
1 

Make sure you enroll in the department’s elective course 



LP 

 Motivating examples 

 Introduction to algorithms 

 Simplex algorithm 

 On a particular example 
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Example 1: profit maximization 

 A company has two types of products: P, Q.  

 Profit:    P --- $1 each;  Q --- $6 each. 

 Constraints: 
 Daily productivity (including both P and Q) is 400  

 Daily demand for P is 200 

 Daily demand for Q is 300 

 Question: How many P and Q should we produce 
to maximize the profit?  

 𝑥1 units of P, 𝑥2 units of Q 
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How to solve? 

 𝑥1 units of P 

𝑥2 units of Q 

 Constraints: 

 Daily productivity (including 

both P and Q) is 400 

 Daily demand for P is 200 

 Daily demand for Q is 300 
 

 Question: how much P 

and Q to produce to 

maximize the profit? 

 Variables:  
 𝑥1 and 𝑥2. 

 

 Constraints:  
 𝑥1 + 𝑥2 ≤ 400 

 𝑥1 ≤ 200 

 𝑥2 ≤ 300 

 𝑥1, 𝑥2 ≥ 0 

 

 Objective:  
 max 𝑥1 + 6𝑥2 
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Illustrative figures  
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Example 2 

 We are managing a network 
with bandwidth as shown by 
numbers on edges. 
 Bandwidth: max units of flows 

 3 connections: AB, BC, CA 
 We get $3, $2, $4 for providing 

them respectively. 

 Two routes for each connection: 
short and long.  

 Question: How to route the 
connections to maximize our 
revenue? 
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Example 2 

 Variables:  

 𝑥𝐴𝐵 , 𝑥𝐴𝐵
′ , 𝑥𝐵𝐶 , 𝑥𝐵𝐶

′ , 𝑥𝐴𝐶 , 𝑥𝐴𝐶
′ . 

 Constraints:  

 𝑥𝐴𝐵 + 𝑥𝐴𝐵
′ + 𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ≤ 12 (edge (𝐴, 𝑎)) 

 𝑥𝐴𝐵 + 𝑥𝐴𝐵
′ + 𝑥𝐵𝐶 + 𝑥𝐵𝐶

′ ≤ 10 (edge (𝐵, 𝑏)) 

 𝑥𝐵𝐶 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ≤ 8 (edge (𝐶, 𝑐)) 

 𝑥𝐴𝐵 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶

′ ≤ 6  (edge (𝑎, 𝑏)) 

 𝑥𝐴𝐶
′ + 𝑥𝐴𝐵

′ + 𝑥𝐵𝐶 ≤ 13 (edge (𝑏, 𝑐)) 

 𝑥𝐴𝐵 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶

′ ≤ 11 (edge (𝑎, 𝑐)) 

 𝑥𝐴𝐵 , 𝑥𝐴𝐵
′ , 𝑥𝐵𝐶 , 𝑥𝐵𝐶

′ , 𝑥𝐴𝐶 , 𝑥𝐴𝐶
′ ≥ 0 

 

 Objective:  
max 3(𝑥𝐴𝐵 + 𝑥𝐴𝐵

′ ) + 2(𝑥𝐵𝐶 + 𝑥𝐵𝐶
′ ) + 4(𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ) 

𝑥𝐴𝐵: amount of flow of the short route 

𝑥𝐴𝐵
′ : amount of flow of the long route 
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LP in general 

 Max/min a linear function of variables 
 Called the objective function 

 All constraints are linear (in)equalities 

 Equational form:  
 max  𝒄𝑇𝒙  max  𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 

  s.t. 𝐴𝒙 = 𝒃  s.t.  𝑎𝑖1𝑥1 + ⋯ + 𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖,  
        ∀𝑖 = 1, … , 𝑚 

       𝒙 ≥ 𝟎   𝑥𝑖 ≥ 0, ∀𝑖 = 1, … , 𝑛 

 𝒙: variables.  

 (𝐴, 𝒃): coefficients in constraints 

Superscript T: transpose of vectors.  

Inequality: entry-wise 
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Transformations between forms 

 Min vs. max: 

 min 𝒄𝑇𝒙 ⇔ max −𝒄𝑇𝒙 

 

 Inequality directions: 

 𝒂𝒊
𝑇𝒙 ≥ 𝑏𝑖 ⇔ −𝒂𝒊

𝑇𝒙 ≤ −𝑏𝑖 

 

 Equalities to inequalities: (𝒂𝒊: row 𝑖 in matrix 𝐴) 

 𝒂𝒊
𝑇𝒙 = 𝑏𝑖 ⇔ 𝒂𝒊

𝑇𝒙 ≥ 𝑏𝑖, and 𝒂𝒊
𝑇𝒙 ≤ 𝑏𝑖. 
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Transformations between forms 

 Inequalities to equalities:  

 𝒂𝒊
𝑇𝒙 ≥ 𝑏𝑖 ⇔ 𝒂𝒊

𝑇𝒙 = 𝑏𝑖 + 𝑠𝑖 , 𝑠𝑖 ≥ 0 

 The newly introduced variable 𝑠𝑖 is called slack variable 

 

 “Unrestricted” to “nonnegative constraint”: 

 𝑥𝑖 unrestricted ⇔ 𝑥𝑖 = 𝑠– 𝑡, 𝑠 ≥ 0, 𝑡 ≥ 0 
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feasibility 

 The constraints of the form 𝑎𝑥1 + 𝑏𝑥2 = 𝑐 is a line 

on the plane of (𝑥1, 𝑥2). 

 𝑎𝑥1 + 𝑏𝑥2 ≤ 𝑐? half space. 
 𝑥1 ≤ 200 

 𝑥2 ≤ 300 

 𝑥1 + 𝑥2 ≤ 400 

 𝑥1, 𝑥2 ≥ 0 

 All constraints are satisfied: the intersection of these 

half spaces. --- feasible region. 

 Feasible region nonempty: LP is feasible 

 Feasible region empty: LP is infeasible 
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Adding the objective function into the 

picture 

 The objective function is 

also linear 

 also a line for a fixed value. 

 Thus the optimization is:  

 try to move the line towards 

the desirable direction s.t. 

the line still intersects with 

the feasible region. 
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Possibilities of solution 

 Infeasible: no solution satisfying  

  𝐴𝒙 = 𝒃 and 𝒙 ≥ 0. 

 Example? Picture? 

 Feasible but unbounded: 𝒄𝑇𝒙 can be 

arbitrarily large. 

 Example? Picture? 

 Feasible and bounded: there is an optimal 

solution. 

 Example? Picture? 
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Three Algorithms for LP 

 Simplex algorithm (Dantzig, 1947) 
 Exponential in worst case 

 Widely used due to the practical efficiency 

 Ellipsoid algorithm (Khachiyan, 1979) 
 First polynomial-time algorithm: 𝑂(𝑛4𝐿)   

 𝐿: number of input bits 

 Little practical impact. 

 Interior point algorithm (Karmarkar, 1984) 

 More efficient in theory: 𝑂(𝑛3.5𝐿) 

 More efficient in practice (compared to Ellipsoid). 

Weakly polynomial time 
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Simplex method: geometric view 

 Start from any vertex of the feasible region. 

 Repeatedly look for a better neighbor and 
move to it. 
 Better: for the objective function  

 Finally we reach a point with  

 no better neighbor 
 In other words, it’s locally optimal. 

 For LP: locally optimal ⇔ globally optimal. 

 Reason: the feasible region is a convex set. 
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Simplex algorithm: Framework 

 A sequence of 

(simplex) tableaus 
 

1. Pick an initial tableau 
 

2. Update the tableau 
 

3. Terminate  

 

 What’s a tableau? 
 

 

1. How? 
 

2. What’s the rule? 
 

3. When to terminate? 

Why optimal? 

 
Complexity? 
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An introductory example 

 Consider the following LP 
max 𝑥1 + 𝑥2

 𝑠. 𝑡. −𝑥1 + 𝑥2 + 𝑥3 = 1
𝑥1 + 𝑥4 = 3
𝑥2 + 𝑥5 = 2
𝑥1, … , 𝑥5 ≥ 0

 

 The equalities are 𝐴𝑥 = 𝑏 , 

𝐴 =
−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

, 𝑏 =
1
3
2

 

 Let 𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2.  

 Rewrite equalities as 

follows. (A tableau.) 
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          

𝑧 = 𝑥1 + 𝑥2      
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An introductory example 

 The equalities are 𝐴𝑥 = 𝑏 , 

𝐴 =
−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

, 𝑏 =
1
3
2

 

 Let 𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2.  

 𝐵 = 3,4,5  is a basis: 

𝐴𝐵 = 𝐼3 is non-singular. 

 𝐴𝐵: columns 𝑗: 𝑗 ∈ 𝐵  of 𝐴. 

 The basis is feasible: 

𝐴𝐵
−1𝑏 =

1
3
2

≥
0
0
0

. 

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          

𝑧 = 𝑥1 + 𝑥2      

 

 Set 𝑥1 = 𝑥2 = 0, and get 

𝑥3 = 1, 𝑥4 = 3, 𝑥5 = 2. 

 And 𝑧 = 0. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 0 1 3 2 0
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An introductory example 

 Now we want to improve 

𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2. 

 Clearly one needs to 

increase 𝑥1 or 𝑥2.  

 Let’s say 𝑥2.  

 we keep 𝑥1 = 0. 

 How much can we 

increase 𝑥2? 

 We need to maintain the 

first three equalities.  

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          

𝑧 = 𝑥1 + 𝑥2      

 

 Set 𝑥1 = 𝑥2 = 0, and get 

𝑥3 = 1, 𝑥4 = 3, 𝑥5 = 2. 

 And 𝑧 = 0. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 0 1 3 2 0
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An introductory example 

 Setting 𝑥1 = 0, the first 

three equalities become  
𝑥3 = 1 − 𝑥2

𝑥4 = 3          
𝑥5 = 2 − 𝑥2

 

 To maintain all 𝑥𝑖 ≥ 0, we 

need 𝑥2 ≤ 1 and 𝑥2 ≤ 2. 

 obtained from the first and 

third equalities above.  

 So 𝑥2 can increase to 1. 

 And 𝑥3 becomes 0. 

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          

𝑧 = 𝑥1 + 𝑥2      

 

 Set 𝑥1 = 0, 𝑥2 = 1, and 

update other variables 

𝑥3 = 0, 𝑥4 = 3, 𝑥5 = 1. 

 And 𝑧 = 1. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 1 0 3 1 1
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An introductory example 

 Now basis becomes 
*2,4,5+ 

 the basis is feasible.  

 Compare to previous 
basis 3,4,5 , one index (3) 
leaves and another (2) 
enters. 

 This process is called a 
pivot step.  

 Rewrite the tableau by 
putting variables in basis 
to the left hand side. 

 

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          

𝑧 = 𝑥1 + 𝑥2      
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An introductory example 

 Now basis becomes 
*2,4,5+ 

 the basis is feasible.  

 Compare to previous 
basis 3,4,5 , one index (3) 
leaves and another (2) 
enters. 

 This process is called a 
pivot step.  

 Rewrite the tableau by 
putting variables in basis 
to the left hand side. 

 

 Rewrite equalities as 

follows.  
𝑥2 = 1 + 𝑥1 − 𝑥3     
𝑥4 = 3 − 𝑥1               
𝑥5 = 1 − 𝑥1 + 𝑥3     

𝑧 = 1 + 2𝑥1 − 𝑥3
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An introductory example 

 Repeat the process. 

 To increase 𝑧, we can 

increase 𝑥1. 

 Increasing 𝑥3 decreases 𝑧 

since the coefficient is 

negative. 

 We keep 𝑥3 = 0, and see 

how much we can 

increase 𝑥1.  

 We can increase 𝑥1 to 1, 

at which point 𝑥5 

becomes 0. 

 Rewrite equalities as 

follows.  
𝑥2 = 1 + 𝑥1 − 𝑥3     
𝑥4 = 3 − 𝑥1               
𝑥5 = 1 − 𝑥1 + 𝑥3     

𝑧 = 1 + 2𝑥1 − 𝑥3

 

 Set 𝑥3 = 0, 𝑥1 = 1, and 

update other variables 

𝑥2 = 2, 𝑥4 = 2, 𝑥5 = 0. 

 And 𝑧 = 3. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
1 2 0 2 0 3
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An introductory example 

 Rewrite equalities as 

follows.  
𝑥2 = 1 + 𝑥1 − 𝑥3     
𝑥4 = 3 − 𝑥1               
𝑥5 = 1 − 𝑥1 + 𝑥3     

𝑧 = 1 + 2𝑥1 − 𝑥3

 

 Set 𝑥3 = 0, 𝑥1 = 1, and 

update other variables 

𝑥2 = 2, 𝑥4 = 2, 𝑥5 = 0. 

 And 𝑧 = 3. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
1 2 0 2 0 3

 

 

 

 

 The new basis is *1,2,4+. 

 Rewrite the tableau. 
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An introductory example 

 The new basis is *1,2,4+. 

 Rewrite the tableau. 

 See which variable 

should increase to make 

𝑧 larger.  

 𝑥3 in this case.   

 See how much we can 

increase 𝑥3. 

 𝑥3 = 2. 

 Update 𝑥𝑖’s and 𝑧. 

 

 Rewrite equalities as 

follows.  
𝑥1 = 1 + 𝑥3 − 𝑥5     
𝑥2 = 2 − 𝑥5               
𝑥4 = 2 − 𝑥3 + 𝑥5     

𝑧 = 3 + 𝑥3 − 2𝑥5

 

 Set 𝑥5 = 0, 𝑥3 = 2, and 

update other variables 

𝑥1 = 3, 𝑥2 = 2, 𝑥4 = 0. 

 And 𝑧 = 5. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
3 2 2 0 0 5

 

 

 

 

25 



An introductory example 

 The new basis is *1,2,3+. 

 Rewrite the tableau. 

 See which variable 

should increase to make 

𝑧 larger.  

 None! 

 Both coefficients for 𝑥4 and 

𝑥5 are negative now. 

 Claim: We’ve found the 

optimal solution and 

optimal value!            ☺ 

 Rewrite equalities as 

follows.  
𝑥1 = 3 − 𝑥4            
𝑥2 = 2 − 𝑥5            
𝑥3 = 2 − 𝑥4 + 𝑥5  

𝑧 = 5 − 𝑥4 − 𝑥5

 

 Set 𝑥5 = 0, 𝑥3 = 2, and 

update other variables 

𝑥1 = 3, 𝑥2 = 2, 𝑥4 = 0. 

 And 𝑧 = 5. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
3 2 2 0 0 5
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