
1 

Algorithms 

 

 
 

Instructor – 

        Dimitrios Katsaros 
 

Lecture on Online Algorithms 



2  

Basic definitions 

 Many online problems can be described as follows: 

 An online algorithm A is presented with a request sequence 

σ=σ(1), σ(2), ..., σ(m) 

 The algorithm A has to serve each request online, i.e., 

without knowledge of future requests 

 When serving request σ(t), 1  t  m, the algorithm 

does not know any request σ(t’) with t’ > t 

 Serving requests incurs cost, and the goal is to serve the 

entire request sequence so that the total cost is as small as 

possible 
 This setting can also be regarded as a s request-answer game: an 

adversary generates requests, and an online algorithm has to serve them 

one at a time 
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The paging problem 
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Paging problem description 

 Consider a two-level memory system: a small fast memory and a 

large slow memory 
 Each request specifies a page in the memory system 

 A request is served, iff the corresponding page is in fast memory 
 If it is not, then a page fault occurs 

 Then, the page is elevated from slow memory 

 A paging algorithm (i.e., replacement algorithm) specifies which page to 

evict in order to accommodate the requested page 

 If the algorithm is online, then the replacement decision must be 

made without knowledge of any future requests 

 The cost to be minimized is the total number of page faults 

incurred on the request sequence 
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Competitive analysis 

 An online algorithm A is compared to an optimal offline algorithm 

 An optimal offline algorithm knows the entire request in advance 

and can server it with minimum cost 

 Given a request sequence σ, let CA(σ) denote the cost incurred by 

A and let COPT(σ) denote the cost paid by an optimal offline 

algorithm OPT 

 The algorithm Α is called c-competitive If there exists a constant α 

such that 

CA(σ)   c . COPT(σ) + α 

      for all request sequences σ 

 We assume that A is a deterministic online algorithm 

 The factor c is also called the competitive ratio of A 
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Deterministic paging algorithms 

 LRU: on a fault, evict the page in fast memory that was requested 

least recently 

 FIFO: on a fault, evict the page that has been inn fast memory 

longest 

 LFU: on a fault, evict the page that has been requested least 

frequently 

 FF/Belady/MIN/OPT: on a fault, evict the page whose next 

request occurs  furthest in the future 

 

 In this lecture, we assume k is the number of pages that can 

simultaneously reside in fast memory 
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LRU competitiveness 

Theorem 1. The algorithm LRU (and FIFO) is c-competitive. 

Proof. Consider an arbitrary request sequence σ=σ(1), σ(2), ..., σ(m). 

We will prove that CLRU(σ)   k . COPT(σ). WLOG we assume that 

LRU and OPT initially start with the same fast memory. 

We partition σ into phases P(0), P(1), P(2),… such that LRU has at 

most k faults on P(0), and exactly k faults on P(i), for every i  1. 

Such a partitioning can be obtained easily. We start at the end of σ and 

scan the request sequence. Whenever we have seen k faults made by 

LRU, we cut off a new phase. In the remainder of this proof we will 

show that OPT has at least one page fault during each phase. This 

establishes the desired bound. 

For P(0) there is nothing to show. Since LRU and OPT start with the 

same fast memory, OPT has a page fault on the first request on which 

LRU has a fault. 



8  

LRU competitiveness 

Consider an arbitrary phase P(i), i  1. Let σ(ti) be the first request in 

P(i) and let σ(ti+1-1) be the last request in P(i). Furthermore, let p be 

the page that is requested last in P(i-1). 

Lemma 1. P(i) contains requests to k distinct pages that are 

different from p. 

If the lemma holds, then OPT must have a page fault in P(i). OPT has 

page p in its fast memory at the end of P(i-1) and thus can not have all 

the other k pages request in P(i) in its fast memory. 

It remains to prove the lemma. The lemma clearly holds if the k 

requests on which LRU has a fault are to k distinct pages and if these 

pages are also different from p. So suppose that LRU faults twice on a 

page q in P(i). Assume the LRU has a fault on σ(s1) = q and σ(s2) = q 

with ti  s1 < s2  ti+1 - 1.  
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LRU competitiveness 

Page q is in LRU’s fast memory immediately after σ(s1) is served and 

is evicted at some time t with s1 < t < s2. When q is evicted, it is the 

least recently requested page in fast memory. Thus, the subsequence 

σ(s1), …, σ(st) contains requests to k+1 distinct pages, at least k of 

which must be difference from p. 

Finally, suppose that within P(i), LRU does not fault twice on page 

but on one of the faults, page p is requested.  

Let t  ti be the first time when p is evicted. Using the same 

arguments as above, we obtain that the subsequence σ(ti-1), σ(ti),…, 

σ(t) must contain k+1 distinct pages.                                                    
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Theorem 2. Let A be a deterministic online paging algorithm. If 

A is c-competitive, the c  k. 

Proof. Let S={p1,p2,…,pk+1} be a set of k+1 arbitrary pages. We 

assume WLOG that A and OPT initially have p1,p2,…,pk in their fast 

memories. 

Consider the following request sequence: Each request is made to the 

page that is not in A’s fast memory. 

Online algorithm A has a fault on every request. Suppose that OPT 

has a fault on some request σ(t). When serving σ(t), OPT can evict a 

page is not requested during the next k-1 requests σ(t+1),… σ(t+k-1). 

Thus, on any k consecutive requests, OPT has at most one fault.        

 
This theorem implies that LRU (and FIFO) achieve the best possible competitive 

ratio. 
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Comments 

 The competitive ratios shown are not very meaningful from a 

practical point of view 

 Note that the competitive ratio of LRU (and FIFO) become worse 

as the size of the fast memory increases! 

 In practice, these algorithms perform better the bigger the fast 

memory is 

 The competitive ratio of LRU (and FIFO) are the same, whereas 

in practice LRU performs much better 
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Proof techniques: Potential 

functions 
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Potential functions 

 Given a request sequence σ=σ(1),σ(2),...σ(m) and a potential 

function Φ, the amortized online cost on request σ(t), 1  t  m, is 

defined as CA(t) + Φ(t) – Φ(t-1) 

 Φ(t) is the value of the potential function after request σ(t), i.e., 

Φ(t) – Φ(t-1) is the change in potential that occurs during the 

processing of σ(t) 

 In an amortized analysis using a potential function we usually 

show that for any request σ(t)  

CA(t) + Φ(t) – Φ(t-1)  c . COPT(t) 

 If we can prove this inequality for all t, then it is easy to see that A 

is c-competitive. Summing up the previous inequality for all t: 

 𝐶𝐴 𝑡 + Φ m −Φ 0 ≤ 𝑐 𝐶𝑂𝑃𝑇(𝑡)

𝑚

𝑡=1

𝑚

𝑡=1

 

      where Φ(0) is the initial potential 
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Potential functions 

 Typically a potential function is chosen such that Φ is always non-

negative and such that the initial potential is 0. Using these two 

properties, we obtain from the previous inequality the desired 

property: CA(σ)   c . COPT(σ) 

 The difficult part in a competitive analysis using a potential 

function is to construct Φ and show the inequality for all requests 
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LRU k-competitiveness using potential 

functions 

 Let σ=σ(1), ..., σ(m) be an arbitrary request sequence 

 At any time let SLRU be the set of pages contained in LRU’s fast 

memory 

 Let SOPT be the set of pages contained in OPT’s fast memory 

 Set S= SLRU \ SOPT 

 Assign integer weights from the range [1…k] to the pages in SLRU 

such that for any two pages p,q ϵ SLRU, w(p)<w(q) iff the last 

request to p occurs earlier than the last request to q 

 Let 

Φ = 𝑤(𝑝)

𝑝ϵ𝑆

 

 Consider an arbitrary request σ(t)=p and assume WLOG that OPT 

serves the request first and that LRU serves second 
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LRU k-competitiveness using potential 

functions 

 If OPT does not have a page fault on σ(t), then its cost is 0 and the 

potential does not change 

 If OPT does have a page fault on σ(t), then its cost is 1 

 OPT might evict a page that is in LRU’s fast memory, in which 

case the potential increases 
 However, the potential can increase by at most k 

 Next suppose that LRU does not have a fault on σ(t). Then, its 

cost is 0, and the potential can not change 

 If LRU has a page fault, its cost on the request is 1  

 We show that the potential decreases by at least 1 

 Immediately before LRU serves σ(t), page p is only in OPT’s fast 

memory 

 By symmetry, there must be a page that is only in LRU’s fast 

memory, i.e., there must exists a page q ϵ S 
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LRU k-competitiveness using potential 

functions 

 If q is evicted by LRU during the operation, then the potential 

decreases by w(q)  1 

 Otherwise, since p is loaded into fast memory, the weight of q 

must decrease by 1, and thus the potential must decrease by 1 

 

 In symmetry we have shown:  

 Every time OPT has a fault, the potential increases by at most k 

 Every time LRU has a fault, the potential decreases by at least 1 

 Therefore, we conclude that the following must hold: 

CLRU(t) + Φ(t) – Φ(t-1)  k . COPT(t) 


