
1

Algorithms

Instructor –

 Dimitrios Katsaros

Lecture on String Matching

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
2

String Matching: Brute Force

 Text y of length: n

 Pattern x of length: m

 Find all occurrences of x in y

 The brute force algorithm consists in checking at all

positions in the text between 0 and n-m

 After each attempt it shifts the pattern by exactly one

position to the right

 Time complexity: O(m x n)

 Expected number of character comparisons: 2n

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
3

String Matching: Brute Force code-1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
4

String Matching: Brute Force code-2

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
5

String Matching: Morris-Pratt

 It is possible to improve the length of the shifts and

simultaneously remember some portions of text that

match the pattern

 Consider an attempt at a left position j on y, that is when

the window is positioned on the text factor y[j…j+m-1]

 Assume that the first mismatch occurs between x[i] and

y[i+j] with 0 < i < m

 Then, x[0…i-1] = y[j…i+j-1] = u and a = x[i]  y[j+1]=b

 When shifting it is reasonable to expect that a prefix v of

the pattern matches some suffix of the portion u of text

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
6

String Matching: Morris-Pratt

 The longest such prefix v is called the border of u (it

occurs at both ends of u)

 This introduces the notation:

 let mpNext[i] be the length of the longest border of

 x[0…i-1] for 0 < i  c = x[mpNext[i]] and y[i+j] = b

 mpNext[0] = -1

 The table mpNext can be computed in O(m) space and

time before searching

 Time complexity: O(m x n)

 At most number of character comparisons: 2n - 1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
7

String Matching: Morris-Pratt code

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
8

String Matching: Morris-Pratt execution

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
9

String Matching: Morris-Pratt execution

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
10

String Matching: Knuth-Morris-Pratt

 Consider an attempt at a left position j, i.e., the window is

positioned on the text factor y[j…j+m-1]

 Assume that the first mismatch occurs between x[i] and y[i+j]

with 0 < i < m

 Then, x[0…i-1] = y[j…i+j-1] = u and a = x[i]  y[j+1]=b

 When shifting it is reasonable to expect that a prefix v of the

pattern matches some suffix of the portion u of text

 Moreover, if we want to avoid another immediate

mismatch, the character following the prefix v in the

pattern must be different from a

 The longest such prefix v is called the tagged (or strong)

border of u (it occurs at both ends of u followed by

different characters in x)

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
11

String Matching: Knuth-Morris-Pratt

 This introduces the notation:

 Let kmpNext[i] be the length of the longest border of

 x[0…i-1] followed by a character c different from

 x[i] and -1 if no such tagged border exists, 0 < i  m

 Then after a shift the comparisons can resume between

characters = x[kmpNext[i]] and y[i+j] without missing

any occurrences of x in y and avoiding a backtrack on

the text

 The table kmpNext can be computed in O(m) space and

time before searching

 Time complexity: O(m x n)

 At most number of character comparisons: 2n - 1

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
12

String Matching: Knuth-Morris-Pratt code

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
13

String Matching: Knuth-Morris-Pratt exec

Τμ. ΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας
14

String Matching: Knuth-Morris-Pratt exec

 KMP performed 18 character comparisons

 MP performed 19 character comparisons

