration statement to modify the WIDTH generic for the instan-
tiated TOC component in the simulation netlist. The default WIDTH
value is 0 ns, which disables the TOC cell and holds the tristate enable
low. (Active low tristate enables are handled within the netlist; you
must invert this signal before using it.)

The TOC cell enables you to simulate with the same test bench as in
the RTL simulation, and also allows you to control the width of the
tristate enable signal in your implemented design.

VHDL TOC Cell (Case A1)

For Case A1, use the TOC (Tristate-On-Configuration) instantiated
component. This component creates a one-shot pulse for the global
Tristate-On-Configuration signal. The pulse width is a generic and
can be selected to match the device and conditions you want. The
TOC cell is in the post-routed netlist and, with the same pulse width
set, it mimics the pre-route Tristate-On-Configuration net.

TOC Cell Instantiation (Case A1)

The following is an example of how to use the TOC cell.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_TOC is

port (CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_TOC;
6-42 Xilinx Development System

Simulating Your Design
architecture A of EX_TOC is
signal GSR, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC

port (O : out std_logic);
end component;
component TOC

port (O : out std_logic);
end component;

begin
U1 : ROC port map (O => GSR);
U2 : TOC port map (O => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";

end A;
Synthesis and Simulation Design Guide 6-43

Synthesis and Simulation Design Guide
TOC Model in Four Design Phases (Case A1)

The following figure shows the progression of the TOC model and its
interpretation in the four main design phases.

Figure 6-5 TOC Simulation and Implementation

X8350

Global Tri-State
(GTS)

1. Behavioral

User Output

TOC

I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

O

Global Tri-State
(GTS)

2. Synthesized

User Output

TOC

I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

O

Global Tri-State
(GTS)

3. Implementation

User Output I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

Global Tri-State
(GTS)

4. Back-Annotation

User Output

TOC

I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

O

6-44 Xilinx Development System

Simulating Your Design
• Behavioral Phase—In this phase, the behavioral or RTL description
of the output buffers is inferred from the coding style. The TOC
cell can be instantiated and connected to all tristate outputs in the
design. If it is not instantiated, the GTS signal is not driven
during RTL simulation. Instantiation of the TOC cell in the RTL
description is recommended if you wish to simulate the pre-
configuration behavior of the device I/Os.

• Synthesized Phase—In this phase, the inferred I/Os are mapped to
a device, and the TOC instantiation is carried from the RTL to the
implementation tools. This results in maintaining consistent
global output tristate enable behavior between the RTL and the
synthesized structural descriptions during simulation.

• Implemented Phase—During implementation, the TOC is removed
from the logical description and the global tristate net resource is
used.

• Back-annotation Phase—In this phase, the VHDL netlist tool re-
inserts a TOC component for simulation purposes. The GTS net is
a fully wired net and the TOC cell is inserted in the simulation
netlist. You can use the NGD2VHDL -tpw switch or a configura-
tion statement to set the generic for the pulse width.

Using VHDL TOCBUF (Case A2)

For Case A2, use the TOCBUF (Tristate-On-Configuration Buffer)
instantiated component model. This model creates a buffer for the
global output tristate enable signal. You now have an input port on
the buffer to drive the global tristate line. The implementation model
directs the place and route tool to remove the port so it is not imple-
mented on the actual chip. The TOCBUF cell does not reappear in the
post-routed netlist unless the -tp switch is used during NGD2VHDL.

TOCBUF Model Example (Case A2)

The following is an example of the TOCBUF model.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
Synthesis and Simulation Design Guide 6-45

Synthesis and Simulation Design Guide
entity EX_TOCBUF is
port (CLOCK, ENABLE, SRP, STP : in std_logic;

CUP, CDOWN : out std_logic_vector (3 downto 0));
end EX_TOCBUF;
architecture A of EX_TOCBUF is

signal GSR, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF

port (I : in std_logic;
O : out std_logic);

end component;
component TOCBUF

port (I : in std_logic;
O : out std_logic);

end component;
begin

U1 : ROCBUF port map (I => SRP, O => GSR);
U2 : TOCBUF port map (I => STP, O => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = ’1’) then
COUNT_UP <= "0000";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = ’1’ OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) the

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS = ’0’ AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS = ’0’) else "ZZZZ";

end A;
6-46 Xilinx Development System

Simulating Your Design
TOCBUF Model in Four Design Phases (Case A2)

The following figure shows the progression of the TOCBUF model
and its interpretation in the four main design phases.

Figure 6-6 TOCBUF Simulation and Implementation

X8351

Global Tri-State
(GTS)

1. Behavioral

User Output

TOCBUF

I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

Global Tri-State
(GTS)

2. Synthesized

User Output

TOCBUF

I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

Global Tri-State
(GTS)

3. Implementation

User Output I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

Global Tri-State
(GTS)

* with global tri-state port option

4. Back-Annotation

User Output

GTS_PORT*

I/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable
Synthesis and Simulation Design Guide 6-47

Synthesis and Simulation Design Guide
• Behavioral Phase—In this phase, the behavioral or RTL description
of the output buffers is inferred from the coding style and may be
inserted. You can instantiate the TOCBUF cell. If it is not instanti-
ated, the GTS signal is not driven during simulation or it is
driven within the architecture by code that cannot be synthe-
sized.

• Synthesized Phase—In this phase, the inferred output buffers are
mapped to a device and the TOCBUF instantiation is carried
from the RTL to the implementation tools. This maintains consis-
tent global output tristate enable behavior between the RTL and
the synthesized structural descriptions during simulation.

• Implemented Phase—In this phase, the TOCBUF is removed from
the logical description and the global resources are used for this
function.

• Back-annotated Phase—In this phase, the TOCBUF cell does not
reappear in the post-routed netlist unless the -tp switch is used
during NGD2VHDL. If the option is not selected, the VHDL
netlist tool inserts a TOC component for simulation purposes.

Using VHDL STARTBUF_VIRTEX,
STARTBUF_VIRTEX2 or STARTBUF_SPARTAN2
Block (Case B)

The STARTUP_VIRTEX, STARTUP_VIRTEX2 and
STARTUP_SPARTAN2 blocks can be instantiated to identify the GTS
signal for implementation if the global reset or tristate is connected to
a chip pin. However, these cells cannot be simulated as there is no
simulation model for them.

The VHDL STARTBUF_VIRTEX, STARTBUF_VIRTEX2 and
STARTBUF_SPARTAN2 blocks can do a pre-NGDBuild UNISIM
simulation of the GTS signal. You can also correctly back-annotate a
GTS signal by instantiating a STARTUP_VIRTEX,
STARTBUF_VIRTEX, STARTUP_SPARTAN2, or
STARTBUF_SPARTAN2 symbol and correctly connect the GTSIN
input signal of the component.
6-48 Xilinx Development System

Simulating Your Design
See the following table for Virtex, Virtex-II and Spartan-II correspon-
dence of pins between STARTBUF and STARTUP.

Table 6-8 Virtex/II/E and Spartan-II STARTBUF/STARTUP Pins

STARTBUF
Pin Names

Connection
Points

STARTUP Pin
Names

GSRIN Global Set/
Reset Port of
Design

GSR

GTSIN Global Tristate
Port of Design

GTS

CLKIN Port of Internal
Logic

CLK

GTSOUT All Output
Buffers Tristate
Control

N/A
Synthesis and Simulation Design Guide 6-49

Synthesis and Simulation Design Guide
STARTBUF_VIRTEX Model Example (Case B2)

The following is an example of the STARTBUF_VIRTEX model.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_STARTBUF is

port (CLOCK, ENABLE, RESET, STP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_STARTBUF;

architecture A of EX_STARTBUF is
signal GTS_sig : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
signal ZERO : std_ulogic := ‘0’;

component STARTBUF_VIRTEX
port (GSRIN, GTSIN, CLKIN : in std_logic;

GSROUT, GTSOUT : out std_logic);
end component;

begin
U1 :STARTBUF_VIRTEX port map (GTSIN=>STP,GSRIN=>ZERO,

CLKIN=>ZERO
GTSOUT=>GTS_sig);

UP_COUNTER : process (CLOCK, ENABLE, RESET)

begin
if (RESET = '1') then

COUNT_UP <= "0000";
elsif (CLOCK'event AND CLOCK = '1') then

if (ENABLE = '1') then
COUNT_UP <= COUNT_UP + "0001";

end if;
end if;

end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, RESET, COUNT_DOWN)

begin
if (RESET = '1' OR COUNT_DOWN = "0101") then

COUNT_DOWN <= "1111";
6-50 Xilinx Development System

Simulating Your Design
elsif (CLOCK’event AND CLOCK = ’1’) then
if (ENABLE = ’1’) then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS_sig=’0’ AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS_sig = ’0’) else "ZZZZ";

end A;

Simulating Special Components in VHDL
The following section provides a description and examples of using
special components such as the Block SelectRAM for Virtex.

Simulating CORE Generator Components in VHDL

For CORE Generator model simulation flows see the CORE Generator
Guide.

Boundary Scan and Readback

The Boundary Scan and Readback circuitry cannot be simulated at
this time. Efforts are being made to create models for these compo-
nents.

Differential I/O (LVDS, LVPECL)

When targeting a Virtex-E or Spartan-IIE device, the inputs of the
differential pair are currently modeled with only the positive side,
whereas the outputs have both pairs, positive and negative. For
details, please refer to Xilinx Answer #8187 on
http://support.xilinx.com for more details. This is not an issue for
the Virtex-II architecture as the differential buffers for Virtex-II and
later architectures have been updated to accept both the positive and
negative inputs.

The following is an example of an instantiated differential I/O in a
Virtex-E or Spartan-IIE design.
Synthesis and Simulation Design Guide 6-51

http://support.xilinx.com

Synthesis and Simulation Design Guide
entity lvds_ex is
port (data: in std_logic;

data_op: out std_logic;
data_on: out std_logic);

end entity lvds_ex;
architecture lvds_arch of lvds_ex is
signal data_n_int : std_logic;
component OBUF_LVDS port (

I : in std_logic;
O : out std_logic);

end component;
component IBUF_LVDS port (

I : in std_logic;
O : out std_logic);

end component;
begin
--Input side
I0: IBUF_LVDS port map (I => data), O =>data_int);

--Output side
OP0: OBUF_LVDS port map (I => data_int, O =>
data_op);

data_n_int = not(data_int);
ON0: OBUF_LVDS port map (I => data_n_int, O =>
data_on);

end arch_lvds_ex;

Simulating a LUT

The LUT (look-up table) component is initialized for simulation by a
generic mapping to the INIT attribute. If the synthesis tool being used
can accept generics in order to pass attributes, then a generic specifi-
cation is all that is needed to specify the INIT value. If the synthesis
tool cannot pass attributes via generics, then the generic and generic
map portions of the code must be omitted for synthesis by the use of
translate_off and translate_on synthesis directives. The INIT values
must be passed using attribute notation.

The following is an example in which a LUT is initialized. This code
written with the assumption that the synthesis tool can understand
and pass the INIT attribute using the generic notation.
6-52 Xilinx Development System

Simulating Your Design
entity lut_ex is
port (LUT1_IN, LUT2_IN : in std_logic_vector(1 downto 0);

LUT1_OUT, LUT2_OUT : out std_logic_vector(1 downto 0));
end entity lut_ex;
architecture lut_arch of lut_ex is

component LUT1
generic (INIT: std_logic_vector(1 downto 0) := “10”);
port (O : out std_logic;

I0 : in std_logic);
end component;
component LUT2

generic (INIT: std_logic_vector(3 downto 0) := “0000”);
port (O : out std_logic;

I0, I1: in std_logic);
end component;

begin
-- LUT1 used as an inverter

U0: LUT1 generic map (INIT => “01”)
port map (O => LUT1_OUT(0), I0 => LUT1_IN(0));

-- LUT1 used as a buffer
U1: LUT1 generic map (INIT => “10”)
port map (O => LUT1_OUT(1), I0 => LUT1_IN(1));

--LUT2 used as a 2-input AND gate
U2: LUT2 generic map (INIT => “1000”)
port map (O => LUT2_OUT(0), I1 => LUT2_IN(1), I0 => LUT2_IN(0));

--LUT2 used as 2-input NAND gate
3: LUT2 generic map (INIT => “0111”)
port map (O => LUT2_OUT(1), I1 => (LUT2_IN(1), I0 => LUT2_IN(0));

end lut_arch;

Simulating Virtex Block SelectRAM

By default, the Virtex Block SelectRAMs will come up initialized to
zero in all data locations starting at time zero. For a post-NGDBuild,
post-MAP, or Post-PAR (timing) simulation the Block SelectRAMs
will initialize to the value the user specifies in the UCF, or if an
INIT_XX value was given in the input design file to NGDBuild. For a
pre-synthesis or post-synthesis (Pre-NGDBuild) functional simula-
tion you must modify the generic in either the component declara-
tion, generic mapping of the instance or use a configuration
statement to apply a non-zero initial value to the Block SelectRAM.
Synthesis and Simulation Design Guide 6-53

Synthesis and Simulation Design Guide
If the synthesis tool being used can accept generics in order to pass
attributes, then a generic specification is all that is needed to specify
the INIT value. If the synthesis tool cannot pass attributes via
generics, then the generic and generic map portions of the code must
be omitted for synthesis by the use of translate_off and translate_on
synthesis directives and the INIT values must be passed using
attribute notation.

The following is an example of using a configuration statement to
apply an initial value to a Block SelectRAM. This code was written
with the assumption that the synthesis tool can understand and pass
the INIT attribute using the generic notation.

LIBRARY ieee;
use IEEE.std_logic_1164.all;
Library UNISIM;
use UNISIM.vcomponents.all;
entity ex_blkram is
port(CLK, EN, RST, WE : in std_logic;

ADDR : in std_logic_vector(9 downto 0);
DI : in std_logic_vector(3 downto 0);

DORAMB4_S4 : out std_logic_vector(3 downto 0));
end;

architecture struct of ex_blkram is

component RAMB4_S4
generic (INIT_00, INIT_01,INIT_02 : bit_vector;

INIT_03, INIT_04, INIT_05 : bit_vector;
INIT_06, INIT_07, INIT_08 : bit_vector;
INIT_09, INIT_0A, INIT_0B : bit_vector;
INIT_0C, INIT_0D, INIT_0E : bit_vector;
INIT_0F : bit_vector);

port (DI : in STD_LOGIC_VECTOR (3 downto 0);
EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR (9 downto 0);
DO : out STD_LOGIC_VECTOR (3 downto 0));

end component;

begin
6-54 Xilinx Development System

Simulating Your Design
INST_RAMB4_S4 : RAMB4_S4
generic map (

INIT_00 => X"new_hex_value",
INIT_01 => X"new_hex_value",
INIT_02 => X"new_hex_value",
INIT_03 => X"new_hex_value",
INIT_04 => X"new_hex_value",
INIT_05 => X"new_hex_value",
INIT_06 => X"new_hex_value",
INIT_07 => X"new_hex_value",
INIT_08 => X"new_hex_value",
INIT_09 => X"new_hex_value",
INIT_0A => X"new_hex_value",
INIT_0B => X"new_hex_value",
INIT_0C => X"new_hex_value",
INIT_0D => X"new_hex_value",
INIT_0E => X"new_hex_value",
INIT_0F => X"new_hex_value");

port map (
DI => DI,
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR,
DO => DORAMB4_S4);

end struct;

Simulating the Virtex Clock DLL

When functionally simulating the Virtex Clock DLL, generic maps are
used to specify the CLKDV_DIVIDE and
DUTY_CYCLE_CORRECTION values. By default, the
CLKDV_DIVIDE is set to 2 and DUTY_CYCLE_CORRECTION is set
to TRUE. The following example will set the CLKDV_DIVIDE to 4,
and set the DUTY_CYCLE_CORRECTION to FALSE.

You must use a UCF file to pass the CLKDV_DIVIDE and
DUTY_CYCLE_CORRECTION values to the Xilinx implementation
tools. This code was written with the assumption that the synthesis
Synthesis and Simulation Design Guide 6-55

Synthesis and Simulation Design Guide
tool can understand and pass the INIT attribute using generic
notation.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
Library UNISIM;
use UNISIM.vcomponents.all;
entity clkdlls is
 port(CLK_LF, RST_LF : in std_logic;
 CLK90_LF, CLK180_LF : out std_logic;
 CLK270_LF, CLK2X_LF : out std_logic;
 CLKDV_LF, LOCKED_LF : out std_logic;
 LFCount : out std_logic_vector(3 downto 0));

end;
architecture struct of clkdlls is
component CLKDLL

generic (FACTORY_JF : bit_vector := X"00";
STARTUP_WAIT : boolean := false;
DUTY_CYCLE_CORRECTION:boolean := TRUE;
CLKDV_DIVIDE : real := 2.0);

port (CLKIN : in std_logic;
 CLKFB : in std_logic;

 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
 CLK270 : out std_logic;
 CLK2X : out std_logic;

 CLKDV : out std_logic;
 LOCKED : out std_logic);

end component;
component IBUFG

port (I : in std_logic;
 O : out std_logic);

end component;
component BUFG

port (I : in std_logic;
O : out std_logic);

end component;
6-56 Xilinx Development System

Simulating Your Design
signal COUNT: integer range 0 to 15 := 0;
signal sigCLK_LF, sigCLK0_LF, sigCLKFB_LF,
CLK0_LF : std_logic;

signal sigLFCount:std_logic_vector (3 downto 0);

begin
INST_IBUFGLF : IBUFG port map (I => CLK_LF, O =>
sigCLK_LF);

INST_BUFGLF : BUFG port map (I => sigCLK0_LF, O =>
sigCLKFB_LF);

INST_CLKDLL : CLKDLL
generic map (DUTY_CYCLE_CORRECTION => FALSE,

CLKDV_DIVIDE => 4.0)
port map (CLKIN => sigCLK_LF,

CLKFB => sigCLKFB_LF,
RST => RST_LF,
CLK0 => sigCLK0_LF,
CLK90 => CLK90_LF,
CLK180 => CLK180_LF,
CLK270 => CLK270_LF,
CLK2X =>CLK2X_LF,
CLKDV => CLKDV_LF,
LOCKED => LOCKED_LF);

CLK0_LF <= sigCLK0_LF;

procCLKDLLCount: process (CLK0_LF)

begin
if (CLK0_LF’event and CLK0_LF = ’1’) then

sigLFCount <= sigLFCount + "0001";
end if;

LFCount <= sigLFCount;
end process;

end struct;

Simulating the Virtex-II/ II Pro DCM

The Virtex-II/ Virtex-II Pro DCM is a super set of the Virtex CLKDLL.
It provides more clock options, including fine phase shifting and
digital clock synthesis. The DCM attributes, like all UNISIM
components, are specified via generics for simulation purposes and
Synthesis and Simulation Design Guide 6-57

Synthesis and Simulation Design Guide
some synthesis tools can read in the generics for passing to the
implementation tools.

Following is an example of the DCM instantiation. Note the
component declaration of the DCM, as the parameters are defined in
the “generic” section of the component declaration. In order to use
some of the DCM features, these generic values must be modified.

library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity clock_gen is
port (clkin, rst_dll: in std_logic;

clk, clk_not, locked : out std_logic;
psen, psclk, psincdec : in std_logic;
psdone : out std_logic);

end clock_gen;

architecture structural of clock_gen is
signal clk_ibufg, clk_dcm, clk_dcm_not :
std_logic;

signal clk0_bufg, clk180_bufg : std_logic;
signal GND : std_logic;

component IBUFG
port (
 I : in std_logic;
 O : out std_logic);

end component;

component BUFG
port (
 I : in std_logic;
 O : out std_logic);

end component;
component DCM

generic (DFS_FREQUENCY_MODE : string := "LOW";
DLL_FREQUENCY_MODE : string := "LOW";
DUTY_CYCLE_CORRECTION:boolean := TRUE;
CLKIN_DIVIDE_BY_2 : boolean := FALSE;
6-58 Xilinx Development System

Simulating Your Design
CLK_FEEDBACK : string := "1X";
CLKOUT_PHASE_SHIFT : string := "NONE";
FACTORY_JF : bit_vector := X"00";
STARTUP_WAIT : boolean := FALSE;
DSS_MODE : string := "NONE";
PHASE_SHIFT : integer := 0 ;
CLKFX_MULTIPLY : integer := 4 ;
CLKFX_DIVIDE : integer := 1;
CLKDV_DIVIDE : real := 2.0;
DESKEW_ADJUST:string:=
"SYSTEM_SYNCHRONOUS"
);

port (CLKIN : in std_ulogic;
CLKFB : in std_ulogic;
DSSEN : in std_ulogic;
PSINCDEC : in std_ulogic;
PSEN : in std_ulogic;
PSCLK : in std_ulogic;
RST : in std_ulogic;
CLK0 : out std_ulogic;
CLK90 : out std_ulogic;
CLK180 : out std_ulogic;
CLK270 : out std_ulogic;
CLK2X : out std_ulogic;
CLK2X180 : out std_ulogic;
CLKDV : out std_ulogic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_ulogic;
PSDONE : out std_ulogic;
STATUS : out std_logic_vector(7 downto 0)
);

end component;

begin
GND <= ’0’;
U1 : IBUFG port map (

I => clkin,
O => clk_ibufg
);
Synthesis and Simulation Design Guide 6-59

Synthesis and Simulation Design Guide
U2 : DCM
generic map (

DFS_FREQUENCY_MODE => "LOW",
DLL_FREQUENCY_MODE => "LOW",
DUTY_CYCLE_CORRECTION => TRUE,
CLKIN_DIVIDE_BY_2 => FALSE,
CLK_FEEDBACK => "1X",
CLKOUT_PHASE_SHIFT => "VARIABLE",
FACTORY_JF => X"00",
STARTUP_WAIT => FALSE,
DSS_MODE=> "NONE",
PHASE_SHIFT => 0,
CLKFX_MULTIPLY => 4,
CLKFX_DIVIDE => 1,
CLKDV_DIVIDE => 2.0,
DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS")

port map (
CLKIN => clk_ibufg,
CLKFB => clk0_bufg,
DSSEN => ’0’,
PSINCDEC => psincdec,
PSEN => psen,
PSCLK => psclk,
PSDONE => psdone,
RST => rst_dll,
CLK0 => clk_dcm,
CLKDV => open,
CLKFX => open,
CLK180 => clk_dcm_not,
LOCKED => locked
);

U3 : BUFG port map (
I => clk_dcm,
O => clk0_bufg
);
6-60 Xilinx Development System

Simulating Your Design
U4 : BUFG port map (
I => clk_dcm_not,
O => clk180_bufg
);

clk <= clk0_bufg;
clk_not <= clk180_bufg;

end structural;

Simulating SRLs

Most synthesis tools infer the SRL16 from behavioral VHDL. For
these designs, no special simulation steps are needed for the SRLs.
However, when the SRL component is instantiated, the INIT attribute
can be used to initialize the contents of the component. Also, to use
the select lines of the SRL component, instantiation is generally
necessary. Refer to the “Implementing Shift Register (Virtex/E/II and
Spartan-II)” section for more details on inferring SRLs correctly in the
design.

Following is an example of passing the INIT attribute to the SRL for
functional simulation:

Note If the synthesis tool being used can accept generics to pass
attributes, then a generic specification is all that is needed to specify
the INIT value to the implementation tools. If the synthesis tool
cannot pass attributes via generics, then the generic and generic map
portions of the code must be omitted for synthesis by the use of
translate_off and translate_on synthesis directives and the INIT
values must be passed using the attribute notation.
Synthesis and Simulation Design Guide 6-61

Synthesis and Simulation Design Guide
entity design is
- - port list goes here
end entity design;
architecture toplevelof designs
component SRL16
generic (INIT : BIT_VECTOR := X”0000”);
port (D : in STD_ULOGIC;

CLK : in STD_ULOGIC;
A0 : in STD_ULOGIC;
A1 : in STD_ULOGIC;
A2 : in STD_ULOGIC;
A3 : in STD_ULOGIC;
Q : out STD_ULOGIC

);
end component;

- - signal declarations go here
begin

U0 : SRL16 generic map (INIT => X”1100”);
port map (CLK => CLK,
- - rest of port maps

);
end toplevel;

In the example above, the INIT attribute is passed down to the
simulation model through the generic map.
6-62 Xilinx Development System

Simulating Your Design
Simulating Verilog

Defining Global Signals in Verilog
To specify the global set/reset or global reset, you must first define
them in the $XILINX/verilog/src/glbl.v module. The VHDL
UNISIMs library contains the ROC, ROCBUF, TOC, TOCBUF, and
STARTBUF cells to assist in VITAL VHDL simulation of the global
set/reset and tristate signals. However, Verilog allows a global signal
to be modeled as a wire in a global module, and, thus, does not
contain these cells.

Using the glbl.v Module
The glbl.v module connects the global signals to the design, which is
why it is necessary to compile this module with the other design files
and load it along with the design.v file and the testfixture.v file for
simulation.

The following is the definition of the glbl.v file.

‘timescale 1 ns / 1 ps
module glbl();
wire GR;
wire GSR;
wire GTS;
wire PRLD;
endmodule

Defining GSR/GTS in a Test Bench
There are two cases to consider when defining a GSR or GTS in a test
bench: designs without a STARTUP block and designs with a
STARTUP block.

Note The terms “test bench” and “test fixture” are used synony-
mously throughout this manual.

Designs Without a Startup Block

When you use the UNISIM libraries for RTL simulation, you must set
the value of the appropriate Verilog global signals (glbl.GSR or
Synthesis and Simulation Design Guide 6-63

Synthesis and Simulation Design Guide
glbl.GTS) to the name of the GSR or GTS net, qualified by the appro-
priate scope identifiers.

The global set/reset net is present in your implemented design even
if you do not instantiate the STARTUP block in your design. The
function of STARTUP is to give you the option to control the global
reset net from an external pin. The following example should be
added to your design code and test fixture to set the GSR and GTS
pin for all FPGA devices:

reg GSR;
assign glbl.GSR = GSR;
reg GTS;
assign glbl.GTS = GTS;
initial begin
GSR = 1; GTS = 1;
#100 GSR = 0; GTS = 0;

end

Example 1: No STARTUP With GSR Defined

The following design shows how to drive the GSR signal in a testfix-
ture file at the beginning of a pre-NGDBuild Unified Library func-
tional simulation.

In the design code, declare the GSR as a Verilog wire. The GSR will
not be specified in the port list for the module. Describe the GSR to
reset or set every inferred register or latch in your design. GSR does
not need to be connected to any instantiated registers or latches, as
shown in the following example.
6-64 Xilinx Development System

Simulating Your Design
module my_counter (CLK, D, Q, COUT);
input CLK, D;
output Q;
output [3:0] COUT;

wire GSR;
reg [3:0] COUT;

always @(posedge GSR or posedge CLK)
begin

if (GSR == 1’b1)
COUT = 4’h0;

else
COUT = COUT + 1’b1;

end
// GSR is modeled as a wire within a global module.
// So, CLR does not need to be connected to GSR and
// the flop will still be reset with GSR.
FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1'b1), .CLR

(1’b0));
endmodule

Since GSR is declared as a floating wire and is not in the port list, the
synthesis tool optimizes the GSR signal out of the design. GSR is
replaced later by the implementation software for all post-implemen-
tation simulation netlists.

In the test fixture file, set GSR to test.uut.GSR (the name of the global
set/reset signal, qualified by the name of the design instantiation
instance name and the test fixture instance name). Since there is no
STARTUP block, a connection to GSR is made in the testfixture via an
assign statement. See the following example:
Synthesis and Simulation Design Guide 6-65

Synthesis and Simulation Design Guide
‘timescale 1 ns / 1 ps
module testbench;
reg CLK, D;
wire Q;
wire [3:0] COUT;
reg GSR;
assign glbl.GSR = GSR;
assign test.uut.GSR = GSR;
my_counter uut (.CLK (CLK), .D (D), .Q (Q), .COUT
(COUT));

initial begin
$timeformat(-9,1,”ns”,12);
$display(“\t T C G D Q C”);
$display(“\t i L S O”);
$display(“\t m K R U”);
$display(“\t e T”);
$monitor(“%t %b %b %b %b %h”, $time, CLK, GSR,
D, Q, COUT);

end
initial begin

CLK = 0;
forever #25 CLK = ~CLK;

end
// Global Ste/Reset of the Design
initial begin

GSR = 1'b1;
#100 GSR = 1'b0;

end
// Apply Design Stimulus here
initial begin

D = 1'b1;
#100 D = 1'b0;
#200 D = 1'b1;
#100 $finish;

end
endmodule
6-66 Xilinx Development System

Simulating Your Design
Designs with a STARTUP Block

For RTL simulation using the UNISIM libraries, asserting global set/
reset and global tristate when the STARTUP block is specified in the
design is similar to asserting global set/reset and global tristate
without a STARTUP block in the design. See the “User-Controlled
GSR” figure.

Figure 6-7 User-Controlled GSR

To set the GSR pin to set an external input port, the testfixture would
be written as the following:

reg MYGSR;
initial begin
MYGSR = 1;
#100 MYGSR = 0;

end

There is no need for the assign statement as without the STARTUP
block since the GSR signal can be pulsed from the external port
connected to the GSR pin of the STARTUP component. This is
because a the global signal, glbl.GSR, is defined within the STARTUP
block to make the connection between the user logic and the global
GSR net embedded in the UNISIM models for RTL simulation. For
post-NGDBuild, GSR is connected in the netlist created by
NGD2VER. Retaining the assign definition causes a possible conflict
with these connections.

X8354

IBUF

Q2

IQ

1917

Q3

Q1Q4

DONEINCLK

GSR

GTS

GSR_INMYGSR

STARTUP

IPAD
Synthesis and Simulation Design Guide 6-67

Synthesis and Simulation Design Guide
Example 1: STARTUP with GSR Pin Connector

In the following Verilog code, GSR is listed as a top-level port.
Synthesis sees a connection of GSR to the STARTUP and as well to the
behaviorally described counter. Although this is correct in the hard-
ware, it is actually an implicit connection, and GSR is only listed as a
connection to the STARTUP in the implementation netlist.

module my_counter (MYGSR, CLK, D, Q, COUT);
input MYGSR, CLK, D;
output Q;
output [3:0] COUT;

reg [3:0] COUT;

always @(posedge MYGSR or posedge CLK)
begin

if (MYGSR == 1’b1)
COUT = 4’h0;

else
COUT = COUT + 1’b1;

end
// GSR is modeled as a wire within a global
// module.So, CLR does not need to be connected
// to GSR and the flop will still be reset with GSR.

FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1’b1),
.CLR (1’b0));
STARTUP U1 (.GSR (MYGSR), .GTS (1’b0), .CLK
(1’b0));

endmodule

The following is an example of controlling the global set/reset signal
by driving the external MYGSR input port in a test fixture file at the
beginning of an RTL or post-synthesis functional simulation when
there is a STARTUP block. Since the GSR signal is declared as a port,
it can be treated like a normal port in the testbench only at the begin-
ning of simulation. It should be activated to properly initialize the
design.
6-68 Xilinx Development System

Simulating Your Design
The global set/reset control signal should be toggled High, then Low
in an initial block from the testbench file.

reg MYGSR;
initial begin
MYGSR = 1; // To reset/set the device
#100 MYGSR = 0; // To deactivate GSR

end

In addition, the global signal, glbl.GSR, is defined within the
STARTUP block to make the connection between the user logic and
the global GSR net embedded in the UNISIM models for RTL simula-
tion. For post-NGDBuild functional simulation, post-Map timing
simulation, and post-route timing simulation, GSR is connected in the
Verilog netlist that is created by NGD2VER.

Example 2: STARTUP with GTS Pin Connected

In the following figure, MYGTS is an external user signal that
controls GTS.

Figure 6-8 User-Controlled GTS

X8356

IBUF

Q2

I9

1817
Q3

Q1Q4

DONEINCLK

GR

GTS
GTS_INMYGTS

STARTUP

IPAD
Synthesis and Simulation Design Guide 6-69

Synthesis and Simulation Design Guide
The following is an example of controlling the global tristate signal
by driving the external MYGTS input port in a test fixture file at the
beginning of an RTL or post-synthesis functional simulation when
there is a STARTUP block. The global GTS signal is modeled in all
UNISIM simulation models for output buffers (OBUF, OBUFT) so
that when these models are instantiated in the code, they will go
tristate when the glbl.GTS signal is high.

The global tristate control signal should be toggled High, then Low in
an initial block from the testbench file.

reg MYGTS;
initial begin
MYGTS = 1; // To 3-state the device;
#100 MYGTS = 0; // To deactivate GTS

end

Example 3: STARTUP with GTS Pin Not Connected

A Verilog global signal called glbl.GTS is defined within the
STARTUP_VIRTEX, STARTUP_VIRTEX2 and STARTUP_SPARTAN2
blocks to make the connection between the user logic and the global
GTS net embedded in the Unified models. For post-NGDBuild func-
tional simulation, post-map timing simulation, and post-route timing
simulation, glbl.GTS is defined in the Verilog netlist that is created by
NGD2VER.

When using a STARTUP block in the design to control GTS function,
simply toggle the port connected to the GTS pin of the STARTUP
block to activate and de-activate the global tristate function.

Simulating Special Components in Verilog
The following section provides a description and examples of simu-
lating special components for Virtex.

Boundary Scan and Readback

The Boundary Scan and Readback circuitry cannot be simulated at
this time. Efforts are being made to create models for these compo-
nents and should be available in the near future.
6-70 Xilinx Development System

Simulating Your Design
Differential I/O (LVDS, LVPECL)

For Virtex-E and Spartan-IIE families, the inputs of the differential
pair are currently modeled with only the positive side, whereas the
outputs have both pairs, positive and negative. For details, please see
http://support.xilinx.com/techdocs/8187.htm.

This is not an issue for the Virtex-II architecture because the
differential buffers for Virtex-II and later architectures have been
updated to accept both the positive and negative inputs.

The following is an example of an instantiated differential I/O in a
Virtex-E or Spartan-IIE design.

module lvds_ex (data, data_op, data_on);
input data;
output data_op, data_on;

// Input side
IBUF_LVDS I0 (.I (data), .O (data_int));

// Output side
OBUF_LVDS OP0 (.I (data_int), .O (data_op));
wire data_n_int = ~data_int;
OBUF_LVDS ON0 (.I (data_n_int), .O (data_on));

endmodule

LUT

For simulation, the INIT attribute passed by the defparam statement
is used to initialize contents of the LUT for functional simulation.

The following is an example of the defparam statement being used to
initialize the contents of a LUT.
Synthesis and Simulation Design Guide 6-71

http://support.xilinx.com/techdocs/8187.htm

Synthesis and Simulation Design Guide
module lut_ex (LUT1_OUT, LUT1_IN);
input [1:0] LUT1_IN;
output [1:0] LUT1_OUT;

// For RTL simulation only.
// The defparam will not synthesize.

// synthesis translate_off
defparam U0.INIT = 2’b01;
defparam U1.INIT = 2’b10;

// synthesis translate_on

// LUT1 used as an inverter
LUT1 U0 (.O (LUT1_OUT[0]), .I0 (LUT1_IN[0]));

// LUT1 used as a buffer
LUT1 U1 (.O (LUT1_OUT[1]), .I0 (LUT1_IN[1]));

endmodule

However, passing the INIT attribute in this manner does not initialize
the contents for synthesis. All synthesis tools have their own mecha-
nism for passing attributes to the implementation netlist. For refer-
ences on today’s popular synthesis tools, refer to the LUT Instantiation
and Initialization for Synthesis table.

Table 6-9 LUT Instantiation and Initialization for Synthesis

Synthesis Tool Information Location

XST http://support.xilinx.com/techdocs/
11069.htm

FPGA Compiler II http://support.xilinx.com/techdocs/
5334.htm

Synplify http://support.xilinx.com/techdocs/
1992.htm

LeonardoSpectrum http://support.xilinx.com/techdocs/
8207.htm
6-72 Xilinx Development System

http://support.xilinx.com/techdocs/5334.htm
http://support.xilinx.com/techdocs/1992.htm
http://support.xilinx.com/techdocs/8207.htm
http://support.xilinx.com/techdocs/11069.htm

Simulating Your Design
SRL16

For inferred SRL16s, no attributes need to be passed to the simulator.
However, if the SRL16 component is being instantiated, and if non-
zero contents are desired for initialization, the INIT attribute passed
by the defparam statement is used to initialize contents of the SRL16.

The following is an example of the defparam statement being used to
initialize the contents of a SRL16.

module srl16_ex (CLK, DIN, QOUT);
input CLK, DIN;
output QOUT;

// For RTL simulation only.
// The defparam will not synthesize.

// synthesis translate_off
defparam U0.INIT = 16’hAAAA;

// synthesis translate_on

// Static length - 16-bit SRL
SRL16 U0 (.D (DIN), .Q (QOUT), .CLK (CLK),

 .A0 (1’b1), .A1 (1’b1), .A2 (1’b1), .A3 (1’b1));
endmodule

However, passing the INIT attribute in this manner does not initialize
the contents for synthesis. Please refer to your synthesis vendor’s
documentation since all synthesis tools have their own mechanism
for passing attributes to the implementation netlist.

BlockRAM

For simulation, the INIT_0x attributes passed by the defparam state-
ment are used to initialize contents of the BlockRAM.
Synthesis and Simulation Design Guide 6-73

Synthesis and Simulation Design Guide
module bram512x4 (CLK, DATA_BUSA, ADDRA, WEA,
DATA_BUSB, ADDRB, WEB);

input [9:0] ADDRA, ADDRB;
input CLK, WEA, WEB;
inout [3:0] DATA_BUSA, DATA_BUSB;

wire [3:0] DOA, DOB;

assign DATA_BUSA = !WEA ? DOA : 4’hz;
assign DATA_BUSB = !WEB ? DOB : 4’hz;

// For RTL simulation only. The defparam will not
synthesize.

// synthesis translate_off
defparam

U0.INIT_00 = 256'hnew_hex_value,
U0.INIT_01 = 256'hnew_hex_value,
U0.INIT_02 = 256'hnew_hex_value,
U0.INIT_03 = 256'hnew_hex_value,
U0.INIT_04 = 256'hnew_hex_value,
U0.INIT_05 = 256'hnew_hex_value,
U0.INIT_06 = 256'hnew_hex_value,
U0.INIT_07 = 256'hnew_hex_value,
U0.INIT_08 = 256'hnew_hex_value,
U0.INIT_09 = 256'hnew_hex_value,
U0.INIT_0A = 256'hnew_hex_value,
U0.INIT_0B = 256'hnew_hex_value,
U0.INIT_0C = 256'hnew_hex_value,
U0.INIT_0D = 256'hnew_hex_value,
U0.INIT_0E = 256'hnew_hex_value,
U0.INIT_0F = 256'hnew_hex_value;

// synthesis translate_on

RAMB4_S4_S4 U0 (.DOA (DOA), .DOB (DOB),
 .ADDRA (ADDRA), .DIA (DATA_BUSA), .ENA (1’b1),
 .CLKA (CLK), .WEA (WEA), .RSTA (1’b0),
 .ADDRB (ADDRB), .DIB (DATA_BUSB), .ENB (1’b1),
 .CLKB (CLK), .WEB (WEB), .RSTB (1’b0));
endmodule
6-74 Xilinx Development System

Simulating Your Design
However, passing the INIT_0x attributes in this manner does not
initialize the memory contents for synthesis since all synthesis tools
have their own mechanism for passing attributes to the implementa-
tion netlist. For references on today’s synthesis tools, refer to the
BlockRAM Instantiation and Initialization for Synthesis table.

Another method for passing the INIT_0x attributes to the Alliance
tools is through the use of a UCF file. For example, the following
statement defines the initialization string for the code example above.

INST U0 INIT_00 =
5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;

INST U0 INIT_01 =
5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;

The value of the INIT_0x string is a hexadecimal number that defines
the initialization string.

CLKDLL

The duty cycle of the CLK0 output is 50-50 unless the
DUTY_CYCLE_CORRECTION attribute is set to FALSE, in which
case the duty cycle is the same as that of the CLKIN.

The frequency of CLKDV is determined by the value assigned to the
CLKDV_DIVIDE attribute. The default is 2.

The STARTUP_WAIT is not implemented in the model. To hold off
simulation until the DLL is locked, this example will monitor the
LOCK signal and use it to trigger the release of the GSR signal.

Table 6-10 BlockRAM Instantiation and Initialization for
Synthesis

Synthesis Information Location

XST http://support.xilinx.com/techdocs/
10695.htm

FPGA Compiler II http://support.xilinx.com/techdocs/4392.htm

Synplify http://support.xilinx.com/techdocs/2022.htm

LeonardoSpectrum http://support.xilinx.com/techdocs/7947.htm
Synthesis and Simulation Design Guide 6-75

http://support.xilinx.com/techdocs/4392.htm
http://support.xilinx.com/techdocs/2022.htm
http://support.xilinx.com/techdocs/7947.htm
http://support.xilinx.com/techdocs/10695.htm

Synthesis and Simulation Design Guide
module clkdll_ex (CLKIN_P, RST_P, CLK0_P, CLK90_P,
CLK180_P,CLK270_P,CLK2X_CLKDV_P,
LOCKED_P);

input CLKIN_P, RST_P;
output CLK0_P, CLK90_P, CLK180_P, CLK270_P,
CLK2X_P;

output CLKDV_P;
// Active high indication that DLL is
// LOCKED to CLKIN
output LOCKED_P;
wire CLKIN, CLK0;

// Input buffer on the clock
IBUFG U0 (.I (CLKIN_P), .O (CLKIN));

// GLOBAL CLOCK BUFFER on the
// delay compensated output
BUFG U2 (.I (CLK0), .O (CLK0_P));

// For RTL simulation only.
// The defparam will not synthesize.
// synthesis translate_off
// CLK0 divided by
// 1.5 2.0 2.5 3.0 4.0 5.0 8.0 or 16.0
defparam DLL0.CLKDV_DIVIDE = 4.0;
defparam DLL0.DUTY_CYCLE_CORRECTION = "FALSE";

// synthesis translate_on

// Instantiate the DLL primitive cell
CLKDLL DLL0 (.CLKIN (CLKIN), .CLKFB(CLK0_P),

.RST (RST_P), .CLK0 (CLK0),
.CLK90 (CLK90_P), .CLK180 (CLK180_P),

 .CLK270 (CLK270_P), .CLK2X (CLK2X_P),
.CLKDV (CLKDV_P),.LOCKED (LOCKED_P));

endmodule
6-76 Xilinx Development System

Simulating Your Design
However, passing the CLKDLL attributes in this manner does not
initialize the contents for synthesis. Please refer to your synthesis
vendor’s documentation since all synthesis tools have their own
mechanism for passing attributes to the implementation netlist.

Another method for passing the CLKDLL attributes to the Alliance
tools is through the use of an UCF file. For example, the following
statement defines the initialization string for the code example above.

INST DLL0 CLKDV_DIVIDE = 4;
INST DLL0 DUTY_CYCLE_CORRECTION = FALSE;

DCM

The DCM (Digital Clock Management) component, available in
Virtex-II and Virtex-II Pro, is an enhancement over the Virtex-E
CLKDLL. The following example shows how to pass the attributes to
the DCM component using the defparam statement in Verilog.

module DCM_TEST(clock_in, clock_out, clock_with_ps_out,
reset);

input clock_in;
output clock_out;
output clock_with_ps_out;
output reset;

wire low, high, dcm0_locked, reset, clk0;

assign low = 1’b0;
assign high = 1’b1;
assign reset = !dcm0_locked;

IBUFG CLOCK_IN (.I(clock_in), .O(clock));

DCM DCM0 (
.CLKFB(clock_out), .CLKIN(clock), .DSSEN(low), .PSCLK(low),
.PSEN(low), .PSINCDEC(low), .RST(low), .CLK0(clk0), .CLK90(),
.CLK180(), .CLK270(), .CLK2X(), .CLK2X180(),.CLKDV(), .CLKFX(),
.CLKFX180(), .LOCKED(dcm0_locked), .PSDONE(), .STATUS());

BUFG CLK_BUF0(.O(clock_out), .I(clk0));
Synthesis and Simulation Design Guide 6-77

Synthesis and Simulation Design Guide
//synthesis translate_off
defparam DCM0.DLL_FREQUENCY_MODE = "LOW";
defparam DCM0.DUTY_CYCLE_CORRECTION = "TRUE";
defparam DCM0.STARTUP_WAIT = "TRUE";
defparam DCM0.DFS_FREQUENCY_MODE = "LOW";
defparam DCM0.CLKFX_DIVIDE = 1;
defparam DCM0.CLKFX_MULTIPLY = 1;
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM0.PHASE_SHIFT = "0";
defparam DCM0.CLK_FEEDBACK = "1X";
defparam DCM0.CLKIN_DIVIDE_BY_2 = FALSE;
defparam DCM0.CLKIN_PERIOD = 0.0;
defparam DCM0.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
defparam DCM0.DFS_FREQUENCY = "LOW";
defparam DCM0.DLL_FREQUENCY = "LOW";

//synthesis translate_on

endmodule // DCM_TEST

Simulation CORE Generator Components

The simulation flow for CORE Generator models is described in the
CORE Generator Guide.

Design Hierarchy and Simulation
Most FPGA designs are partitioned into levels of hierarchy for many
advantageous reasons. A few of the reasons hierarchy makes the
design easier to read, easier to re-use, allows partitioning for a multi-
engineer team, and improves verification. To improve design
utilization and performance, many times the synthesis tool or the
Xilinx implementation tools will flatten or modify the design
hierarchy. After this flattening and restructuring of the design
hierarchy in synthesis and implementation, the hierarchy can be
reconstructed during back annotation and final gate-level simulation
netlisting. Many times this reconstruction will cause a flattened or
somewhat distorted view of the original design hierarchy for back-
end timing verification. Because of this distortion, much of the
advantage of using the original design hierarchy in RTL verification
is lost in back-end verification. The distortion decreases the visibility
into the structural design netlist, and increases the difficulty of
6-78 Xilinx Development System

Simulating Your Design
verifying the end function of the design. In an effort to improve
visibility of the design for back-end simulation, retention of the
original design hierarchy has been improved in the Xilinx design
flow.

To allow preservation of the design hierarchy through the
implementation process with little or no degradation in performance
or increase in design resources, stricter design rules should be
followed so that optimization is not necessary across the design
hierarchy.

Some good design practices to follow are:

• Register all outputs exiting a preserved entity or module.

• Do not allow critical timing paths to span multiple entities or
modules.

• Keep related or possibly shared logic in the same entity or
module.

• Place all logic that is to be placed/merged into the I/O (IOB
registers, three state buffers, instantiated I/O buffers, etc.) in the
top-level module or entity for the design. This includes double-
data rate registers used in the I/O.

• Manually duplicate high-fanout registers at hierarchy boundaries
if improved timing is necessary.

Generally, it is good practice to follow the guidelines in the FPGA
Reuse Field Guide.

To maintain the entire hierarchy or specified parts of the hierarchy
during synthesis, the synthesis tool must first be instructed to
preserve hierarchy for all levels or each selected level of hierarchy.
This may be done with a global switch, compiler directive in the
source files, or a synthesis command. Consult your synthesis tool
documentation for details on how to retain hierarchy. After taking the
necessary steps to preserve hierarchy, and properly synthesizing the
design, a hierarchical implementation file (EDIF or NGC) should be
created by the synthesis tool that will retain the hierarchy.

Before implementing the design with the Xilinx software, place a
KEEP_HIERARCHY constraint on each instance in the design in
which the hierarchy is to be preserved. This tells the Xilinx software
exactly which parts of the design should not be flattened or modified
to maintain proper hierarchy boundaries. This constraint may be
Synthesis and Simulation Design Guide 6-79

Synthesis and Simulation Design Guide
passed in the source code as an attribute, as an instance constraint in
the NCF or UCF file, or may be automatically generated by the
synthesis tool. See your synthesis vendor documentation to see how
your synthesis tool handles this. More information on the
KEEP_HIERARCHY constraint can be found in the Constraints Guide.

Alternatively, if the design was compiled using a bottom-up
methodology where individual implementation files (EDIF or NGC)
were created for each level of design hierarchy, the
KEEP_HIERARCHY constraint may be automatically generated. A
KEEP_HIERARCHY constraint will be generated for each separate
design file passed to the Xilinx software by the use of a switch during
input netlist translation. During the ngdbuild netlist translation
stage, if the –insert_keep_hierarchy switch is enabled, the hierarchy
for each individual input file for the design will be preserved during
implementation.

After the design is mapped, placed, and routed, run ngdanno with
the resulting NGM file from map during delay annotation to properly
back-annotate the hierarchy of the design. Then run the netlister on
the output NGA file from ngdanno using the following syntax:

ngdanno design_name.ncd design_name_map.ngm

ngd2ver/ngd2vhdl design_name.nga output_name

This is the default way ngdanno is run when using ISE or XFLOW to
generate the simulation files. It is only necessary to know this if you
plan to execute the ngdanno outside of ISE or XFLOW. When you run
the netlister on the resulting back-annotated NGA file, and using the
NGM file, all hierarchy that was specified to KEEP_HIERARCHY
should be reconstructed in the resulting VHDL or Verilog netlist.

Note Hierarchy created by generate statements may not match the
original simulation due to naming differences between the simulator
and synthesis engines for generated instances.The back-end Verilog
and VHDL netlist could have additional ports in the user hierarchy
called GSR and GTS as part of the hierarchy interface for instances
with the KEEP_HIERARCHY attribute. These ports are necessary for
connecting the GSR and GTS global nets that are needed for the
correct simulation of the design.
6-80 Xilinx Development System

Simulating Your Design
RTL Simulation Using Xilinx Libraries
Since Xilinx simulation libraries are VHDL-93 and Verilog-2001
compliant, they can be simulated using any simulator that supports
these language standards. However, certain delay and modelling
information is built into the libraries, which is required to correctly
simulate the Xilinx hardware devices.

Xilinx recommends not changing data signals at clock edges, even for
functional simulation. The simulators add a unit delay between the
signals that change at the same simulator time. If the data changes at
the same time as a clock, it is possible that the data input will be
scheduled by the simulator to occur after the clock edge. Thus, the
data will not go through until the next clock edge, although it is
possible that the intent was to have the data get clocked in before the
first clock edge. To avoid any such unintended simulation results,
Xilinx recommends not switching data signals (for registered
components) and clock signals simultaneously.

The UNISIMS VHDL BlockRAM simulation models have a 10
picosecond setup time built in. Since the ideal simulation
environment calls for using the same testbench in both RTL and
timing simulation, this default setup time warns the user when a
stimulus that will not work in timing simulation or hardware is
passed by the testbench. This is desirable since it gives the user an
early warning before the design goes into the implementation stage.
Similarly, the UNISIMS VHDL CLKDLL and DCM simulation
models have a 100 picosecond default skew between the input and
output clocks, which is the skew seen on average in timing
simulation and board-level simulation.

Timing Simulation
In back annotated (timing) simulation, the introduction of delays can
cause the behavior to be different from what is expected. Most
problems are caused due to timing violations in the design, and are
reported by the simulator. However, there are a few other problems
that can occur.

Glitches in your Design
When a glitch (small pulse) occurs in an FPGA circuit or any
integrated circuit, the glitch may be passed along by the transistors
Synthesis and Simulation Design Guide 6-81

Synthesis and Simulation Design Guide
and interconnect (transport) in the circuit, or it may be swallowed
and not passed (internal) to the next resource in the FPGA. This
depends on the width of the glitch and the type of resource the glitch
passes through. To produce more accurate simulation of how signals
are propagated within the silicon, Xilinx models this behavior in the
timing simulation netlist. For Verilog simulation, this information is
passed by the PATHPULSE construct in the SDF file. This construct is
used to specify the size of pulses to be rejected or swallowed on
components in the netlist. For VHDL, there are two library
components called X_BUF_PP and X_TRI_PP in which proper values
are annotated for pulse rejection in the simulation netlist. The result
of these constructs in our simulation netlists is a more true-to-life
simulation model, and so a more accurate simulation.

CLKDLL/DCM Clocks do not appear de-skewed
The CLKDLL and DCM components remove the clock delay from the
clock entering into the chip. As a result, the incoming clock and the
clocks feeding the registers in the device have a minimal skew within
the range specified in the Databook for any given device. However, in
timing simulation, the clocks may not appear to be de-skewed within
the range specified. This is due to the way the delays in the SDF file
are handled by some simulators.

The SDF file annotates the CLOCK PORT delay on the X_FF
components. However, some simulators may show the clock signal
before taking this delay into account. If this CLOCK PORT delay on
the X_FF is added to the internal clock signal, then it should line up
within the device specifications in the waveform viewer with the
input port clock. Currently there is no work around to this problem
for Verilog designs. Therefore, in order to verify the correct
functioning of the CLKDLL/DCM, delays from the SDF file need to
be accounted for manually to calculate the actual skew between the
input and internal clocks. For VHDL designs, probe the internal
signals of the simulation models to see the PORT delays being
annotated. The internal signals have a "_int" annotated to the external
port name.

Simulating the DLL/DCM
Although the functionality of the Xilinx DLL and DCM components
may seem easy to understand, the simulation of these components
can be easily misinterpreted. The purpose of this section is to clarify
6-82 Xilinx Development System

Simulating Your Design
how the DLL/DCM is supposed to simulate, and to identify some of
the common problems designers face when simulating these
components.

TRACE/Simulation Model Differences

To fully understand the simulation model, you must first understand
that there are differences in the way the DLL and DCM are built in
silicon and the way TRACE reports them compared to the DLL/
DCM simulation model. The DLL/DCM simulation model attempts
to replicate the functionality of the DLL/DCM in the Xilinx silicon,
but it does not always do it exactly how it is implemented in the
silicon. In the silicon, the DLL/DCM uses a tapped delay line to delay
the clock signal. This accounts for input delay paths and global buffer
delay paths to the feedback in order to accomplish the proper clock
phase adjustment. TRACE or Timing Analyzer reports the phase
adjustment as a simple delay (usually negative) so that you can
adjust the clock timing for static timing analysis. As for simulation,
the DLL/DCM simulation model itself, attempts to align the input
clock to the clock coming back into the feedback input. Instead of
putting the delay in the DLL or DCM itself, the delays are handled by
combining some of them into the feedback path as clock delay on the
clock buffer (component) and clock net (port delay). The remainder is
combined with the port delay of the CLKFB pin. While this is
different from the way TRACE or Timing Analyzer reports it, and the
way it is implemented in the silicon, the end result is the same
functionality. TRACE and simulation both use a simple delay model
rather than an adjustable delay tap line similar to silicon.

Note Note that we do not currently support jitter and clock arrival
differences in the simulation model or static timing analysis.

The primary job of the DLL/DCM is to remove the clock delay from
the internal clocking circuit as shown in the following figure.
Synthesis and Simulation Design Guide 6-83

Synthesis and Simulation Design Guide
Figure 6-9 Delay Locked Loop Block Diagram

Do not confuse this with the function of de-skewing the clock. Clock
skew is generally associated with delay variances in the clock tree,
which is a different matter. By removing the clock delay, the input
clock to the device pin should be properly phase aligned with the
clock signal as it arrives at each register it is sourcing. This means that
observing signals at the DLL/DCM pins generally does not give the
proper view point to observe the removal of the clock delay. The
place to see if the DCM is doing its job is to compare the input clock
(at the input port to the design) with the clock pins of one of the
sourcing registers. If these are aligned (or shifted to the desired
amount) then the DLL/DCM has accomplished its job.

Non-LVTTL Input Drivers

When using non-LVTTL input buffer drivers to drive the clock, the
DCM does not make adjustments as to the type of input buffer
chosen, but instead has a single delay value to provide the best
amount of clock delay across all I/O standards. If you are using the
same input standard for the data, the delay values should track, and
generally not cause a problem. Even if you are not using the same
input standard, the amount of delay variance will generally not cause
hold time failures because the delay variance is small compared to
the amount of input delay. The delay variance is calculated in both
static timing analysis and simulation so you should see proper setup
time values during static timing analysis, as well as during
simulation.
6-84 Xilinx Development System

Simulating Your Design
Viewer Considerations

Depending on which simulator you use, the waveform viewer may
not depict the delay timing the way you expect to see it. Some
simulators, including the current version of MTI ModelSim, will
combine interconnect delays (either interconnect or port delays) with
the input pins of the component delays when you view the waveform
on the waveform viewer. In terms of the simulation, the results are
correct, but in terms of what you see in the waveform viewer, this
may not always be what you expect to see. Since interconnect delays
are combined, when you look at a pin using the MTI ModelSim
viewer, you do not see the transition as it happens on the pin. In
terms of functionality, the simulation acts properly, and this is not
very relevant, but when attempting to calculate clock delay, the
interconnect delays before the clock pin must be taken into account if
the simulator you are using combines these interconnect delays with
component delays. Please refer to http://support.xilinx.com/
techdocs/11067.htm on the Xilinx support Web site at for the most
current information on this issue.

Attributes for Simulation and Implementation

Ensure that the same attributes are passed for simulation and
implementation. During implementation of the design, DLL/DCM
attributes may be passed either by the synthesis tool via a synthesis
attribute, or within the UCF file. For RTL simulation of the UNISIM
models, the simulation attributes must be passed via a generic if you
are using VHDL, or a defparam if you are using Verilog. If you do not
use the default setting for the DLL/DCM, and you use the UCF file or
a different synthesis attribute to pass the attribute values, you must
ensure that the attributes for RTL simulation are the same as those
used for implementation. If not, there may be differences between
RTL simulation and the actual device implementation.

Simulating the DCM in Digital Frequency Synthesis
Mode Only

To simulation the DCM in Digital Frequency Synthesis Mode only, set
the CLK_FEEDBACK attribute to NONE and the leave the CLKFB
unconnected. The CLKFX and CLKFX180 will be generated based
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes. These outputs
will not have phase correction with respect to CLKIN.
Synthesis and Simulation Design Guide 6-85

http://support.xilinx.com/techdocs/947.htm
http://support.xilinx.com/techdocs/947.htm
http://support.xilinx.com/techdocs/947.htm
http://support.xilinx.com/techdocs/947.htm

Synthesis and Simulation Design Guide
Negative Hold Times
In previous versions of Xilinx simulation models, negative hold times
were truncated and specified as zero hold times. While this does not
cause inaccuracies for simulation, it does reveal a more pessimistic
model in terms of timing than is possible in the actual FPGA.
Therefore this made it more difficult to meet stringent timing
requirements. With the current release, negative hold times are now
specified in the timing models to provide a wider, yet more accurate
representation of the timing window. This is accomplished by
combining the setup and hold parameters for the synchronous
models into a single setuphold parameter in which the timing for the
setup/hold window can be expressed. This should not change the
timing simulation methodology in any way, however when using
Cadence Verilog-XL or NC-Verilog, there will no longer be separate
violation messages for setup and hold as they are now combined into
a single setuphold violation.

Simulation Flows
When simulating, compile the Verilog source files in any order since
Verilog is compile order independent. However, VHDL components
must be compiled bottom-up due to order dependency. Xilinx recom-
mends that you specify the test fixture file before the HDL netlist of
your design, as in the following examples.

Xilinx recommends giving the name testbench to the main module in
the test fixture file. This name is consistent with the name used by
default in the ISE Project Navigator. If this name is used, no changes
are necessary to the option in ISE in order to perform simulation from
that environment.

ModelSim Vcom
The following is information regarding ModelSim Vcom.
6-86 Xilinx Development System

Simulating Your Design
Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before
using ModelSim Vcom. See the “Compiling HDL Libraries” section
for instruction on how to compile the Xilinx VHDL libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the command-line.

vlib work

vcom lower_level_files.vhd top_level.vhd testbench.vhd
(testbench_cfg.vhd)

vsim testbench_cfg

For timing simulation or post-Ngd2vhdl, the SIMPRIMS-based
libraries are used. Specify the following at the command-line:

vlib work

vcom -work work design.vhd testbench.vhd [testbench_cfg.vhd]

vsim -sdfmax instance_name=design.sdf testbench_cfg

Scirocco
The following is information regarding Scirocco.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before
using Scirocco. See the “Compiling HDL Libraries” section for
instruction on how to compile the Xilinx VHDL libraries.

Depending on the makeup of the design (Xilinx instantiated compo-
nents, or CORE Generator components), for RTL simulation, specify
the following at the command-line.

mkdir work

vhdlan work_macro1.vhd top_level.vhd testbench.vhd testbench_cfg.vhd

scs testbench_cfg

scsim
Synthesis and Simulation Design Guide 6-87

Synthesis and Simulation Design Guide
For timing simulation or post-Ngd2vhdl, the SIMPRIMS-based
libraries are used. Specify the following at the command-line:

mkdir work

vhdlan work_design.vhd testbench.vhd

scs testbench

scsim -sdf testbench:design.sdf

NC-VHDL
The following is information regarding NC-VHDL.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before
using NC_VHDL. See the “Compiling HDL Libraries” section for
instruction on how to compile the Xilinx VHDL libraries. It is
assumed that the proper mapping and setup files are present before
simulation. If you are unsure that you have the simulator properly
setup, please consult the simulator vendor documentation.

Depending on the makeup of the design (Xilinx instantiated compo-
nents, or CORE Generator components), for RTL simulation, specify
the following at the command-line.

1. Create a working directory.

mkdir test

2. Compile design files and workbench.

ncvhdl -work test testwork_macro1.vhd top_level.vhd
testbench.vhd testbench_cfg.vhd

3. Elaborate the design at the proper scope

ncelab testbench_cfg:A

4. Invoke the simulation.

ncsim testbench_cfg:A
6-88 Xilinx Development System

Simulating Your Design
For timing simulation or post-Ngd2vhdl, the SIMPRIMS-based
libraries are used. Specify the following at the command-line:

1. Compile the SDF annotation file:

ncsdfc design.sdf

2. Create an SDF command file, sdf.cmd, the following data in it:

COMPILED_SDF_FILE = design.sdf.X

SCOPE = uut,

MTM_CONTROL = ’MINIMUM’;

3. Create a working directory.

mkdir test

4. Compile design files and workbench.

ncvhdl -work test work_design.vhd testbench.vhd

5. Elaborate the design at the proper scope

ncelab -sdf_cmd_file.cmd testbench_cfg:A

6. Invoke the simulation.

ncsim testbench_cfg:A

Verilog-XL
Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the command-line.

verilog -y $XILINX/verilog/src/unisims
+libext+.v
<testfixture>.v <design>.v $XILINX/verilog/src/glbl.v

The –y switch points the simulator to the HDL models.
Synthesis and Simulation Design Guide 6-89

Synthesis and Simulation Design Guide
For timing simulation or post-NGD2VER, the Simprims-based
libraries are used. Specify the following at the command-line:

verilog -y $XILINX/verilog/src/simprims \
+libext+.v <testfixture>.v <design>.v $XILINX/verilog/src/glbl.v

For more information on specifying the Xilinx SIMPRIMs library
using the -ul switch with NGD2VER instead of using the -y switch in
Verilog-XL, go to http://support.xilinx.com/techdocs/3167.htm.

Note You do not need to compile the libraries for Verilog-XL because
it uses an interpretive compilation of the libraries.

NC-Verilog
There are two methods to run simulation with NC-Verilog.

1. Using library source files with compile time options (similar to
Verilog-XL).

2. Using shared precompiled libraries.

Using Library Source Files With Compile Time
Options

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the command-line:

ncxlmode +libext+.v -y $XILINX/verilog/src/unisims -y
<testfixture>.v <design>.v $XILINX/verilog/src/glbl.v

For timing simulation or post-NGD2VER, the Simprims-based
libraries are used. Specify the following at the command-line.

ncxlmode -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v

+libext+.v <testfixture>.v time_sim.v

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before
using NC-Verilog. See the “Compiling HDL Libraries” section for
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, edit the
hdl.var and cds.lib files to specify the library mapping.
6-90 Xilinx Development System

http://support.xilinx.com/techdocs/3167.htm

Simulating Your Design
cds.lib
DEFINE simprims_ver <compiled_lib_dir>/simprims_ver
DEFINE xilinxcorelib_ver <compiled_lib_dir>/xilinxcorelib_ver
DEFINE worklib worklib

hdl.var
DEFINE VIEW_MAP ($VIEW_MAP, .v => v) DEFINE LIB_MAP ($LIB_MAP,
<compiled_lib_dir>/unisims_ver => unisims_ver)
DEFINE LIB_MAP ($LIB_MAP, <compiled_lib_dir>/simprims_ver =>
simprims_ver)
DEFINE LIB_MAP ($LIB_MAP, <compiled_lib_dir>/simprims_ver =>
xilinxcorelib_ver)
DEFINE LIB_MAP ($LIB_MAP, + => worklib)
// After setting up the libraries, now compile and simulate the design:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v
<design>.v
ncelab -messages testfixture_name glbl
ncsim -messages testfixture_name

The -update option of Ncvlog enables incremental compilation.

For timing simulation or post-Ngd2ver, the Simprims-based libraries
are used. Specify the following at the command-line:

ncvlog -messages -update $XILINX/verilog/src/glbl.v
<testfixture>.v time_sim.v
ncelab -messages -autosdf testfixture_name glbl
ncsim -messages testfixture_name

For more information on how to back-annotate the SDF file for timing
simulation, go to http://support.xilinx.com/techdocs/947.htm.

VCS/VCSi
VCS and VCSi are identical except that VCS is more highly opti-
mized, resulting in greater speed for RTL and mixed level designs.
Pure gate level designs run with comparable speed. However, VCS
and VCSi are guaranteed to provide the exact same simulation
results. VCSi is invoked using the vcsi command rather than the
vcs. command.
Synthesis and Simulation Design Guide 6-91

http://support.xilinx.com/techdocs/947.htm

Synthesis and Simulation Design Guide
There are two methods to run simulation with VCS/VCSi.

1. Using library source files with compile time options (similar to
Verilog-XL).

2. Using shared precompiled libraries.

Using Library Source Files With Compile Time
Options

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the command-line.

vcs -y $XILINX/verilog/src/unisims
incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v
-Mupdate -R <testfixture>.v <design>.v

For timing simulation or post-NGD2VER, the Simprims-based
libraries are used. Specify the following at the command-line.

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
+libext+.v -Mupdate -R <testfixture>.v time_sim.v

The -R option automatically simulates the executable after compila-
tion .

The -Mupdate option enables incremental compilation. Modules will
be recompiled because of one of the following reasons:

1. Target of a hierarchical reference has changed.

2. Some compile time constant such as a parameter has changed.

3. Ports of a module instantiated in the module have changed.

4. Module inlining. For example, merging, internally in VCS, of a
group of module definitions into a larger module definition
which leads to faster simulation. These affected modules are
again recompiled. This is done only once.

For more information on how to back-annotate the SDF file for timing
simulation, go to http://support.xilinx.com/techdocs/6349.htm.
6-92 Xilinx Development System

http://support.xilinx.com/techdocs/6349.htm

Simulating Your Design
Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before
using VCS/VCSi. See the “Compiling HDL Libraries” section for
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the command-line.

vcs -Mupdate -Mlib=<compiled_dir>/unisims_ver -y $XILINX/verilog/src/
unisims -Mlib=<compiled_dir>/simprims_ver -y $XILINX/verilog/src/simprims
-Mlib=<compiled_dir>/xilinxcorelib_ver
+libext+.v $XILINX/verilog/src/glbl.v -R <testfixture>.v <design>.v

 For timing simulation or post-NGD2VER, the Simprims-based
libraries are used. Specify the following at the command-line.

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
+libext+.v-Mupdate -R <testfixture>.v time_sim.v

The -R option automatically simulates the executable after compila-
tion. Finally, the -Mlib=<compiled_lib_dir> option provides VCS
with a central place to look for the descriptor information before it
compiles a module and a central place to get the object files when it
links together the executable.

The -Mupdate option enables incremental compilation. Modules will
be recompiled because of one of the following reasons:

1. Target of a hierarchical reference has changed.

2. Some compile time constant such as a parameter has changed.

3. Ports of a module instantiated in the module have changed.

4. Module inlining. For example, merging, internally in VCS, of a
group of module definitions into a larger module definition
which leads to faster simulation. These affected modules are
again recompiled. This is done only once.

For more information on how to back-annotate the SDF file for timing
simulation, go to http://support.xilinx.com/techdocs/6349.htm.
Synthesis and Simulation Design Guide 6-93

http://support.xilinx.com/techdocs/6349.htm

Synthesis and Simulation Design Guide
ModelSim Vlog
There are two methods to run simulation with ModelSim Vlog.

1. Using library source files with compile time options (similar to
Verilog-XL).

2. Using shared precompiled libraries.

Using Library Source Files With Compile Time
Options

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the ModelSim prompt:

set XILINX $env(XILINX)

vlog -y $XILINX/verilog/src/unisims

+libext+.v $XILINX/verilog/src/glbl.v -incr

<testfixture>.v <design>.v

vsim <testfixture> glbl

For timing simulation or post-NGD2VER, the Simprims-based
libraries are used. Specify the following at the ModelSim prompt:

vlog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v

+libext+.v <testfixture>.v time_sim.v -incr

vsim <testfixture> glbl +libext+.v <testfixture>.v

The -incr option enables incremental compilation.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before
using ModelSim Vlog. See the “Compiling HDL Libraries” section for
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (Xilinx instantiated primi-
tives, or CORE Generator components), for RTL simulation, specify
the following at the ModelSim prompt:

set XILINX $env(XILINX)

vlog $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v -incr

vsim -L unisims_ver -L simprims_ver -L xilinxcorelib_ver <testfixture>
glbl
6-94 Xilinx Development System

Simulating Your Design
For timing simulation or post-NGD2VER, the SIMPRIM-based
libraries are used. Specify the following at the ModelSim prompt:

vlog $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v -incr
vsim -L simprims_ver <testfixture> glbl

The -incr option enables incremental compilation. The -L
<compiled_lib_dir> option provides VSIM with a library to search for
design units instantiated from Verilog.

IBIS
The Xilinx IBIS models provide information on I/O characteristics.
The IBIS models can be used for the following.

IBIS models provide information about I/O driver and receiver
characteristics without disclosing proprietary knowledge of the IC
design (as unencrypted SPICE models do). However, there are some
limitations on the information that IBIS models can provide. Please
note that these are limitations imposed by the IBIS specification itself.

IBIS models can be used for the following:

1. Model best-case and worst-case conditions (best-case = strong
transistors, low temperature, high voltage; worst-case = weak
transistors, high temperature, low voltage). Best-case conditions
are represented by the "fast/strong" model, while worst-case
conditions are represented by the "slow/weak" model. Typical
behavior is represented by the "typical" model.

2. Model varying drive strength and slew rate conditions for Xilinx
I/Os that support such variation.

IBIS cannot be used for any of the following:

1. Provide internal timing information (propagation delays and
skew).

2. Model power and ground structures.

3. Model pin-to-pin coupling.

4. Provide detailed package parasitic information. Package
parasitics are provided in the form of lumped RLC data. This is
typically not a significant limitation, as package parasitics have
an almost negligible effect on signal transitions.
Synthesis and Simulation Design Guide 6-95

Synthesis and Simulation Design Guide
The implications of (2) and (3) above are that ground bounce, power
supply droop, and simultaneous switching output (SSO) noise
CANNOT be simulated with IBIS models. To ensure that these effects
do not harm the functionality of your design, Xilinx provides device/
package-dependent SSO guidelines based on extensive lab
measurements. The locations of these guidelines are as follows:

Virtex-II - The "Design Considerations" section of the Virtex-II
Handbook: http://www.xilinx.com/products/virtex/handbook/
index.htm.

Virtex-II Pro - The "PCB Design Considerations" section of the Virtex-
II Pro Handbook: http://support.xilinx.com/publications/
products/v2pro/handbook/index.htm.

Virtex/-E - Xilinx Application Note 133: "Using the Virtex Select I/O
Resource" (Xilinx XAPP133)

Spartan-II/-IIE - Xilinx Application Note 179: "Using Select I/O
Interfaces in Spartan-II FPGAs" (Xilinx XAPP179)

IBIS models for Xilinx devices can be found at: http://
support.xilinx.com/support/sw_ibis.htm

For more information about the IBIS specification, please see the IBIS
Home Page at http://www.eigroup.org/ibis/ibis.htm

The Xilinx IBIS models are available for download at:

ftp://ftp.xilinx.com/pub/swhelp/ibis/

STAMP
The Xilinx development system supports Stamp Model Generation.
This feature supports the use of board level Static Timing Analysis
tools, such as Mentor Graphics’ Tau and Innoveda’s Blast. With these
tools, users of Xilinx programmable logic products can accelerate
board level design verification.

Using the -stamp switch in the Xilinx program Trace, will write out
the stamp models.

For more information on creating the STAMP files, options to use in
Trace, and integrating it with Tau and Blast, please see the Applica-
tion note at http://support.xilinx.com/xapp/xapp166.pdf
6-96 Xilinx Development System

http://support.xilinx.com/xapp/xapp166.pdf
ftp://ftp.xilinx.com/pub/swhelp/ibis/
http://www.eigroup.org/ibis/ibis.htm
http://support.xilinx.com/support/sw_ibis.htm
http://support.xilinx.com/support/sw_ibis.htm
http://www.xilinx.com/products/virtex/handbook/index.htm.
http://www.xilinx.com/products/virtex/handbook/index.htm.
http://support.xilinx.com/publications/products/v2pro/handbook/index.htm
http://support.xilinx.com/publications/products/v2pro/handbook/index.htm

Simulating Your Design
Debugging Timing Problems
In back-annotated (timing) simulation, the simulator takes into
account timing information that resides in the standard delay format
(SDF) file. This may lead to eventual timing violations issued by the
simulator. This section explains some of the more common timing
violations, and gives advice on how to debug and correct them.

Identifying Timing Violations
After you run timing simulation, check the messages generated by
your simulator. If you have timing violations, they will be indicated
by error messages.

The following example is a typical setup violation message from MTI
ModelSim for a Verilog design. Message formats will vary from
simulator to simulator, but will all contain the same basic
information. See your simulator documentation for details.

** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96):

$setup(negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);

Time:29151 ps Iteration:0 Instance: /test_bench/u1/\U1/X_RAMD16\

• The first line points to the line in the simulation model that is in
error. In the example above, the failing line would be line 96 of
the verilog file, X_RAMD16.

• The second line gives information about the two signals that are
the cause of the error. This line states the following.

♦ The type of violation ($setup, $hold, $recovery, etc.). The
above example is a $setup violation.

♦ The name of each signal involved in the violation followed
by the simulation time at which that signal last changed
values. In the above example, the failing signals would be
negative-going edge of the signal WE which last changed at
29138 picoseconds, and the positive-going edge of the signal
CLK which last changed at 29151 picoseconds.

♦ The third value is the allotted amount of time for the setup.
For this example, the signal on WE should be ’stable for
373 pico seconds before the clock transitions. Since WE
changed only 13 pico seconds before the clock, this violation
was reported.
Synthesis and Simulation Design Guide 6-97

Synthesis and Simulation Design Guide
• The third line gives the simulation time at which the error was
reported, and the instance in the structural design (time_sim) in
which the violation occurred.

Verilog System Timing Tasks

Verilog system tasks and functions are used to perform simulation
related operations such as monitoring and displaying simulation
time and associated signal values at a specific time during simulation.
All system tasks and functions begin with a dollar sign, for example
$setup. See the Verilog Language Reference Manual (available from
IEEE) for details about specific system tasks.

Timing check tasks may be invoked in specific blocks to verify the
timing performance of a design by making sure critical events occur
within given time limits. Timing checks perform the following steps:

• Determine the elapsed time between two events.

• Compare the elapsed time to a specified limit.

• If the elapsed time does not fall within the specified time
window, report timing violation.

The following system tasks may be used for performing timing
checks:

VITAL Timing Checks

VITAL (VHDL Initiative Towards ASIC Libraries) is an addition to
the VHDL specification that deals with adding timing information to
VHDL models. One of the key aspects of VITAL is the specification of
the package vital_timing. This package, in addition to other things,
provides standard procedures for performing timing checks.

$hold $setup

$nochange $setuphold

$period $skew

$recovery $width
6-98 Xilinx Development System

Simulating Your Design
The package vital_timing defines the following timing check
procedures:

• VitalSetupHoldCheck

• VITALRecoveryRemovalCheck

• VitalInPhaseSkewCheck

• VitalOutPhaseSkewCheck

• VITALPeriodPulseCheck.

VitalSetupHoldCheck is overloaded for use with test signals of type
Std_Ulogic or Std_Logic_Vector. Each defines a CheckEnabled
parameter that supports the modeling of conditional timing checks.
See the VITAL Language Reference Manual (available from IEEE) for
details about specific VITAL timing checks.

Timing Problem Root Causes
Timing violations, such as $setuphold, occur any time data changes at
a register input (either data or clock enable) within the setup or hold
time window for that particular register. There are a few typical
causes for timing violations; the most common are the following.

• The design is not constrained

• A path in the design is not constrained

• The design does not meet timespecs

• The design simulation clock does not match what is called for in
the timespecs

• Clock skew is unaccounted for in a particular data path

• A path in the design has asynchronous inputs, crosses out-of-
phase clock domains or has asynchronous clock boundaries

Design Not Constrained

Timing constraints are essential to help you meet your design goals
or obtain the best implementation of your circuit. Global timing
constraints cover most constrainable paths in a design. These global
constraints cover clock definitions, input and output timing
requirements, and combinatorial path requirements. Specify global
constraints like PERIOD, OFFSET_IN_BEFORE, and
Synthesis and Simulation Design Guide 6-99

Synthesis and Simulation Design Guide
OFFSET_OUT_AFTER to match your simulator with the timespecs of
the devices used in the design.

In general, keep in mind the following two points when constraining
a design:

• PERIOD: Can be quickly applied to a design. It also leads in the
support of OFFSET, which you can use to specify your I/O
timing. This works well for a single-clock, or multi-clock design
that is not multi-cycle.

• FROM-TO: This constraint works well with more complicated
timing paths. Designs that are multi-cycle or have paths that
cross clock domains are better handled this way. For I/O,
however, you must add/subtract the delay of the global buffer.
Note that using an OFFSET before for input and an OFFSET after
for output is supported without the need to specify a period, so
you can use the advantages of both.

For detailed information on constraining your design, consult any or
all of the following resources.

• Constraints Guide:

The Constraints Guide lists all of the Xilinx constraints along with
explanations and guides to their usage.

The Timing Constraint Strategies chapter in the Constraints Guide
gives detailed information on the best ways to constrain the
timing on your design to get optimum results.

• Timing and Constraints area on the Xilinx home page:

The Timing and Constraints area on the Xilinx home page provides
a presentation of Basic Timing Concepts and Syntax Examples. This
presentation gives an overview of how to constrain your design,
and has examples of how to code various constraints.

• The Timing Improvement Wizard:

The Timing Improvement Wizard provides suggestions for
improving failing paths, and can help you find answers to your
specific timing questions. You can find the Timing Improvement
Wizard at:

http://support.xilinx.com/support/troubleshoot/psolvers.htm
6-100 Xilinx Development System

http://support.xilinx.com/support/troubleshoot/psolvers.htm
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Simulating Your Design
Path Not or Improperly Constrained

Unconstrained or improperly constrained data and clock paths are
the most common sources of setup and hold violations. Because data
and clock paths can cross domain boundaries, global constraints are
not always adequate to ensure that all paths are constrained. For
example, a global constraint, such as PERIOD, does not constrain
paths that originate at an input pin, and data delays along these paths
could cause setup violations.

Use Timing Analyzer to determine the length of an individual data or
clock path. For input paths to the design, if the length of a data path
minus the length of the corresponding clock path, plus any data
delay, is greater than the clock period, you will get a setup violation.

clock period < data path - clock path + data delay
value setup value for register

For detailed information on constraining paths driven by input pins,
see the Timing Constraint Strategies chapter of the Constraints Guide.
Also see the Design Not Constrained section above for other
constraints resources.

Design Does Not Meet Timespec

Xilinx software enables you to specify precise timing requirements
for your Xilinx FPGA designs. Specify the timing requirements for
any nets or paths in your design. The primary method of specifying
timing requirements is by assigning timing constraints. You can enter
timing constraints through your synthesis tool, the Xilinx Constraints
Editor, or by editing the User Constraint File (UCF). For detailed
information on entering timing specifications, see the Development
System Reference Guide. For detailed information about the constraints
you can use with your schematic entry software, see the Constraints
Guide.

Once you define timing specifications, use TRACE (Timing Report,
Circuit Evaluator, and TSI Report) or Timing Analyzer to analyze the
results of your timing specifications. Review the timing report
carefully to ensure that all paths are constrained, and that the
constraints are specified properly. Be sure to check for any error
messages in the report.

If after applying timing constraints your design still does not meet
timespec, there are several things you can do. Generally, your
Synthesis and Simulation Design Guide 6-101

Synthesis and Simulation Design Guide
synthesis and implementation tools have options intended to
improve timing performance. Check with your tool’s documentation
to see what options can be applied to your design.

If refining your tool options is not sufficient, it may be necessary to go
back to your source code to reconfigure parts of your design.
Reducing levels of logic will reduce timing delays, as well as
arranging your floor plan so that related logic is grouped together.

Simulation Clock Does Not Meet Timespec

If the frequency of the clock that was specified during simulation is
greater than that specified in the timing constraints, then this over-
clocking of the design could cause timing violations. For example, if
your simulation clock has a frequency of 5 ns, and you have a
PERIOD constraint set at 10 ns, a timing violation could occur. This
situation can also be complicated by the presence of DLL or DCM in
the clock path.

Generally, this problem is caused by an error either in the testbench
or in the constraint specification. Check to ensure that the constraints
match the conditions in the testbench, and correct any
inconsistencies. If you modify the constraints, be sure to re-run the
design through place and route to ensure that all constraints are met.

Unaccounted Clock Skew

Clock skew is the difference between the amount of time the clock
signal takes to reach the destination register, and the amount of time
the clock signal takes to reach the source register. The data must reach
the destination register within a single clock period plus or minus the
amount of clock skew. Clock skew is generally not a problem when
you use global buffers; however, clock skew can be a concern if you
use the local routing network for your clock signals.

To find out if clock skew is your problem, use TRACE to do a setup
test. See the TRACE chapter of the Development Systems Reference
Guide for directions on how to run a setup check, and read the
TRACE report. You can also use Timing Analyzer to determine clock
skew. See the Timing Analyzer Online Help for instructions.

Be aware that clock skew will be modeled in the simulation, but not
in TRACE unless you invoke TRACE using the "-skew" switch.
Simulation results may not equal TRACE results if the skew is
6-102 Xilinx Development System

Simulating Your Design
significant (as when a non-BUFG clock is used). To account for skew
in TRACE, use the following command:

trce -skew

or set the following environment variable:

setenv XILINX_DOSKEWCHECK yes

If your design has clock skew, consider redesigning your path so that
all registers are tied to the same global buffer. If that is not possible,
consider using the USELOWSKEWLINES constraint to minimize
skew. Refer to the Constraints Guide for detailed information on the
USELOWSKEWLINES constraint.

Note Avoid using the XILINX_DOSKEWCHECK environment variable
with PAR. If you have clocks on local routing, the PAR timing score
may oscillate. This is because the timing score will be a function of
both a clock delay and the data delay, and attempts to make the data
path faster may make the clock path slower, or vice versa. It should
only be used within PAR on designs with paths that make use of
global clock resources.

Asynchronous Inputs, Asynchronous Clock Domains,
Crossing Out-of-phase

Timing violations can be caused by data paths that are not controlled
by the simulation clock, or are not clock controlled at all. Timing
violations also include data paths that cross asynchronous clock
boundaries, have asynchronous inputs, or cross data paths out of
phase.

• Asynchronous Clocks

If the design has two or more clock domains defined, any path
that crosses data from one domain to another could cause timing
problems. Although data paths that cross from one clock domain
to another are not always asynchronous, it is always best to be
cautious with these situations. If two clocks have unrelated
frequencies, they should certainly be treated as asynchronous.
Any clocking signal that is coming from of- chip should also be
treated as asynchronous. Note that anytime a register’s clock is
gated, it should be treated as asynchronous unless extreme
caution is used.
Synthesis and Simulation Design Guide 6-103

Synthesis and Simulation Design Guide
Check the source code and the Timing Analyzer report to see if
the path in question crosses asynchronous clock boundaries. If
your design does not allow enough time for the path to be
properly clocked into the other domain, you may have to
redesign your clocking scheme. Consider using an asynchronous
FIFO as a better way to pass data from one clock domain to
another.

• Asynchronous Inputs

Data paths that are not controlled by a clocked element are
asynchronous inputs. Because they are not clock controlled, they
can easily violate setup and hold time specifications.

Check the source code to see if the path in question is
synchronous to the input register. If synchronization is not
possible, you can use the ASYNC_REG constraint to work
around the problem. See the “Using the ASYNC_REG Attribute”
section in this chapter.

• Out of Phase Data Paths

Data paths can be clock controlled at the same frequency, but
nevertheless can have setup or hold violations because the clocks
are out of phase. Even if the clock frequencies are a derivative of
each other, improper phase alignment could cause setup
violations.

Check the source code and the Timing Analyzer report to see if
the path in question crosses another path with an out of phase
clock.

Debugging Tips
When you are faced with a timing violation, the following questions
may give valuable clues as to what went wrong.

• Was the clock path analyzed by TRACE or Timing Analyzer?

• Did TRACE or Timing Analyzer report that the data path can run
at speeds being clocked in simulation?

• Is clock skew being accounted for in this path delay?

• Does subtracting the clock path delay from the data path delay
still allow clocking speeds?
6-104 Xilinx Development System

Simulating Your Design
• Will slowing down the clock speeds eliminate the $setup/$hold
time violations?

• Does this data path cross clock boundaries (from one clock
domain to another)? Are the clocks synchronous to each other? Is
there appreciable clock skew or phase difference between these
clocks?

• If this path is an input path to the device, does changing the time
at which the input stimulus is applied eliminate the $setup/
$hold time violations?

Based on the answers to these questions, you may need to make
changes to your design or testbench to accommodate the simulation
conditions.

Special Considerations for Setup and Hold
Violations

Zero Hold Time Considerations

While Xilinx data sheets report that there are zero hold times on the
internal registers and I/O registers with the default delay and using a
global clock buffer, it is still possible to receive a $hold violation from
the simulator. This $hold violation is really a $setup violation on the
register. However, in order to get an accurate representation of the
CLB delays, part of the setup time must be modeled as a hold time.
For more information on this modeling, please refer to Xilinx Answer
782 at the Xilinx Support web site.

RAM Considerations

Xilinx devices contain two types of memories, BlockRAM and
Distributed RAM. Both BlockRAM and Distributed RAM are
synchronous elements when you write data to them, so the same
precautions must be taken as with all synchronous elements to avoid
timing violations. The data input, address lines, and enables all must
be stable before the clock signal arrives to guarantee proper data
storage. BlockRAMs also perform synchronous read operations. This
means that during a read cycle, the addresses and enables must be
stable before the clock signal arrives or a timing violation may occur.

When using Distributed RAM or BlockRAM in dual-port mode,
special care must be taken to avoid memory collisions. A memory
Synthesis and Simulation Design Guide 6-105

http://support.xilinx.com/xlnx/xil_ans_display.jsp?BV_SessionID=@@@@0895916502.1011281910@@@@&BV_EngineID=cccdadcedhkmihicflgcefndfgldfmh.0&getPagePath=782
http://support.xilinx.com/xlnx/xil_ans_display.jsp?BV_SessionID=@@@@0895916502.1011281910@@@@&BV_EngineID=cccdadcedhkmihicflgcefndfgldfmh.0&getPagePath=782
http://support.xilinx.com/xlnx/xil_ans_display.jsp?BV_SessionID=@@@@0895916502.1011281910@@@@&BV_EngineID=cccdadcedhkmihicflgcefndfgldfmh.0&getPagePath=782

Synthesis and Simulation Design Guide
collision occurs when one port is being written to while the other port
is either read or write is attempted to the same address at the same
time, or within a very short period of time thereafter. The model will
warn you if a collision occurs. If the RAM is being read on one port as
it is being written to on the other, the model will output an ’X’ value
signifying an unknown output. If the two ports are writing data to
the same address at the same time, the model can write unknown
data into memory. Special care should be taken to avoid this situation
as unknown results may occur from this action.

Calculating Setup and Hold Times

Guaranteed External Setup Times

The external setup time is defined as the setup time of the DATAPAD
within the IOB, relative to the CLKPAD within the CLKIOB.

When a guaranteed external setup time exists in the speed files for a
particular DATAPAD/CLKPAD pair and configuration, an X_SUH
component will be added to the netlist to annotate this value to the
design. When no guaranteed external setup time exists in the speed
files for a particular DATAPAD/CLKPAD pair, no X_SUH
components will be added and the external setup time will be
reported as the maximum path delay from DATAPAD to the IFD,
plus the maximum IFD setup time, less the minimum of maximum
path delay(s) from the CLKPAD to the IFD.

Setup Time Calculations

Calculate the external setup time for a pad-to-register path using the
following equation:

Tsu(ext) = T(data_path) + Tsu(int) - T(clock_path)
where:

♦ T(data_path) = maximum data path delay

♦ Tsu(int) = setup time of an internal register

♦ T(clock_path) = minimum clock path delay

Hold Times

The external hold time is defined as the hold time of the DATAPAD
within the IOB, relative to the CLKPAD within the CLKIOB.
6-106 Xilinx Development System

Simulating Your Design
When a guaranteed external hold time exists in the speed files for a
particular DATAPAD/CLKPAD pair and configuration, an X_SUH
component will be added to the netlist to annotate this value to the
design. When no guaranteed external hold time exists in the speed
files for a particular DATAPAD and CLKPAD pair, no X_SUH
components will be added and the external hold time will be
reported as the maximum path delay from CLKPAD to the IFD, plus
the maximum IFD hold time, less the minimum of maximum path
delay(s) from the DATAPAD to the IFD.

Hold Time Calculations

Calculate the external hold time for a pad-to-register path using the
following equation:

Th(ext) = T(clock_path) + Th(int) - T(data_path)

where:

♦ T(data_path) = minimum data path delay

♦ Th(int) = hold time of an internal register

♦ T(clock_path) = maximum clock path delay

$Width Violations
The $width Verilog system task monitors the width of signal pulses.
When the pulse width of a specific signal is less than what is required
for the device being used, the simulator issues a $width violation.
Generally, $width violations are only specified for clock signals and
asynchronous set or reset signals.

Consult the online version of The Programmable Logic Data Book for the
device switching characteristics for your device. Find the minimum
pulse width requirements, and ensure that the device stimulus
conforms to these specifications.

$Recovery Violations
The $recovery Verilog system task specifies a time constraint between
an asynchronous control signal and a clock signal (for example,
between clearbar and the clock for a flip-flop). A $recovery violation
occurs when a change to the signal occurs within the specified time
constraint.
Synthesis and Simulation Design Guide 6-107

Synthesis and Simulation Design Guide
The $recovery Verilog system task is used to check for one of two
dual-port block RAM conflicts:

• If both ports write to the same memory cell simultaneously,
violating the clock-to-setup requirement, the data stored will be
invalid.

• If one port attempts to read from the same memory cell to which
the other is simultaneously writing (also violating the clock setup
requirement) the write will be successful, but the data read will
be invalid.

Recovery tasks are also used to detect if an asynchronous set/reset
signal is released just before a clock event occurs. If this happens, the
result is similar to a setup violation in that it is undetermined
whether the new data should be clocked in or not.
6-108 Xilinx Development System

	Software Manuals Online
	Synthesis and Simulation Design Guide
	About This Manual
	Manual Contents
	Additional Resources

	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Introduction
	Architecture Support
	Overview of Hardware Description Languages
	Advantages of Using HDLs to Design FPGAs
	Designing FPGAs with HDLs
	Using Verilog
	Using VHDL
	Comparing ASICs and FPGAs
	Using Synthesis Tools
	Using FPGA System Features
	Designing Hierarchy
	Specifying Speed Requirements

	Xilinx Internet Web Sites
	Xilinx World Wide Web Site
	Technical Support Web Site
	Technical and Applications Support Hotlines
	Xilinx FTP Site

	Vendor Support Sites

	2 Understanding High-Density Design Flow
	Design Flow
	Entering your Design and Selecting Hierarchy
	Design Entry Recommendations
	Using RTL Code
	Carefully Select Design Hierarchy

	Architecture Wizard
	DCM Wizard
	Rocket I/O Wizard

	Functional Simulation of your Design
	Synthesizing and Optimizing your Design
	Creating an Initialization File
	Creating a Compile Run Script
	FPGA Compiler II
	LeonardoSpectrum
	Synplify

	Compiling Your Design
	Modifying your Design
	Compiling Large Designs
	Saving Compiled Design as EDIF

	Setting Constraints
	Using the UCF File
	Using the Xilinx Constraints Editor
	Using Synthesis Tools’ Constraints Editor

	Evaluating Design Size and Performance
	Using your Synthesis Tool to Estimate Device Utilization and Performance
	Using the Timing Report Command

	Determining Actual Device Utilization and Pre-routed Performance
	Using Project Navigator to Map Your Design
	Using the Command Line to Map Your Design

	Evaluating your Design for Coding Style and System Features
	Tips for Improving Design Performance
	Modifying Your Code
	Using FPGA System Features
	Using Xilinx-specific Features of Your Synthesis Tool

	Modular Design and Incremental Design (ECO)
	Placing and Routing Your Design
	Decreasing Implementation Time
	Improving Implementation Results
	Map Timing Option
	Extra Effort Mode in PAR
	Multi-Pass Place and Route
	Turns Engine Option (UNIX only)
	Reentrant Routing Option
	Cost-Based Clean-up Option
	Delay-Based Clean-up Option
	Guide Option

	Timing Simulation of Your Design
	Timing Analysis Using TRACE

	Downloading to the Device and In-system Debugging
	Creating a PROM File for Stand-Alone Operation

	3 General HDL Coding Styles
	Naming and Labeling Styles
	Using Xilinx Naming Conventions
	Matching File Names to Entity and Module Names
	Naming Identifiers, Types, and Packages
	Labeling Flow Control Constructs
	Using Named and Positional Association
	Passing Attributes
	VHDL Attribute Examples
	Verilog Attribute Examples

	Understanding Synthesis Tools Naming Convention

	Specifying Constants
	Using Constants to Specify OPCODE Functions (VHDL)
	Using Parameters to Specify OPCODE Functions (Verilog)

	Choosing Data Type (VHDL only)
	Declaring Ports
	Minimizing the Use of Ports Declared as Buffers
	Comparing Signals and Variables (VHDL only)
	Using Signals (VHDL)
	Using Variables (VHDL)

	Coding for Synthesis
	Omit the Wait for XX ns Statement
	Omit the ...After XX ns or Delay Statement
	Omit Initial Values
	Order and Group Arithmetic Functions
	Comparing If Statement and Case Statement
	4–to–1 Multiplexer Design with If Construct
	4–to–1 Multiplexer Design with Case Construct

	Implementing Latches and Registers
	D Latch Inference
	Converting D Latch to D Register

	Resource Sharing
	Reducing Gate Count
	Using Preset Pin or Clear Pin
	Register Inference
	Using Clock Enable Pin Instead of Gated Clocks

	4 Architecture Specific HDL Coding Styles for Spartan-II, Virtex, Virtex-E, Virtex-II, and Virtex-I...
	Introduction
	Instantiating Components
	Instantiating FPGA Primitives
	Instantiating CORE Generator Modules

	Using Boundary Scan (JTAG 1149.1)
	Using Global Clock Buffers
	Inserting Clock Buffers
	Instantiating Global Clock Buffers
	Instantiating Buffers Driven from a Port
	Instantiating Buffers Driven from Internal Logic

	Using Advanced Clock Management
	Using CLKDLL (Virtex/E, Spartan II)
	Using the Additional CLKDLL in Virtex-E
	Using BUFGDLL
	CLKDLL Attributes
	Using DCM In Virtex-II/II Pro
	Attaching Multiple Attributes to CLKDLL and DCM

	Using Dedicated Global Set/Reset Resource
	Startup State
	Preset vs. Clear

	Implementing Inputs and Outputs
	I/O Standards
	Inputs
	Outputs
	Using IOB Register and Latch
	Using Dual Data Rate IOB Registers
	Using Output Enable IOB Register
	Using -pr Option with MAP

	Virtex-E IOBs
	Additional I/O Standards

	Virtex-II IOBs
	Differential Signaling in Virtex-II

	Encoding State Machines
	Using Binary Encoding
	Binary Encoded State Machine VHDL Example
	Binary Encoded State Machine Verilog Example

	Using Enumerated Type Encoding
	Enumerated Type Encoded State Machine VHDL Example
	Enumerated Type Encoded State Machine Verilog Example

	Using One-Hot Encoding
	One-hot Encoded State Machine VHDL Example
	One-hot Encoded State Machine Verilog Example

	Accelerating FPGA Macros with One-Hot Approach
	Summary of Encoding Styles
	Initializing the State Machine

	Implementing Operators and Generate Modules
	Adder and Subtracter
	Multiplier
	Counters
	Comparator
	Encoder and Decoders
	LeonardoSpectrum Priority Encoding HDL Example

	Implementing Memory
	Implementing Block SelectRAM+
	Instantiating Block SelectRAM+
	Instantiating Block SelectRAM+ in Virtex-II
	Inferring Block SelectRAM+
	Implementing Distributed SelectRAM+

	Implementing ROMs
	RTL Description of a Distributed ROM VHDL Example
	RTL Description of a Distributed ROM Verilog Example

	Implementing ROMs Using Block SelectRAM
	RTL Description of a ROM VHDL Example Using Block SelectRAM
	RTL Description of a ROM Verilog Example using Block SelectRAM

	Implementing FIFO
	Implementing CAM
	Using CORE Generator to Implement Memory

	Implementing Shift Register (Virtex/E/II and Spartan-II)
	Inferring SRL16 in VHDL
	Inferring SRL16 in Verilog
	Inferring Dynamic SRL16 in VHDL
	Inferring Dynamic SRL16 in Verilog
	Implementing LFSR

	Implementing Multiplexers
	Mux Implemented with Gates VHDL Example
	Mux Implemented with Gates Verilog Example
	Wide MUX Mapped to MUXFs
	Mux Implemented with BUFTs VHDL Example
	Mux Implemented with BUFTs Verilog Example

	Using Pipelining
	Before Pipelining
	After Pipelining

	Design Hierarchy
	Using Synthesis Tools with Hierarchical Designs
	Restrict Shared Resources to Same Hierarchy Level
	Compile Multiple Instances Together
	Restrict Related Combinatorial Logic to Same Hierarchy Level
	Separate Speed Critical Paths from Non-critical Paths
	Restrict Combinatorial Logic that Drives a Register to Same Hierarchy Level
	Restrict Module Size
	Register All Outputs
	Restrict One Clock to Each Module or to Entire Design

	5 Virtex-II Pro Considerations
	Introduction
	Summary of Virtex-II Pro Features

	Using Smart Models to Simulate Virtex-II Pro Designs
	Simulation Components
	Overview of Virtex-II Pro Simulation Flow
	Smart Models
	Supported Simulators
	Solaris
	NT or 2000

	Required Software
	Installing Smart Models from Xilinx Implementation Tools
	Solaris 2.6/2.7/2.8
	Windows NT, 2000

	Running Simulation
	MTI Modelsim SE - Solaris 2.6/2.7/2.8
	MTI Modelsim SE - Windows NT/2000
	Cadence Verilog-XL - Solaris 2.6/2.7/2.8
	Cadence NC-Verilog - Solaris 2.6/2.7/2.8
	Synopsys VCS - Solaris 2.6/2.7/2.8

	Virtex-II Pro Board Support Package
	Debugging Tools for Virtex-II Pro Designs
	Xilinx GNU Embedded Software Tools
	GDB Debugger
	ChipScope Pro
	Wind River Embedded Tools
	SingleStep Debugger - Xilinx Edition

	Other Software Tools

	6 Simulating Your Design
	Introduction
	Adhering to Industry Standards
	Simulation Points
	Register Transfer Level (RTL)
	Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation
	Post-NGDBuild (Pre-Map) Gate-Level Simulation
	Post-Map Partial Timing (CLB and IOB Block Delays)
	Timing Simulation Post-Place and Route Full Timing (Block and Net Delays)
	Providing Stimulus

	VHDL/Verilog Libraries and Models
	Locating Library Source Files
	Using the UNISIM Library
	UNISIM Library Structure

	Using the CORE Generator XilinxCoreLib Library
	CORE Generator Library Structure

	Using the SIMPRIM Library
	SIMPRIM Library Structure

	Compiling HDL Libraries
	Using compxlib

	Running NGD2VHDL and NGD2VER
	Creating a Simulation Netlist
	From Project Navigator
	From XFLOW
	From Command Line

	Disabling ‘X’ Propagation
	Using the ASYNC_REG Attribute
	Using Global Switches
	Use With Care

	MIN/TYP/MAX Simulation

	Understanding the Global Reset and Tristate for Simulation
	Simulating VHDL
	Defining Global Signals in VHDL
	Setting VHDL Global Set/Reset Emulation in Functional Simulation
	Global Signal Considerations (VHDL)
	GSR Network Design Cases
	Using VHDL Reset-On-Configuration (ROC) Cell (Case 1A)
	Using ROC Cell Implementation Model (Case 1A)
	ROC Model in Four Design Phases (Case 1A)
	Using VHDL ROCBUF Cell (Case 1B)
	ROCBUF Model in Four Design Phases (Case 1B)
	Using VHDL STARTBUF_VIRTEX, STARTBUF_VIRTEX2 Block or the STARTBUF_SPARTAN2 Block (Case 2)

	GTS Network Design Cases
	Using VHDL Tristate-On-Configuration (TOC)
	VHDL TOC Cell (Case A1)
	TOC Cell Instantiation (Case A1)
	TOC Model in Four Design Phases (Case A1)
	Using VHDL TOCBUF (Case A2)
	TOCBUF Model Example (Case A2)
	TOCBUF Model in Four Design Phases (Case A2)
	Using VHDL STARTBUF_VIRTEX, STARTBUF_VIRTEX2 or STARTBUF_SPARTAN2 Block (Case B)
	STARTBUF_VIRTEX Model Example (Case B2)

	Simulating Special Components in VHDL
	Simulating CORE Generator Components in VHDL
	Boundary Scan and Readback
	Differential I/O (LVDS, LVPECL)
	Simulating a LUT
	Simulating Virtex Block SelectRAM
	Simulating the Virtex Clock DLL
	Simulating the Virtex-II/ II Pro DCM
	Simulating SRLs

	Simulating Verilog
	Defining Global Signals in Verilog
	Using the glbl.v Module
	Defining GSR/GTS in a Test Bench
	Designs Without a Startup Block
	Designs with a STARTUP Block

	Simulating Special Components in Verilog
	Boundary Scan and Readback
	Differential I/O (LVDS, LVPECL)
	LUT
	SRL16
	BlockRAM
	CLKDLL
	DCM
	Simulation CORE Generator Components

	Design Hierarchy and Simulation
	RTL Simulation Using Xilinx Libraries
	Timing Simulation
	Glitches in your Design
	CLKDLL/DCM Clocks do not appear de-skewed
	Simulating the DLL/DCM
	TRACE/Simulation Model Differences
	Non-LVTTL Input Drivers
	Viewer Considerations
	Attributes for Simulation and Implementation

	Simulating the DCM in Digital Frequency Synthesis Mode Only
	Negative Hold Times

	Simulation Flows
	ModelSim Vcom
	Using Shared Precompiled Libraries

	Scirocco
	Using Shared Precompiled Libraries

	NC-VHDL
	Using Shared Precompiled Libraries

	Verilog-XL
	NC-Verilog
	Using Library Source Files With Compile Time Options
	Using Shared Precompiled Libraries

	VCS/VCSi
	Using Library Source Files With Compile Time Options
	Using Shared Precompiled Libraries

	ModelSim Vlog
	Using Library Source Files With Compile Time Options
	Using Shared Precompiled Libraries

	IBIS
	STAMP
	Debugging Timing Problems
	Identifying Timing Violations
	Verilog System Timing Tasks
	VITAL Timing Checks

	Timing Problem Root Causes
	Design Not Constrained
	Path Not or Improperly Constrained
	Design Does Not Meet Timespec
	Simulation Clock Does Not Meet Timespec
	Unaccounted Clock Skew
	Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-phase

	Debugging Tips
	Special Considerations for Setup and Hold Violations
	Calculating Setup and Hold Times

	$Width Violations
	$Recovery Violations

