

Make sure you enroll in the department's elective course

- Motivating examples
- Introduction to algorithms
- Simplex algorithm
 - On a particular example

Example 1: profit maximization

- A company has two types of products: P, Q.
- Profit: P --- \$1 each; Q --- \$6 each.
- Constraints:
 - Daily productivity (including both P and Q) is 400
 - Daily demand for P is 200
 - Daily demand for Q is 300
- Question: How many P and Q should we produce to maximize the profit?
 - x_1 units of P, x_2 units of Q

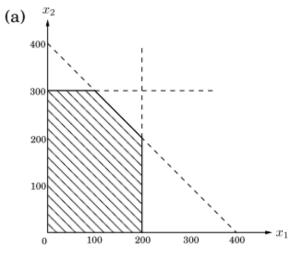
How to solve?

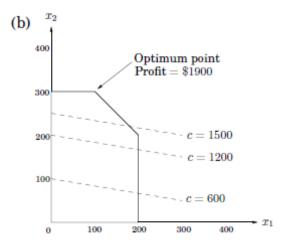
- x₁ units of P
 x₂ units of Q
- Constraints:
 - Daily productivity (including both P and Q) is 400
 - Daily demand for P is 200
 - Daily demand for Q is 300
- Question: how much P and Q to produce to maximize the profit?

Variables:

- x_1 and x_2 .
- Constraints:
 - □ $x_1 + x_2 \le 400$
 - $\square \quad x_1 \le 200$
 - $x_2 \le 300$
 - $\square \quad x_1, x_2 \ge 0$
- Objective: $\max x_1 + 6x_2$

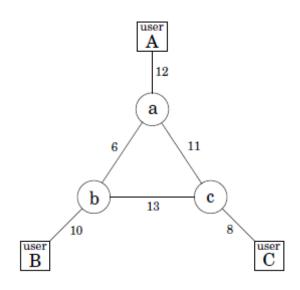
Illustrative figures





Example 2

- We are managing a network with bandwidth as shown by numbers on edges.
 - Bandwidth: max units of flows
- 3 connections: AB, BC, CA
 - We get \$3, \$2, \$4 for providing them respectively.
 - Two routes for each connection: short and long.
- Question: How to route the connections to maximize our revenue?



Example 2

 x_{AB} : amount of flow of the short route x'_{AB} : amount of flow of the long route

(edge(a, b))

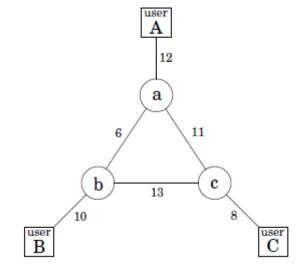
(edge(a,c))

(edge(b,c))

- Variables:
 - $\square \quad x_{AB}, x'_{AB}, x_{BC}, x'_{BC}, x'_{AC}, x'_{AC}.$
- Constraints:
 - □ $x_{AB} + x'_{AB} + x_{AC} + x'_{AC} \le 12$ (edge (*A*, *a*)) □ $x_{AB} + x'_{AB} + x_{BC} + x'_{BC} \le 10$ (edge (*B*, *b*))
 - $x_{BC} + x'_{AC} + x_{AC} + x'_{AC} \le 8 \quad (edge (C, c))$
 - $\quad \quad x_{AB} + x'_{BC} + x'_{AC} \le 6$
 - $\quad \quad x_{AC}' + x_{AB}' + x_{BC} \le 13$

$$\quad \quad x_{AB} + x_{BC}' + x_{AC}' \le 11$$

 $x_{AB}, x'_{AB}, x_{BC}, x'_{BC}, x_{AC}, x'_{AC} \ge 0$

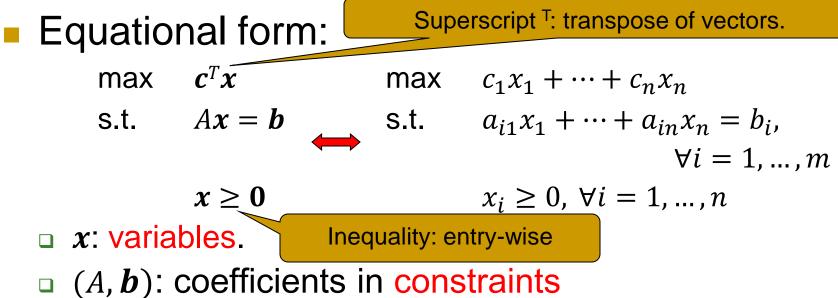


Objective:

 $\max 3(x_{AB} + x'_{AB}) + 2(x_{BC} + x'_{BC}) + 4(x_{AC} + x'_{AC})$

LP in general

- Max/min a linear function of variables
 - Called the objective function
- All constraints are linear (in)equalities



Transformations between forms

- Min vs. max:
 - $\square \min \mathbf{c}^T \mathbf{x} \Leftrightarrow \max \mathbf{c}^T \mathbf{x}$
- Inequality directions: • $a_i^T x \ge b_i \Leftrightarrow -a_i^T x \le -b_i$
- Equalities to inequalities: $(a_i: row i in matrix A)$ • $a_i^T x = b_i \Leftrightarrow a_i^T x \ge b_i$, and $a_i^T x \le b_i$.

Transformations between forms

Inequalities to equalities:

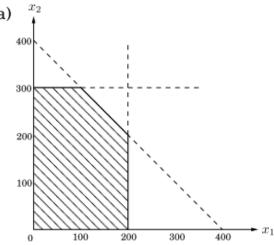
- $\mathbf{a}_{i}^{T} \mathbf{x} \geq b_{i} \Leftrightarrow \mathbf{a}_{i}^{T} \mathbf{x} = b_{i} + s_{i}, s_{i} \geq 0$
 - The newly introduced variable s_i is called slack variable

"Unrestricted" to "nonnegative constraint":

$$x_i \text{ unrestricted} \Leftrightarrow x_i = s - t, s \ge 0, t \ge 0$$

feasibility

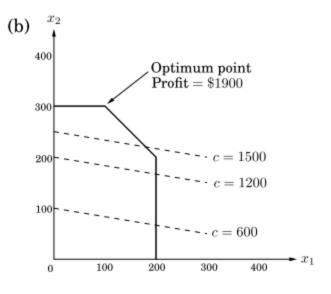
- The constraints of the form $ax_1 + bx_2 = c$ is a line on the plane of (x_1, x_2) . (a) $\frac{x_2}{t}$
- $ax_1 + bx_2 \le c$? half space.
 - $\square \quad x_1 \le 200$
 - $\quad \mathbf{x}_2 \leq 300$
 - $\quad \quad x_1 + x_2 \le 400$
 - $\quad \quad \mathbf{x}_1, \mathbf{x}_2 \ge 0$



- All constraints are satisfied: the intersection of these half spaces. --- feasible region.
 - Feasible region nonempty: LP is feasible
 - Feasible region empty: LP is infeasible

Adding the objective function into the picture

- The objective function is also linear
 - also a line for a fixed value.
- Thus the optimization is: try to move the line towards the desirable direction s.t. the line still intersects with the feasible region.



Possibilities of solution

• Infeasible: no solution satisfying Ax = b and $x \ge 0$.

- Example? Picture?
- Feasible but unbounded: c^Tx can be arbitrarily large.
 - Example? Picture?
- Feasible and bounded: there is an optimal solution.
 - Example? Picture?

Three Algorithms for LP

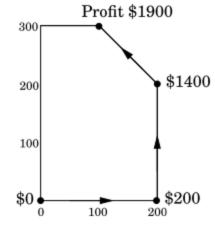
- Simplex algorithm (Dantzig, 1947)
 - Exponential in worst case
 - Widely used due to the practical efficiency
- Ellipsoid algorithm (Khachiyan, 1979)
 - First polynomial-time algorithm: $O(n^4L)$
 - L: number of input bits
 - Little practical impact.

Weakly polynomial time

- Interior point algorithm (Karmarkar, 1984)
 - More efficient in theory: $O(n^{3.5}L)$
 - More efficient in practice (compared to Ellipsoid).

Simplex method: geometric view

- Start from any vertex of the feasible region.
- Repeatedly look for a better neighbor and move to it.
 Profit \$1900
 - Better: for the objective function
- Finally we reach a point with no better neighbor
 - In other words, it's locally optimal.



- For LP: locally optimal \Leftrightarrow globally optimal.
 - Reason: the feasible region is a convex set.

Simplex algorithm: Framework

- A sequence of (simplex) tableaus
- Pick an initial tableau 1
- Update the tableau 2.

Terminate

3

What's a tableau?

- How? 1
- What's the rule? 2
- When to terminate? 3 Why optimal?

Complexity?

• Consider the following LP max $x_1 + x_2$ s.t. $-x_1 + x_2 + x_3 = 1$ $x_1 + x_4 = 3$ $x_2 + x_5 = 2$ $x_1, \dots, x_5 \ge 0$

The equalities are Ax = b, $A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ Let $z = obj = x_1 + x_2$.

Rewrite equalities as follows. (A tableau.) $x_3 = 1 + x_1 - x_2$ $x_4 = 3 - x_1$ $x_5 = 2 - x_2$ $z = x_1 + x_2$

- The equalities are Ax = b, $A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ • Let $z = obj = x_1 + x_2$. • $B = \{3, 4, 5\}$ is a basis: $A_B = I_3$ is non-singular. □ A_B : columns { $j: j \in B$ } of A. The basis is feasible: $A_B^{-1}b = \begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix} \ge \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}.$
- Rewrite equalities as follows.
 - $x_{3} = 1 + x_{1} x_{2}$ $x_{4} = 3 x_{1}$ $x_{5} = 2 x_{2}$ $z = x_{1} + x_{2}$
- Set $x_1 = x_2 = 0$, and get $x_3 = 1, x_4 = 3, x_5 = 2$.

• And
$$z = 0$$
.

 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 0 & 0 & 1 & 3 & 2 & 0 \end{pmatrix}$

- Now we want to improve $z = obj = x_1 + x_2$.
- Clearly one needs to increase x₁ or x₂.
- Let's say x_2 .
 - we keep $x_1 = 0$.
- How much can we increase x₂?
 - We need to maintain the first three equalities.

 Rewrite equalities as follows.

$$x_{3} = 1 + x_{1} - x_{2}$$

$$x_{4} = 3 - x_{1}$$

$$x_{5} = 2 - x_{2}$$

$$z = x_{1} + x_{2}$$

• Set $x_1 = x_2 = 0$, and get $x_3 = 1, x_4 = 3, x_5 = 2$.

• And
$$z = 0$$
.

 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 0 & 0 & 1 & 3 & 2 & 0 \end{pmatrix}$

- Setting $x_1 = 0$, the first three equalities become
 - $x_3 = 1 x_2$ $x_4 = 3$ $x_5 = 2 - x_2$
- To maintain all $x_i \ge 0$, we need $x_2 \le 1$ and $x_2 \le 2$.
 - obtained from the first and third equalities above.
- So x_2 can increase to 1.
- And x₃ becomes 0.

Rewrite equalities as follows.

$$x_{3} = 1 + x_{1} - x_{2}$$

$$x_{4} = 3 - x_{1}$$

$$x_{5} = 2 - x_{2}$$

$$z = x_{1} + x_{2}$$

Set $x_1 = 0$, $x_2 = 1$, and update other variables $x_3 = 0$, $x_4 = 3$, $x_5 = 1$.

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 0 & 1 & 0 & 3 & 1 & 1 \end{pmatrix}$$

- Now basis becomes
 {2,4,5}
 - the basis is feasible.
- Compare to previous basis {3,4,5}, one index (3) leaves and another (2) enters.
- This process is called a pivot step.
- Rewrite the tableau by putting variables in basis to the left hand side.

 Rewrite equalities as follows.

$$x_{3} = 1 + x_{1} - x_{2}$$
$$x_{4} = 3 - x_{1}$$
$$x_{5} = 2 - x_{2}$$

$$z = x_1 + x_2$$

- Now basis becomes
 {2,4,5}
 - the basis is feasible.
- Compare to previous basis {3,4,5}, one index (3) leaves and another (2) enters.
- This process is called a pivot step.
- Rewrite the tableau by putting variables in basis to the left hand side.

- Rewrite equalities as follows.
 - $x_2 = 1 + x_1 x_3$

$$x_4 = 3 - x_1$$

$$x_5 = 1 - x_1 + x_3$$

 $z = 1 + 2x_1 - x_3$

- Repeat the process.
- To increase z, we can increase x₁.
 - Increasing x₃ decreases z since the coefficient is negative.
- We keep $x_3 = 0$, and see how much we can increase x_1 .
- We can increase x₁ to 1, at which point x₅ becomes 0.

- Rewrite equalities as follows.
 - $x_2 = 1 + x_1 x_3$

$$x_4 = 3 - x_1$$

$$x_5 = 1 - x_1 + x_3$$

$$z = 1 + 2x_1 - x_3$$

• Set $x_3 = 0$, $x_1 = 1$, and update other variables $x_2 = 2$, $x_4 = 2$, $x_5 = 0$.

• And
$$z = 3$$

 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 1 & 2 & 0 & 2 & 0 & 3 \end{pmatrix}$

- The new basis is $\{1,2,4\}$.
- Rewrite the tableau.

 Rewrite equalities as follows. $x_2 = 1 + x_1 - x_3$ $x_4 = 3 - x_1$ $x_5 = 1 - x_1 + x_3$ $z = 1 + 2x_1 - x_3$ Set $x_2 = 0$ $x_1 = 1$ and

• Set $x_3 = 0$, $x_1 = 1$, and update other variables

$$x_2 = 2, x_4 = 2, x_5 = 0.$$

• And z = 3.

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 1 & 2 & 0 & 2 & 0 & 3 \end{pmatrix}$$

- The new basis is {1,2,4}.
- Rewrite the tableau.
- See which variable should increase to make z larger.
 - x_3 in this case.
- See how much we can increase x₃.
 - $x_3 = 2.$
- Update x_i 's and z.

- Rewrite equalities as follows.
 - $x_1 = 1 + x_3 x_5$

$$x_{2} = 2 - x_{5}$$

$$x_{4} = 2 - x_{3} + x_{5}$$

$$z = 3 + x_{3} - 2x_{5}$$

• Set $x_5 = 0, x_3 = 2$, and update other variables $x_1 = 3, x_2 = 2, x_4 = 0.$

• And
$$z = 5$$
.

 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 3 & 2 & 2 & 0 & 0 & 5 \end{pmatrix}$

- The new basis is {1,2,3}.
- Rewrite the tableau.
- See which variable should increase to make z larger.
- None!
 - Both coefficients for x_4 and x_5 are negative now.
- Claim: We've found the optimal solution and optimal value!

Rewrite equalities as follows.

$$x_{1} = 3 - x_{4}$$

$$x_{2} = 2 - x_{5}$$

$$x_{3} = 2 - x_{4} + x_{5}$$

$$z = 5 - x_{4} - x_{5}$$

• Set $x_5 = 0, x_3 = 2$, and update other variables $x_1 = 3, x_2 = 2, x_4 = 0.$

• And
$$z = 5$$
.

 $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & z \\ 3 & 2 & 2 & 0 & 0 & 5 \end{pmatrix}$