
TSP

The NP-hard Traveling Salesman Problem (TSP) asks to find the shortest route that visits all
vertices in the graph. To be precise, the TSP is the shortest tour that visits all vertices and returns
back to the start.2 Since the problem is NP-hard, we don’t expect that Dynamic Programming
will give us a polynomial-time algorithm, but perhaps it can still help.

Specifically, the naive algorithm for the TSP is just to run brute-force over all n! permutations
of the n vertices and to compute the cost of each, choosing the shortest. (We can reduce this to
(n − 1)! permutations by always using the same start vertex, but we still pay Θ(n) to compute
the cost of each permutation, so the overall running time is O(n!).) We’re going to use Dynamic
Programming to reduce this to “only” O(n22n).

Any ideas? As usual, let’s first just worry about computing the cost of the optimal solution, and
then we’ll later be able to add in some hooks to recover the path. Also, let’s work with the shortest-
path metric where we’ve already computed all-pairs-shortest paths (so we can view our graph as
a complete graph with weights between any two vertices representing the shortest path between
them). This is conveninent since it means a solution is really just a permutation. Finally, let’s fix
some start vertex s.

Now, here is one fact we can use. Suppose someone told you what the initial part of the solution
should look like and we want to use this to figure out the rest. Then really all we need to know
about it for the purpose of completing it into a tour is the set of vertices visited in this initial
segment and the last vertex t visited in the set. We don’t really need the whole ordering of the
initial segment. This means there are “only” n2n subproblems (one for every set of vertices and
ending vertex t in the set). Furthermore, we can compute the optimal solution to a subproblem in
time O(n) given solutions to smaller subproblems (just look at all possible vertices t′ in the set we
could have been at right before going to t and take the one that minimizes the cost so far (stored
in our lookup table) plus the distance from t′ to t).

Here is a top-down way of thinking about it: if we were writing a recursive piece of code to solve 
this problem, then we would have a bit-vector saying which vertices have been visited so far and 
a variable saying where we are now, and then we would mark the current location as visited and 
recursively call on all possible (i.e., not yet visited) next places we might go to. Naively this would 
take time Ω(n!). However, by storing the results of our computations we can use the fact that 
there are “only” n2n possible (bit-vector, current-location) pairs, and so only that many different 
recursive calls made. For each recursive call we do O(n) work inside the call, for a total of O(n22n) 
time.

The last thing is we just need to recompute the paths, but this is easy to do from the computations
stored in the same way as we did for shortest paths.

2Note that under this definition, it doesn’t matter which vertex we select as the start. The Traveling Salesman
Path Problem is the same thing but does not require returning to the start. Both problems are NP-hard.


	x
	451-spring16
	lec01-intro
	Goals of the Course
	On guarantees and specifications
	An example: Median Finding
	The problem and a randomized solution

	A deterministic linear-time algorithm

	lec02
	Terminology and setup
	Sorting in the comparison model
	Sorting in the exchange model
	The comparison model revisited
	Finding the maximum of n elements
	An Adversary Argument
	Finding the second-largest of n elements

	Query models, and the evasiveness of connectivity (Optional)

	lec03-amortized1
	lec03-amortized2
	lec04
	Binary Search Trees
	Splay Trees (self-adjusting search trees)
	Sizes and Ranks

	The Amortized Analysis
	Balance Theorem
	Using Splaying with Searching and Updates
	Additional Applications of the Access Lemms

	lec05
	Motivation
	The Union-Find Problem
	Data Structure 1 (list-based)
	Data Structure 2 (tree-based)
	Appendix: MST Algorithms
	Prim's algorithm
	Kruskal's algorithm


	lec06
	Maintaining a Dictionary
	Hashing basics
	A Key Idea

	Universal Hashing
	Using Universal Hashing
	Constructing a universal hash family: the matrix method

	Perfect Hashing
	Method 1: an O(N2)-space solution
	Method 2: an O(N)-space solution

	Further discussion
	Another method for universal hashing


	lec07
	lec08
	How to Pick a Random Prime
	How Many Primes?
	The String Equality Problem
	Reducing the Error Probability
	Why did Alice not just send x over to Bob?

	The Karp-Rabin Algorithm (a.k.a. the ``Fingerprint'' Method)
	The Karp-Rabin Idea
	How to use this idea for String Matching
	Probability of Error
	Running Time

	Extensions and Connections


	lec09-dp1
	lec10-dp2
	lec11
	Introduction to Game Theory
	Some Definitions and Examples
	The Shooter-Goalie Game
	Pure and Mixed Strategies
	Minimax-Optimal Strategies
	The Balanced Game Example
	The Asymmetric Goalie Example


	Von Neumann's Minimax Theorem
	Lower Bounds for Randomized Algorithms
	A Lower Bound for Sorting Algorithms

	General-Sum Two-Player Games
	Nash Equilibria


	lec12-flow1
	The Network Flow Problem
	The Ford-Fulkerson algorithm
	The Analysis

	Bipartite Matching

	lec13-flow2
	Overview
	Network flow recap
	Edmonds-Karp #1
	Edmonds-Karp #2
	Further discussion: Dinic and MPM
	Min-cost Matchings, Min-cost Max Flows
	A Ford-Fulkerson-like Algorithm


	lec14-lp1
	Introduction
	Definition of Linear Programming
	Modeling problems as Linear Programs
	Modeling Network Flow
	2-Player Zero-Sum Games
	Algorithms for Linear Programming

	lec15-16-v2
	lec15-seidel
	Standard Linear Programming Terminology and Notation
	LP in Two Dimensions

	lec17
	Online linear classification
	The Perceptron Algorithm
	Perceptron for Solving Linear Programs
	The algorithm
	The analysis
	Extensions and hinge-loss
	Kernel functions

	Other Notes
	Perceptron's Worst-Case Runtime
	Affine Linear Separators


	lec18
	lec18_old
	lec19
	lec20
	lec21
	lec22
	Matching Markets
	Preferred Items and the Preferred Graph
	Market-Clearing Prices
	Market-Clearing Prices and Social Welfare Maximization
	An Algorithm for Market-Clearing Prices
	The Ascending-Price Mechanism

	Relationship to Vickery and VCG
	Walrasian equilibrium
	Existence No Longer Guaranteed
	An Ascending-Price Mechanism for ``Nice'' Valuations


	lec23-online
	lec24-convex-hull
	Introduction
	Representations
	Using Points to Generate Objects

	Primitive Operations
	Computing the Convex Hull
	An O(n2) Algorithm for 2D Convex Hulls
	Graham Scan, an O(n logn) Algorithm for 2D Convex Hulls
	Lower bound for computing the convex hull
	Ocaml code for the Graham Scan convex hull algorithm


	lec25-closest-pair
	lec26-segments-intersect
	lec27-point-location
	lec28
	Operations on Polynomials
	How Many Roots?
	A New Representation for degree-d Polynomials
	The Proof of Theorem 3

	Application: Error Correcting Codes
	Error Correction
	The Berlekamp-Welch Error-Correction Algorithm


	Multivariate Polynomials and Matchings





