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Introduction to Algorithms 
6.046J/18.401J 

Prof. Erik D. Demaine 

LECTURE 3 
Divide and Conquer 
• Binary search
• Matrix multiplication
• Strassen’s algorithm
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The divide-and-conquer 
design paradigm 

1. Divide the problem (instance) 
into subproblems. 

2. Conquer the subproblems by 
solving them recursively. 

3. Combine subproblem solutions. 
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Merge sort 

1. Divide: Trivial. 
2. Conquer: Recursively sort 2 subarrays. 
3. Combine: Linear-time merge. 
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Merge sort 

1. Divide: Trivial. 
2. Conquer: Recursively sort 2 subarrays. 
3. Combine: Linear-time merge. 

T(n) = 2 T(n/2) + Θ(n) 

# subproblems 
subproblem size 

work dividing 
and combining 
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Master theorem (reprise) 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition 

⇒ T(n) = Θ( f (n)) . 
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Master theorem (reprise) 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition 

⇒ T(n) = Θ( f (n)) . 
Merge sort: a = 2, b = 2  ⇒  nlogba = nlog22 = n 

 ⇒  CASE 2 (k = 0)  ⇒  T(n) = Θ(n lg n) .  
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Binary search 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Example: Find 9 
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Binary search 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 

Example: Find 9 

3 5 7 8 9 12 15 
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Recurrence for binary search 

T(n) = 1 T(n/2) + Θ(1) 

# subproblems 
subproblem size 

work dividing 
and combining 
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Recurrence for binary search 

T(n) = 1 T(n/2) + Θ(1) 

# subproblems 
subproblem size 

work dividing 
and combining 

nlogba = nlog21 = n0 = 1 ⇒  CASE 2 (k = 0) 
⇒  T(n) = Θ(lg n) .  
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Matrix multiplication 
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Input: A = [aij], B = [bij]. 
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n. 



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28 

Standard algorithm 

for i ← 1 to n 
 do for j ← 1 to n 
     do cij ← 0 
    for k ← 1 to n 
      do cij ← cij + aik⋅ bkj 
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Standard algorithm 

for i ← 1 to n 
 do for j ← 1 to n 
     do cij ← 0 
    for k ← 1 to n 
      do cij ← cij + aik⋅ bkj 

Running time = Θ(n3) 
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Divide-and-conquer algorithm 

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices: 
IDEA: 






⋅
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fe

dc
ba
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sr

C = A ⋅ B 
r = ae + bg 
s = af + bh 
t = ce + dg 
u = cf + dh 

8 mults of (n/2)×(n/2) submatrices  
4 adds of (n/2)×(n/2) submatrices  
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Divide-and-conquer algorithm 

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices: 
IDEA: 






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B 
r = ae + bg 
s = af + bh 
t = ce + dh 
u = cf + dg 

8 mults of (n/2)×(n/2) submatrices  
4 adds of (n/2)×(n/2) submatrices  ^ 

recursive 
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Analysis of D&C algorithm 

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Analysis of D&C algorithm 

nlogba = nlog28 = n3  ⇒  CASE 1  ⇒  T(n) = Θ(n3).  

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Analysis of D&C algorithm 

nlogba = nlog28 = n3  ⇒  CASE 1  ⇒  T(n) = Θ(n3).  

No better than the ordinary algorithm. 

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
s = P1 + P2 
t = P3 + P4 
u = P5 + P1 – P3 – P7 
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7 mults, 18 adds/subs. 
Note: No reliance on 
commutativity of mult! 

Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
s = P1 + P2 
t = P3 + P4 
u = P5 + P1 – P3 – P7 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
 = (a + d) (e + h)  
  + d (g – e) – (a + b) h 
  + (b – d) (g + h) 
 = ae + ah + de + dh  
  + dg –de – ah – bh 
  + bg + bh – dg – dh 
 = ae + bg 
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Strassen’s algorithm 
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – . 

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively. 

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices. 
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Strassen’s algorithm 
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – . 

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively. 

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices. 

T(n) = 7 T(n/2) + Θ(n2) 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so. 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 

Best to date (of theoretical interest only): Θ(n2.376). 

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so. 
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Conclusion 

• Divide and conquer is just one of several 
powerful techniques for algorithm design.  

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math). 

• The divide-and-conquer strategy often leads 
to efficient algorithms. 
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Prof. Charles E. Leiserson 

LECTURE 4  
Quicksort 
• Divide and conquer 
• Partitioning 
• Worst-case analysis 
• Intuition  
• Randomized quicksort 
• Analysis 

Introduction to Algorithms 
6.046J/18.401J 
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Quicksort 

• Proposed by C.A.R. Hoare in 1962. 
• Divide-and-conquer algorithm. 
• Sorts “in place” (like insertion sort, but not 

like merge sort). 
• Very practical (with tuning). 
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Divide and conquer 
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays 

around a pivot x such that elements in lower 
subarray ≤ x ≤ elements in upper subarray. 
 

2. Conquer: Recursively sort the two subarrays. 
3. Combine: Trivial. 

≤ x x ≥ x 

Key: Linear-time partitioning subroutine. 
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x 

Running time 
= O(n) for n 
elements. 

Partitioning subroutine 
PARTITION(A, p, q) ⊳ A[ p . . q]  

x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q 

do if A[ j] ≤ x 
then i ← i + 1 
 exchange A[i] ↔ A[ j] 

exchange A[ p] ↔ A[i] 
return i 

≤ x ≥ x ? 
p i q j 

Invariant: 
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Example of partitioning 

i j 
6 10 13 5 8 3 2 11 
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Example of partitioning 
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Example of partitioning 

6 10 13 5 8 3 2 11 

i j 
6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.13 

Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 
6 5 3 2 8 13 10 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 
6 5 3 2 8 13 10 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

6 5 3 2 8 13 10 11 

i 
2 5 3 6 8 13 10 11 
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Pseudocode for quicksort 
QUICKSORT(A, p, r) 

if p < r 
then q ← PARTITION(A, p, r) 

QUICKSORT(A, p, q–1) 
QUICKSORT(A, q+1, r) 

Initial call: QUICKSORT(A, 1, n) 
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Analysis of quicksort 

• Assume all input elements are distinct. 
• In practice, there are better partitioning 

algorithms for when duplicate input 
elements may exist. 

• Let T(n) = worst-case running time on 
an array of n elements. 
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Worst-case of quicksort 

• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements. 

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=
Θ+−+Θ=
Θ+−+=

(arithmetic series) 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(n) 
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cn 
T(0) T(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) T(n–2) 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 



( )2

1
nk

n

k
Θ=








Θ ∑

=
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cn 
Θ(1) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

Θ(1) c(n–2) 

Θ(1) 

Θ(1) 



( )2

1
nk

n

k
Θ=








Θ ∑

=

T(n) = Θ(n) + Θ(n2) 
 = Θ(n2) 

h = n 
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Best-case analysis 
(For intuition only!) 

If we’re lucky, PARTITION splits the array evenly: 
T(n) = 2T(n/2) + Θ(n) 
 = Θ(n lg n) (same as merge sort) 

What if the split is always 10
9

10
1 : ? 

( ) ( ) )()( 10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence? 
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Analysis of “almost-best” case 
)(nT
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Analysis of “almost-best” case 
cn

( )nT 10
1 ( )nT 10

9
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Analysis of “almost-best” case 
cn

cn10
1 cn10

9

( )nT 100
1 ( )nT 100

9 ( )nT 100
9 ( )nT 100

81
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Analysis of “almost-best” case 
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1) 

Θ(1) 

log10/9n 

cn

cn

cn

…
 

O(n) leaves 
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log10
n 

Analysis of “almost-best” case 
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1) 

Θ(1) 

log10/9n 

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n) 

…
 

cn log10n ≤ 

O(n) leaves 

Θ(n lg n) 
Lucky! 
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More intuition 
Suppose we alternate lucky, unlucky, 
lucky, unlucky, lucky, …. 

L(n) = 2U(n/2) + Θ(n) lucky 
U(n) = L(n – 1) + Θ(n) unlucky 

Solving: 
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n) 
 = 2L(n/2 – 1) + Θ(n) 
 = Θ(n lg n) 

How can we make sure we are usually lucky? 
Lucky! 
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Randomized quicksort 
IDEA: Partition around a random element. 
• Running time is independent of the input 

order. 
• No assumptions need to be made about 

the input distribution. 
• No specific input elicits the worst-case 

behavior. 
• The worst case is determined only by the 

output of a random-number generator. 
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Randomized quicksort 
analysis 

Let T(n) = the random variable for the running 
time of randomized quicksort on an input of size 
n, assuming random numbers are independent. 
For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk =  1 if PARTITION generates a k : n–k–1 split, 
0 otherwise. 

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are 
equally likely, assuming elements are distinct. 
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Analysis (continued) 

T(n) =  

T(0) + T(n–1) + Θ(n) if 0 : n–1 split, 
T(1) + T(n–2) + Θ(n) if 1 : n–2 split, 
  
T(n–1) + T(0) + Θ(n) if n–1 : 0 split, 

( )∑
−

=

Θ+−−+=
1

0
)()1()(

n

k
k nknTkTX
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Calculating expectation 
( )








Θ+−−+= ∑

−

=

1
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Take expectations of both sides. 
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Calculating expectation 
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Linearity of expectation. 
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Calculating expectation 
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Independence of Xk from other random 
choices. 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.40 

Calculating expectation 
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Linearity of expectation; E[Xk] = 1/n . 
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Calculating expectation 
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Summations have 
identical terms. 
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Hairy recurrence 
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(The k = 0, 1 terms can be absorbed in the Θ(n).) 

Prove: E[T(n)] ≤ a n lg n for constant a > 0 . 

Use fact:  2
1
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−≤ (exercise). 

• Choose a large enough so that a n lg n 
dominates E[T(n)] for sufficiently small n ≥ 2. 
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Substitution method 
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Substitute inductive hypothesis. 
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Substitution method 
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Use fact. 
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Substitution method 
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Express as desired – residual. 
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Substitution method 
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if a is chosen large enough so that 
an/4 dominates the Θ(n). 

, 
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Quicksort in practice 

• Quicksort is a great general-purpose 
sorting algorithm. 

• Quicksort is typically over twice as fast 
as merge sort. 

• Quicksort can benefit substantially from 
code tuning.   

• Quicksort behaves well even with 
caching and virtual memory. 
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