

Bloom Filter

Approximate membership queries

Lookup problem

• Given a set $S = \{x_1, x_2, x_3, \dots, x_n\}$ on a universe U, want to answer queries of the form:

is
$$y \in S$$
?

- Example: a set of URLs from the universe of all possible URL strings
- Bloom Filter provides an answer in
 - "Constant" time (time to hash)
 - Small amount of space
 - But with some probability of being wrong

Bloom Filters

Start with an m bit array, filled with 0s.

Hash each item x_i in S k times. If $H_i(x_i) = a$, set B[a] = 1.

B 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0

To check if y is in S, check B at $H_i(y)$. All k values must be 1.

Possible to have a false positive; all k values are 1, but y is not in S.

B 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0

(A toy) Example

Number of elements n= 2: 9 and 11

- Size of Bloom Filter m=5
- Number of hash functions k=2
 - $h_1(x) \equiv x \mod 5$
 - $h_2(x) = (2x+3) \mod 5$

	h ₁ (x)	h ₂ (x)
Initialize		
insert 9	4	1
insert 11	1	0

Bloom Filter

0	0	0	0	0
0	1	0	0	1
1	1	0	0	1

4

Membership queries

Queries	h ₁ (x)	h ₂ (x)	Answer
for elem 15	0	3	No, not in Bloom Filter (correct answer)
for elem 16	1	0	Yes, in B (wrong answer: false positive)

Errors

- Assumption: We have good hash functions, look random
- Given *m* bits for filter and *n* elements, choose number *k* of hash functions to minimize false positives:
 - Let $p = \Pr[\text{cell is empty}] = (1 1 / m)^{kn} \approx e^{-kn/m}$
 - Let $f = \Pr[false pos] = (1 p)^k \approx (1 e^{-kn/m})^k$
- As k increases, more chances to find a 0, but more 1's in the array
- Find optimal at $k = (\ln 2)m/n$ by calculus (NOTE prepared by DKatsaros to accompany this lecture)



