
TSP

The NP-hard Traveling Salesman Problem (TSP) asks to find the shortest route that visits all
vertices in the graph. To be precise, the TSP is the shortest tour that visits all vertices and returns
back to the start.2 Since the problem is NP-hard, we don’t expect that Dynamic Programming
will give us a polynomial-time algorithm, but perhaps it can still help.

Specifically, the naive algorithm for the TSP is just to run brute-force over all n! permutations
of the n vertices and to compute the cost of each, choosing the shortest. (We can reduce this to
(n − 1)! permutations by always using the same start vertex, but we still pay Θ(n) to compute
the cost of each permutation, so the overall running time is O(n!).) We’re going to use Dynamic
Programming to reduce this to “only” O(n22n).

Any ideas? As usual, let’s first just worry about computing the cost of the optimal solution, and
then we’ll later be able to add in some hooks to recover the path. Also, let’s work with the shortest-
path metric where we’ve already computed all-pairs-shortest paths (so we can view our graph as
a complete graph with weights between any two vertices representing the shortest path between
them). This is conveninent since it means a solution is really just a permutation. Finally, let’s fix
some start vertex s.

Now, here is one fact we can use. Suppose someone told you what the initial part of the solution
should look like and we want to use this to figure out the rest. Then really all we need to know
about it for the purpose of completing it into a tour is the set of vertices visited in this initial
segment and the last vertex t visited in the set. We don’t really need the whole ordering of the
initial segment. This means there are “only” n2n subproblems (one for every set of vertices and
ending vertex t in the set). Furthermore, we can compute the optimal solution to a subproblem in
time O(n) given solutions to smaller subproblems (just look at all possible vertices t′ in the set we
could have been at right before going to t and take the one that minimizes the cost so far (stored
in our lookup table) plus the distance from t′ to t).

Here is a top-down way of thinking about it: if we were writing a recursive piece of code to solve 
this problem, then we would have a bit-vector saying which vertices have been visited so far and 
a variable saying where we are now, and then we would mark the current location as visited and 
recursively call on all possible (i.e., not yet visited) next places we might go to. Naively this would 
take time Ω(n!). However, by storing the results of our computations we can use the fact that 
there are “only” n2n possible (bit-vector, current-location) pairs, and so only that many different 
recursive calls made. For each recursive call we do O(n) work inside the call, for a total of O(n22n) 
time.

The last thing is we just need to recompute the paths, but this is easy to do from the computations
stored in the same way as we did for shortest paths.

2Note that under this definition, it doesn’t matter which vertex we select as the start. The Traveling Salesman
Path Problem is the same thing but does not require returning to the start. Both problems are NP-hard.
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