Computational Geometry

Convex Hull

Convex Hull

Siven a set of n points, find the minimal convex polygon that contains all the points

Convex Hull Representation

- The convex hull is represented by all its points sorted in CW/CCW order
- Special case: Three collinear points

Naïve Convex Hull Algorithm

- Iterate over all possible line segments
- A line segment is part of the convex hull if all other points are to its left
- Emit all segments in a CCW order

> Running time $O(n^3)$

Naïve Convex Hull Algorithm

Graham Scan Pseudo Code

- Select the point with minimum y
- > Sort all points in CCW order $\{p_0, p_1, ..., p_n\}$
- $S = \{p_0, p_1\}$
- \rightarrow For i=2 to n
 - While $|S| > 2 \&\& p_i$ is to the right of S_{-2}, S_{-1}
 - > S.pop
 - $\gt S.push(p_i)$