Linear $\mathbb{P}_{\text {rogogiranining }}$

Make sure you enroll in the department's elective course

```
LP
```

- Motivating examples
- Introduction to algorithms
- Simplex algorithm
- On a particular example

Example 1: profit maximization

- A company has two types of products: P, Q.
- Profit: P --- \$1 each; Q --- \$6 each.
- Constraints:
- Daily productivity (including both P and Q) is 400
- Daily demand for P is 200
- Daily demand for Q is 300
- Question: How many P and Q should we produce to maximize the profit?
- x_{1} units of P, x_{2} units of Q

How to solve?

- x_{1} units of P x_{2} units of Q
- Constraints:
- Daily productivity (including both P and Q) is 400
- Daily demand for P is 200
- Daily demand for Q is 300
- Question: how much P and Q to produce to maximize the profit?
- Variables:
- x_{1} and x_{2}.
- Constraints:
- $x_{1}+x_{2} \leq 400$
- $x_{1} \leq 200$
- $x_{2} \leq 300$
- $x_{1}, x_{2} \geq 0$
- Objective: $\max x_{1}+6 x_{2}$

Illustrative figures

Example 2

- We are managing a network with bandwidth as shown by numbers on edges.
- Bandwidth: max units of flows
- 3 connections: AB, BC, CA
- We get \$3, \$2, \$4 for providing them respectively.
- Two routes for each connection: short and long.

- Question: How to route the connections to maximize our revenue?

Example 2

$x_{A B}$: amount of flow of the short route
 $x_{A B}^{\prime}$: amount of flow of the long route

- Variables:
- $x_{A B}, x_{A B}^{\prime}, x_{B C}, x_{B C}^{\prime}, x_{A C}, x_{A C}^{\prime}$.
- Constraints:

$$
\begin{array}{lll}
& x_{A B}+x_{A B}^{\prime}+x_{A C}+x_{A C}^{\prime} \leq 12 & (\text { edge }(A, a)) \\
& x_{A B}+x_{A B}^{\prime}+x_{B C}+x_{B C}^{\prime} \leq 10 & (\text { edge }(B, b)) \\
& x_{B C}+x_{B C}^{\prime}+x_{A C}+x_{A C}^{\prime} \leq 8 & (\text { edge }(C, c)) \\
& x_{A B}+x_{B C}^{\prime}+x_{A C}^{\prime} \leq 6 & (\text { edge }(a, b)) \\
& x_{A C}^{\prime}+x_{A B}^{\prime}+x_{B C} \leq 13 & (\text { edge }(b, c)) \\
& x_{A B}+x_{B C}^{\prime}+x_{A C}^{\prime} \leq 11 & (\text { edge }(a, c)) \\
& x_{A B}, x_{A B}^{\prime}, x_{B C}, x_{B C}^{\prime}, x_{A C}, x_{A C}^{\prime} \geq 0 &
\end{array}
$$

- Objective:
$\max 3\left(x_{A B}+x_{A B}^{\prime}\right)+2\left(x_{B C}+x_{B C}^{\prime}\right)+4\left(x_{A C}+x_{A C}^{\prime}\right)$

LP in general

- Max/min a linear function of variables
- Called the objective function
- All constraints are linear (in)equalities
- Equational form: Superscript ${ }^{T}$: transpose of vectors.

$$
\begin{aligned}
& \max \quad \boldsymbol{c}^{T} \boldsymbol{x} \quad \max \quad c_{1} x_{1}+\cdots+c_{n} x_{n} \\
& \text { s.t. } \quad A \boldsymbol{x}=\boldsymbol{b} \Longleftrightarrow \text { s.t. } \quad a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=b_{i} \text {, } \\
& \forall i=1, \ldots, m \\
& \boldsymbol{x} \geq \mathbf{0} \quad x_{i} \geq 0, \forall i=1, \ldots, n \\
& \text { - } \boldsymbol{x} \text { : variables. } \\
& \text { Inequality: entry-wise } \\
& \text { - }(A, \boldsymbol{b}) \text { : coefficients in constraints }
\end{aligned}
$$

Transformations between forms

- Min vs. max:
- $\min \boldsymbol{c}^{T} \boldsymbol{x} \Leftrightarrow \max -\boldsymbol{c}^{T} \boldsymbol{x}$
- Inequality directions:
- $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \geq b_{i} \Leftrightarrow-\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \leq-b_{i}$
- Equalities to inequalities: ($\boldsymbol{a}_{\boldsymbol{i}}$: row i in matrix A)
- $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x}=b_{i} \Leftrightarrow \boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \geq b_{i}$, and $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \leq b_{i}$.

Transformations between forms

- Inequalities to equalities:
- $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \geq b_{i} \Leftrightarrow \boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x}=b_{i}+s_{i}, s_{i} \geq 0$
- The newly introduced variable s_{i} is called slack variable
- "Unrestricted" to "nonnegative constraint":
- x_{i} unrestricted $\Leftrightarrow x_{i}=s-t, s \geq 0, t \geq 0$

feasibility

- The constraints of the form $a x_{1}+b x_{2}=c$ is a line on the plane of $\left(x_{1}, x_{2}\right)$.
- $a x_{1}+b x_{2} \leq c$? half space.
- $x_{1} \leq 200$
- $x_{2} \leq 300$
- $x_{1}+x_{2} \leq 400$
- $x_{1}, x_{2} \geq 0$

- All constraints are satisfied: the intersection of these half spaces. --- feasible region.
- Feasible region nonempty: LP is feasible
- Feasible region empty: LP is infeasible

Adding the objective function into the picture

- The objective function is also linear
- also a line for a fixed value.
- Thus the optimization is: try to move the line towards the desirable direction s.t. the line still intersects with
 the feasible region.

Possibilities of solution

- Infeasible: no solution satisfying

$$
A x=b \text { and } x \geq 0 .
$$

- Example? Picture?
- Feasible but unbounded: $\boldsymbol{c}^{T} \boldsymbol{x}$ can be arbitrarily large.
- Example? Picture?
- Feasible and bounded: there is an optimal solution.
- Example? Picture?

Three Algorithms for LP

- Simplex algorithm (Dantzig, 1947)
- Exponential in worst case
- Widely used due to the practical efficiency
- Ellipsoid algorithm (Khachiyan, 1979)
- First polynomial-time algorithm: $O\left(n^{4} L\right)$
- L : number of input bits
- Little practical impact.

Weakly polynomial time

- Interior point algorithm (Karmarkar, 1984)
- More efficient in theory: $O\left(n^{3.5} \mathrm{~L}\right)$
- More efficient in practice (compared to Ellipsoid).

Simplex method: geometric view

- Start from any vertex of the feasible region.
- Repeatedly look for a better neighbor and move to it.
- Better: for the objective function
- Finally we reach a point with no better neighbor
- In other words, it's locally optimal.

- For LP: locally optimal \Leftrightarrow globally optimal.
- Reason: the feasible region is a convex set.

Simplex algorithm: Framework

A sequence of (simplex) tableaus

1. Pick an initial tableau
2. Update the tableau
3. Terminate

What's a tableau?

1. How?
2. What's the rule?
3. When to terminate?

Why optimal?

Complexity?

An introductory example

- Consider the following LP max

$$
x_{1}+x_{2}
$$

s.t. $-x_{1}+x_{2}+x_{3}=1$

$$
\begin{gathered}
x_{1}+x_{4}=3 \\
x_{2}+x_{5}=2 \\
x_{1}, \ldots, x_{5} \geq 0
\end{gathered}
$$

- The equalities are $A x=b$,
$A=\left(\begin{array}{ccccc}-1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right), b=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
- Let $z=o b j=x_{1}+x_{2}$.
- Rewrite equalities as follows. (A tableau.)

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

An introductory example

- The equalities are $A x=b$, $A=\left(\begin{array}{ccccc}-1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right), b=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
- Let $z=o b j=x_{1}+x_{2}$.
- $B=\{3,4,5\}$ is a basis: $A_{B}=I_{3}$ is non-singular.
- A_{B} : columns $\{j: j \in B\}$ of A.
- The basis is feasible:

$$
A_{B}^{-1} b=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

Set $x_{1}=x_{2}=0$, and get $x_{3}=1, x_{4}=3, x_{5}=2$.

- And $z=0$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 0 & 0 & 1 & 3 & 2 & 0\end{array}\right)$

An introductory example

- Now we want to improve $z=o b j=x_{1}+x_{2}$.
- Clearly one needs to increase x_{1} or x_{2}.
- Let's say x_{2}.
- we keep $x_{1}=0$.
- How much can we increase x_{2} ?
- We need to maintain the first three equalities.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

- Set $x_{1}=x_{2}=0$, and get $x_{3}=1, x_{4}=3, x_{5}=2$.
- And $z=0$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 0 & 0 & 1 & 3 & 2 & 0\end{array}\right)$

An introductory example

- Setting $x_{1}=0$, the first three equalities become

$$
\begin{aligned}
& x_{3}=1-x_{2} \\
& x_{4}=3 \\
& x_{5}=2-x_{2}
\end{aligned}
$$

- To maintain all $x_{i} \geq 0$, we need $x_{2} \leq 1$ and $x_{2} \leq 2$.
- obtained from the first and third equalities above.
- So x_{2} can increase to 1 .
- And x_{3} becomes 0 .
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

- Set $x_{1}=0, x_{2}=1$, and update other variables
$x_{3}=0, x_{4}=3, x_{5}=1$.
- And $z=1$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 0 & 1 & 0 & 3 & 1 & 1\end{array}\right)$

An introductory example

- Now basis becomes
\{2,4,5\}
- the basis is feasible.
- Compare to previous basis $\{3,4,5\}$, one index (3) leaves and another (2) enters.
- This process is called a pivot step.
- Rewrite the tableau by putting variables in basis to the left hand side.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

An introductory example

- Now basis becomes
\{2,4,5\}
- the basis is feasible.
- Compare to previous basis $\{3,4,5\}$, one index (3) leaves and another (2) enters.
- This process is called a pivot step.
- Rewrite the tableau by putting variables in basis to the left hand side.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

An introductory example

- Repeat the process.
- To increase z, we can increase x_{1}.
- Increasing x_{3} decreases z since the coefficient is negative.
- We keep $x_{3}=0$, and see how much we can increase x_{1}.
- We can increase x_{1} to 1 , at which point x_{5} becomes 0 .
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

- Set $x_{3}=0, x_{1}=1$, and update other variables
$x_{2}=2, x_{4}=2, x_{5}=0$.
- And $z=3$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 1 & 2 & 0 & 2 & 0 & 3\end{array}\right)$

An introductory example

- The new basis is $\{1,2,4\}$.
- Rewrite the tableau.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

- Set $x_{3}=0, x_{1}=1$, and update other variables
$x_{2}=2, x_{4}=2, x_{5}=0$.
- And $z=3$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 1 & 2 & 0 & 2 & 0 & 3\end{array}\right)$

An introductory example

- The new basis is $\{1,2,4\}$.
- Rewrite the tableau.
- See which variable should increase to make z larger.
- x_{3} in this case.
- See how much we can increase x_{3}.
- $x_{3}=2$.
- Update x_{i} 's and z.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{1} & =1+x_{3}-x_{5} \\
x_{2} & =2-x_{5} \\
x_{4} & =2-x_{3}+x_{5} \\
z & =3+x_{3}-2 x_{5}
\end{aligned}
$$

- Set $x_{5}=0, x_{3}=2$, and update other variables
$x_{1}=3, x_{2}=2, x_{4}=0$.
- And $z=5$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 3 & 2 & 2 & 0 & 0 & 5\end{array}\right)$

An introductory example

- The new basis is $\{1,2,3\}$.
- Rewrite the tableau.
- See which variable should increase to make z larger.
- None!
- Both coefficients for x_{4} and x_{5} are negative now.
- Claim: We've found the optimal solution and optimal value!
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{1} & =3-x_{4} \\
x_{2} & =2-x_{5} \\
x_{3} & =2-x_{4}+x_{5} \\
z & =5-x_{4}-x_{5}
\end{aligned}
$$

- Set $x_{5}=0, x_{3}=2$, and update other variables
$x_{1}=3, x_{2}=2, x_{4}=0$.
- And $z=5$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 3 & 2 & 2 & 0 & 0 & 5\end{array}\right)$

