
1

Algorithms

Instructor –

 Dimitrios Katsaros

Lecture on Online Algorithms

2

Basic definitions

 Many online problems can be described as follows:

 An online algorithm A is presented with a request sequence

σ=σ(1), σ(2), ..., σ(m)

 The algorithm A has to serve each request online, i.e.,

without knowledge of future requests

 When serving request σ(t), 1 t m, the algorithm

does not know any request σ(t’) with t’ > t

 Serving requests incurs cost, and the goal is to serve the

entire request sequence so that the total cost is as small as

possible
 This setting can also be regarded as a s request-answer game: an

adversary generates requests, and an online algorithm has to serve them

one at a time

3

The paging problem

4

Paging problem description

 Consider a two-level memory system: a small fast memory and a

large slow memory
 Each request specifies a page in the memory system

 A request is served, iff the corresponding page is in fast memory
 If it is not, then a page fault occurs

 Then, the page is elevated from slow memory

 A paging algorithm (i.e., replacement algorithm) specifies which page to

evict in order to accommodate the requested page

 If the algorithm is online, then the replacement decision must be

made without knowledge of any future requests

 The cost to be minimized is the total number of page faults

incurred on the request sequence

5

Competitive analysis

 An online algorithm A is compared to an optimal offline algorithm

 An optimal offline algorithm knows the entire request in advance

and can server it with minimum cost

 Given a request sequence σ, let CA(σ) denote the cost incurred by

A and let COPT(σ) denote the cost paid by an optimal offline

algorithm OPT

 The algorithm Α is called c-competitive If there exists a constant α

such that

CA(σ) c . COPT(σ) + α

 for all request sequences σ

 We assume that A is a deterministic online algorithm

 The factor c is also called the competitive ratio of A

6

Deterministic paging algorithms

 LRU: on a fault, evict the page in fast memory that was requested

least recently

 FIFO: on a fault, evict the page that has been inn fast memory

longest

 LFU: on a fault, evict the page that has been requested least

frequently

 FF/Belady/MIN/OPT: on a fault, evict the page whose next

request occurs furthest in the future

 In this lecture, we assume k is the number of pages that can

simultaneously reside in fast memory

7

LRU competitiveness

Theorem 1. The algorithm LRU (and FIFO) is c-competitive.

Proof. Consider an arbitrary request sequence σ=σ(1), σ(2), ..., σ(m).

We will prove that CLRU(σ) k . COPT(σ). WLOG we assume that

LRU and OPT initially start with the same fast memory.

We partition σ into phases P(0), P(1), P(2),… such that LRU has at

most k faults on P(0), and exactly k faults on P(i), for every i 1.

Such a partitioning can be obtained easily. We start at the end of σ and

scan the request sequence. Whenever we have seen k faults made by

LRU, we cut off a new phase. In the remainder of this proof we will

show that OPT has at least one page fault during each phase. This

establishes the desired bound.

For P(0) there is nothing to show. Since LRU and OPT start with the

same fast memory, OPT has a page fault on the first request on which

LRU has a fault.

8

LRU competitiveness

Consider an arbitrary phase P(i), i 1. Let σ(ti) be the first request in

P(i) and let σ(ti+1-1) be the last request in P(i). Furthermore, let p be

the page that is requested last in P(i-1).

Lemma 1. P(i) contains requests to k distinct pages that are

different from p.

If the lemma holds, then OPT must have a page fault in P(i). OPT has

page p in its fast memory at the end of P(i-1) and thus can not have all

the other k pages request in P(i) in its fast memory.

It remains to prove the lemma. The lemma clearly holds if the k

requests on which LRU has a fault are to k distinct pages and if these

pages are also different from p. So suppose that LRU faults twice on a

page q in P(i). Assume the LRU has a fault on σ(s1) = q and σ(s2) = q

with ti s1 < s2 ti+1 - 1.

9

LRU competitiveness

Page q is in LRU’s fast memory immediately after σ(s1) is served and

is evicted at some time t with s1 < t < s2. When q is evicted, it is the

least recently requested page in fast memory. Thus, the subsequence

σ(s1), …, σ(st) contains requests to k+1 distinct pages, at least k of

which must be difference from p.

Finally, suppose that within P(i), LRU does not fault twice on page

but on one of the faults, page p is requested.

Let t ti be the first time when p is evicted. Using the same

arguments as above, we obtain that the subsequence σ(ti-1), σ(ti),…,

σ(t) must contain k+1 distinct pages.

10

Theorem 2. Let A be a deterministic online paging algorithm. If

A is c-competitive, the c k.

Proof. Let S={p1,p2,…,pk+1} be a set of k+1 arbitrary pages. We

assume WLOG that A and OPT initially have p1,p2,…,pk in their fast

memories.

Consider the following request sequence: Each request is made to the

page that is not in A’s fast memory.

Online algorithm A has a fault on every request. Suppose that OPT

has a fault on some request σ(t). When serving σ(t), OPT can evict a

page is not requested during the next k-1 requests σ(t+1),… σ(t+k-1).

Thus, on any k consecutive requests, OPT has at most one fault.

This theorem implies that LRU (and FIFO) achieve the best possible competitive

ratio.

11

Comments

 The competitive ratios shown are not very meaningful from a

practical point of view

 Note that the competitive ratio of LRU (and FIFO) become worse

as the size of the fast memory increases!

 In practice, these algorithms perform better the bigger the fast

memory is

 The competitive ratio of LRU (and FIFO) are the same, whereas

in practice LRU performs much better

12

Proof techniques: Potential

functions

13

Potential functions

 Given a request sequence σ=σ(1),σ(2),...σ(m) and a potential

function Φ, the amortized online cost on request σ(t), 1 t m, is

defined as CA(t) + Φ(t) – Φ(t-1)

 Φ(t) is the value of the potential function after request σ(t), i.e.,

Φ(t) – Φ(t-1) is the change in potential that occurs during the

processing of σ(t)

 In an amortized analysis using a potential function we usually

show that for any request σ(t)

CA(t) + Φ(t) – Φ(t-1) c . COPT(t)

 If we can prove this inequality for all t, then it is easy to see that A

is c-competitive. Summing up the previous inequality for all t:

 𝐶𝐴 𝑡 + Φ m −Φ 0 ≤ 𝑐 𝐶𝑂𝑃𝑇(𝑡)

𝑚

𝑡=1

𝑚

𝑡=1

 where Φ(0) is the initial potential

14

Potential functions

 Typically a potential function is chosen such that Φ is always non-

negative and such that the initial potential is 0. Using these two

properties, we obtain from the previous inequality the desired

property: CA(σ) c . COPT(σ)

 The difficult part in a competitive analysis using a potential

function is to construct Φ and show the inequality for all requests

15

LRU k-competitiveness using potential

functions

 Let σ=σ(1), ..., σ(m) be an arbitrary request sequence

 At any time let SLRU be the set of pages contained in LRU’s fast

memory

 Let SOPT be the set of pages contained in OPT’s fast memory

 Set S= SLRU \ SOPT

 Assign integer weights from the range [1…k] to the pages in SLRU

such that for any two pages p,q ϵ SLRU, w(p)<w(q) iff the last

request to p occurs earlier than the last request to q

 Let

Φ = 𝑤(𝑝)

𝑝ϵ𝑆

 Consider an arbitrary request σ(t)=p and assume WLOG that OPT

serves the request first and that LRU serves second

16

LRU k-competitiveness using potential

functions

 If OPT does not have a page fault on σ(t), then its cost is 0 and the

potential does not change

 If OPT does have a page fault on σ(t), then its cost is 1

 OPT might evict a page that is in LRU’s fast memory, in which

case the potential increases
 However, the potential can increase by at most k

 Next suppose that LRU does not have a fault on σ(t). Then, its

cost is 0, and the potential can not change

 If LRU has a page fault, its cost on the request is 1

 We show that the potential decreases by at least 1

 Immediately before LRU serves σ(t), page p is only in OPT’s fast

memory

 By symmetry, there must be a page that is only in LRU’s fast

memory, i.e., there must exists a page q ϵ S

17

LRU k-competitiveness using potential

functions

 If q is evicted by LRU during the operation, then the potential

decreases by w(q) 1

 Otherwise, since p is loaded into fast memory, the weight of q

must decrease by 1, and thus the potential must decrease by 1

 In symmetry we have shown:

 Every time OPT has a fault, the potential increases by at most k

 Every time LRU has a fault, the potential decreases by at least 1

 Therefore, we conclude that the following must hold:

CLRU(t) + Φ(t) – Φ(t-1) k . COPT(t)

