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Introduction to Algorithms 
6.046J/18.401J 

Prof. Erik D. Demaine 

LECTURE 3 
Divide and Conquer 
• Binary search
• Matrix multiplication
• Strassen’s algorithm
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The divide-and-conquer 
design paradigm 

1. Divide the problem (instance) 
into subproblems. 

2. Conquer the subproblems by 
solving them recursively. 

3. Combine subproblem solutions. 
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Merge sort 

1. Divide: Trivial. 
2. Conquer: Recursively sort 2 subarrays. 
3. Combine: Linear-time merge. 
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Merge sort 

1. Divide: Trivial. 
2. Conquer: Recursively sort 2 subarrays. 
3. Combine: Linear-time merge. 

T(n) = 2 T(n/2) + Θ(n) 

# subproblems 
subproblem size 

work dividing 
and combining 
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Master theorem (reprise) 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition 

⇒ T(n) = Θ( f (n)) . 
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Master theorem (reprise) 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition 

⇒ T(n) = Θ( f (n)) . 
Merge sort: a = 2, b = 2  ⇒  nlogba = nlog22 = n 

 ⇒  CASE 2 (k = 0)  ⇒  T(n) = Θ(n lg n) .  
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Binary search 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 

Example: Find 9 

3 5 7 8 9 12 15 
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Recurrence for binary search 

T(n) = 1 T(n/2) + Θ(1) 

# subproblems 
subproblem size 

work dividing 
and combining 
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Recurrence for binary search 

T(n) = 1 T(n/2) + Θ(1) 

# subproblems 
subproblem size 

work dividing 
and combining 

nlogba = nlog21 = n0 = 1 ⇒  CASE 2 (k = 0) 
⇒  T(n) = Θ(lg n) .  
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Matrix multiplication 
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Input: A = [aij], B = [bij]. 
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n. 



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28 

Standard algorithm 

for i ← 1 to n 
 do for j ← 1 to n 
     do cij ← 0 
    for k ← 1 to n 
      do cij ← cij + aik⋅ bkj 
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Standard algorithm 

for i ← 1 to n 
 do for j ← 1 to n 
     do cij ← 0 
    for k ← 1 to n 
      do cij ← cij + aik⋅ bkj 

Running time = Θ(n3) 
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Divide-and-conquer algorithm 

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices: 
IDEA: 






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B 
r = ae + bg 
s = af + bh 
t = ce + dg 
u = cf + dh 

8 mults of (n/2)×(n/2) submatrices  
4 adds of (n/2)×(n/2) submatrices  
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Divide-and-conquer algorithm 

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices: 
IDEA: 






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B 
r = ae + bg 
s = af + bh 
t = ce + dh 
u = cf + dg 

8 mults of (n/2)×(n/2) submatrices  
4 adds of (n/2)×(n/2) submatrices  ^ 

recursive 



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32 

Analysis of D&C algorithm 

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Analysis of D&C algorithm 

nlogba = nlog28 = n3  ⇒  CASE 1  ⇒  T(n) = Θ(n3).  

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Analysis of D&C algorithm 

nlogba = nlog28 = n3  ⇒  CASE 1  ⇒  T(n) = Θ(n3).  

No better than the ordinary algorithm. 

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
s = P1 + P2 
t = P3 + P4 
u = P5 + P1 – P3 – P7 
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7 mults, 18 adds/subs. 
Note: No reliance on 
commutativity of mult! 

Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
s = P1 + P2 
t = P3 + P4 
u = P5 + P1 – P3 – P7 



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39 

Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
 = (a + d) (e + h)  
  + d (g – e) – (a + b) h 
  + (b – d) (g + h) 
 = ae + ah + de + dh  
  + dg –de – ah – bh 
  + bg + bh – dg – dh 
 = ae + bg 
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Strassen’s algorithm 
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – . 

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively. 

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices. 
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Strassen’s algorithm 
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – . 

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively. 

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices. 

T(n) = 7 T(n/2) + Θ(n2) 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so. 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 

Best to date (of theoretical interest only): Θ(n2.376). 

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so. 
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Conclusion 

• Divide and conquer is just one of several 
powerful techniques for algorithm design.  

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math). 

• The divide-and-conquer strategy often leads 
to efficient algorithms. 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.1 

Prof. Charles E. Leiserson 

LECTURE 4  
Quicksort 
• Divide and conquer 
• Partitioning 
• Worst-case analysis 
• Intuition  
• Randomized quicksort 
• Analysis 

Introduction to Algorithms 
6.046J/18.401J 
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Quicksort 

• Proposed by C.A.R. Hoare in 1962. 
• Divide-and-conquer algorithm. 
• Sorts “in place” (like insertion sort, but not 

like merge sort). 
• Very practical (with tuning). 
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Divide and conquer 
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays 

around a pivot x such that elements in lower 
subarray ≤ x ≤ elements in upper subarray. 
 

2. Conquer: Recursively sort the two subarrays. 
3. Combine: Trivial. 

≤ x x ≥ x 

Key: Linear-time partitioning subroutine. 
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x 

Running time 
= O(n) for n 
elements. 

Partitioning subroutine 
PARTITION(A, p, q) ⊳ A[ p . . q]  

x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q 

do if A[ j] ≤ x 
then i ← i + 1 
 exchange A[i] ↔ A[ j] 

exchange A[ p] ↔ A[i] 
return i 

≤ x ≥ x ? 
p i q j 

Invariant: 
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Example of partitioning 

i j 
6 10 13 5 8 3 2 11 
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Example of partitioning 
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Example of partitioning 

6 10 13 5 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 
6 5 3 2 8 13 10 11 
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Example of partitioning 
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Example of partitioning 

6 10 13 5 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

6 5 3 2 8 13 10 11 

i 
2 5 3 6 8 13 10 11 
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Pseudocode for quicksort 
QUICKSORT(A, p, r) 

if p < r 
then q ← PARTITION(A, p, r) 

QUICKSORT(A, p, q–1) 
QUICKSORT(A, q+1, r) 

Initial call: QUICKSORT(A, 1, n) 
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Analysis of quicksort 

• Assume all input elements are distinct. 
• In practice, there are better partitioning 

algorithms for when duplicate input 
elements may exist. 

• Let T(n) = worst-case running time on 
an array of n elements. 
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Worst-case of quicksort 

• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements. 

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=
Θ+−+Θ=
Θ+−+=

(arithmetic series) 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(n) 
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cn 
T(0) T(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) T(n–2) 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 


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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 



( )2

1
nk

n

k
Θ=








Θ ∑

=
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cn 
Θ(1) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

Θ(1) c(n–2) 

Θ(1) 

Θ(1) 



( )2

1
nk

n

k
Θ=








Θ ∑

=

T(n) = Θ(n) + Θ(n2) 
 = Θ(n2) 

h = n 
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Best-case analysis 
(For intuition only!) 

If we’re lucky, PARTITION splits the array evenly: 
T(n) = 2T(n/2) + Θ(n) 
 = Θ(n lg n) (same as merge sort) 

What if the split is always 10
9

10
1 : ? 

( ) ( ) )()( 10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence? 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.28 

Analysis of “almost-best” case 
)(nT



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.29 

Analysis of “almost-best” case 
cn

( )nT 10
1 ( )nT 10

9
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Analysis of “almost-best” case 
cn

cn10
1 cn10

9

( )nT 100
1 ( )nT 100

9 ( )nT 100
9 ( )nT 100

81
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Analysis of “almost-best” case 
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1) 

Θ(1) 

log10/9n 

cn

cn

cn

…
 

O(n) leaves 
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log10
n 

Analysis of “almost-best” case 
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1) 

Θ(1) 

log10/9n 

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n) 

…
 

cn log10n ≤ 

O(n) leaves 

Θ(n lg n) 
Lucky! 
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More intuition 
Suppose we alternate lucky, unlucky, 
lucky, unlucky, lucky, …. 

L(n) = 2U(n/2) + Θ(n) lucky 
U(n) = L(n – 1) + Θ(n) unlucky 

Solving: 
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n) 
 = 2L(n/2 – 1) + Θ(n) 
 = Θ(n lg n) 

How can we make sure we are usually lucky? 
Lucky! 
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Randomized quicksort 
IDEA: Partition around a random element. 
• Running time is independent of the input 

order. 
• No assumptions need to be made about 

the input distribution. 
• No specific input elicits the worst-case 

behavior. 
• The worst case is determined only by the 

output of a random-number generator. 
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Randomized quicksort 
analysis 

Let T(n) = the random variable for the running 
time of randomized quicksort on an input of size 
n, assuming random numbers are independent. 
For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk =  1 if PARTITION generates a k : n–k–1 split, 
0 otherwise. 

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are 
equally likely, assuming elements are distinct. 
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Analysis (continued) 

T(n) =  

T(0) + T(n–1) + Θ(n) if 0 : n–1 split, 
T(1) + T(n–2) + Θ(n) if 1 : n–2 split, 
  
T(n–1) + T(0) + Θ(n) if n–1 : 0 split, 

( )∑
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=

Θ+−−+=
1

0
)()1()(

n

k
k nknTkTX
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Calculating expectation 
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Take expectations of both sides. 
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Calculating expectation 
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Linearity of expectation. 
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Calculating expectation 
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Independence of Xk from other random 
choices. 
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Calculating expectation 
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Linearity of expectation; E[Xk] = 1/n . 
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Calculating expectation 
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Summations have 
identical terms. 
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Hairy recurrence 
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(The k = 0, 1 terms can be absorbed in the Θ(n).) 

Prove: E[T(n)] ≤ a n lg n for constant a > 0 . 

Use fact:  2
1

2
8
12

2
1 lglg nnnkk

n

k
∑

−

=
−≤ (exercise). 

• Choose a large enough so that a n lg n 
dominates E[T(n)] for sufficiently small n ≥ 2. 
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Substitution method 
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Substitute inductive hypothesis. 
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Substitution method 
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Substitution method 
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Express as desired – residual. 
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Substitution method 

[ ]

nan

nannan

nnnn
n
a

nkak
n

nTE
n

k

lg

)(
4

lg

)(
8
1lg

2
12

)(lg2)(

22

1

2

≤






 Θ−−=

Θ+




 −=

Θ+≤ ∑
−

=

if a is chosen large enough so that 
an/4 dominates the Θ(n). 

, 
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Quicksort in practice 

• Quicksort is a great general-purpose 
sorting algorithm. 

• Quicksort is typically over twice as fast 
as merge sort. 

• Quicksort can benefit substantially from 
code tuning.   

• Quicksort behaves well even with 
caching and virtual memory. 


	01-Analysis-of-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Course information
	Analysis of algorithms
	Why study algorithms and performance?
	The problem of sorting
	Insertion sort
	Insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Running time
	Kinds of analyses
	Machine-independent time
	Q-notation
	Asymptotic performance
	Insertion sort analysis
	Merge sort
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Analyzing merge sort
	Recurrence for merge sort
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Conclusions

	02-Asymptotic-Notation-and-Recurrences
	Introduction to Algorithms�6.046J/18.401J
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Set definition of O-notation
	Set definition of O-notation
	Set definition of O-notation
	Macro substitution
	Macro substitution
	Macro substitution
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (tight bounds)
	-notation (tight bounds)
	o-notation and -notation
	o-notation and -notation
	Solving recurrences
	Substitution method
	Substitution method
	Example of substitution
	Example (continued)
	Example (continued)
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound!
	A tighter upper bound!
	A tighter upper bound!
	Recursion-tree method
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	The master method
	Three common cases
	Three common cases
	Three common cases (cont.)
	Examples
	Examples
	Examples
	Examples
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem

	03-Divide-and-Conquer
	Introduction to Algorithms�6.046J/18.401J
	The divide-and-conquer design paradigm
	Merge sort
	Merge sort
	Master theorem (reprise)
	Master theorem (reprise)
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Recurrence for binary search
	Recurrence for binary search
	Powering a number
	Powering a number
	Powering a number
	Fibonacci numbers
	Fibonacci numbers
	Computing Fibonacci numbers
	Computing Fibonacci numbers
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Matrix multiplication
	Standard algorithm
	Standard algorithm
	Divide-and-conquer algorithm
	Divide-and-conquer algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s algorithm
	Strassen’s algorithm
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	H-tree embedding
	H-tree embedding
	H-tree embedding
	Conclusion

	04-Quicksort
	Introduction to Algorithms�6.046J/18.401J
	Quicksort
	Divide and conquer
	Partitioning subroutine
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Pseudocode for quicksort
	Analysis of quicksort
	Worst-case of quicksort
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Best-case analysis
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	More intuition
	Randomized quicksort
	Randomized quicksort analysis
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Quicksort in practice

	05-Linear-Time-Sorting
	Introduction to Algorithms�6.046J/18.401J
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions
	Appendix: Punched-card technology
	Herman Hollerith�(1860-1929)
	Punched cards
	Hollerith’s tabulating system
	Operation of the sorter
	Origin of radix sort
	“Modern” IBM card
	Web resources on punched-card technology

	06-Order-Statistics
	Introduction to Algorithms�6.046J/18.401J
	Order statistics
	Randomized divide-and-conquer algorithm
	Example
	Intuition for analysis
	Analysis of expected time
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Summary of randomized order-statistic selection
	Worst-case linear-time order statistics
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Analysis
	Analysis
	Analysis
	Minor simplification
	Developing the recurrence
	Solving the recurrence
	Conclusions

	07-Hashing-I
	Introduction to Algorithms�6.046J/18.401J
	Symbol-table problem
	Direct-access table
	Hash functions
	Resolving collisions by chaining
	Average-case analysis of chaining
	Search cost
	Search cost
	Search cost
	Search cost
	Choosing a hash function
	Division method
	Division method (continued)
	Multiplication method
	Multiplication method example
	Resolving collisions by open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Probing strategies
	Probing strategies
	Analysis of open addressing
	Proof of the theorem
	Proof (continued)
	Implications of the theorem

	08-Hashing-II
	Introduction to Algorithms�6.046J/18.401J
	A weakness of hashing
	Universal hashing
	Universality is good
	Proof of theorem
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Constructing a set of universal hash functions
	Universality of dot-product hash functions
	Proof (continued)
	Fact from number theory
	Back to the proof
	Proof (completed)
	Perfect hashing
	Collisions at level 2
	No collisions at level 2
	Analysis of storage

	09-Randomly-Built-BST
	Introduction to Algorithms�6.046J/18.401J
	Binary-search-tree sort
	Analysis of BST sort
	Node depth
	Expected tree height
	Height of a randomly built binary search tree
	Convex functions
	Convexity lemma
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Jensen’s inequality
	Jensen’s inequality
	Jensen’s inequality
	Analysis of BST height
	Analysis (continued)
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Post mortem
	Post mortem (continued)
	Thought exercises

	10-Balanced-Search-Trees
	Introduction to Algorithms�6.046J/18.401J
	Balanced search trees
	Red-black trees
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Proof (continued)
	Query operations
	Modifying operations
	Rotations
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Pseudocode
	Graphical notation
	Case 1
	Case 2
	Case 3
	Analysis

	11-Augmenting Data Structures
	Introduction to Algorithms�6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

	12-Skip-Lists
	Introduction to Algorithms�6.046J/18.401J
	Skip lists
	One linked list
	Two linked lists
	Two linked lists as a subway
	Searching in two linked lists
	Searching in two linked lists
	Design of two linked lists
	Analysis of two linked lists
	Analysis of two linked lists
	More linked lists
	lg n linked lists
	Searching in lg n linked lists
	Skip lists
	INSERT(x)
	INSERT(x)
	Example of skip list
	Skip lists
	Skip lists
	With-high-probability theorem
	With-high-probability theorem
	With-high-probability theorem
	Boole’s inequality / union bound
	Analysis Warmup
	Analysis Warmup
	Proof of theorem
	Proof of theorem
	Coin flipping analysis
	Coin flipping analysis
	Coin flipping analysis (cont’d)
	Coin flipping analysis (cont’d)

	13-Amortized-Analysis
	Introduction to Algorithms�6.046J/18.401J
	How large should a hash table be?
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Worst-case analysis
	Tighter analysis
	Tighter analysis
	Tighter analysis (continued)
	Amortized analysis
	Types of amortized analyses
	Accounting method
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis (continued)
	Potential method
	Understanding potentials
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	Potential analysis of table doubling
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Conclusions

	14-Competitive-Analysis
	Introduction to Algorithms�6.046J/18.401J
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	On-line and off-line problems
	Worst-case analysis of self-organizing lists
	Average-case analysis of self-organizing lists
	The move-to-front heuristic
	Competitive analysis
	MTF is O(1)-competitive
	MTF is O(1)-competitive
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	What happens on an access?
	What happens on an access?
	What happens on an access?
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Addendum
	Addendum

	15-Dynamic-Programming
	Introduction to Algorithms�6.046J/18.401J
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	Recursive algorithm for LCS
	Recursive algorithm for LCS
	Recursion tree
	Recursion tree
	Recursion tree
	Dynamic-programming hallmark #2
	Dynamic-programming hallmark #2
	Memoization algorithm
	Memoization algorithm
	Memoization algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm

	16-Greedy-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Graphs (review)
	Adjacency-matrix representation
	Adjacency-matrix representation
	Adjacency-list representation
	Adjacency-list representation
	Adjacency-list representation
	Minimum spanning trees
	Minimum spanning trees
	Example of MST
	Example of MST
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Hallmark for “greedy” algorithms
	Hallmark for “greedy” algorithms
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	MST algorithms
	MST algorithms

	17-Shortest-Paths-I
	Introduction to Algorithms�6.046J/18.401J
	Paths in graphs
	Paths in graphs
	Shortest paths
	Well-definedness of shortest paths
	Well-definedness of shortest paths
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Triangle inequality
	Triangle inequality
	Single-source shortest paths�(nonnegative edge weights)
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Correctness — Part I
	Correctness — Part I
	Correctness — Part II
	Correctness — Part II
	Correctness — Part III
	Correctness — Part III
	Correctness — Part III (continued)
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Correctness of BFS

	18-Shortest-Paths-II
	Introduction to Algorithms�6.046J/18.401J
	Negative-weight cycles
	Negative-weight cycles
	Bellman-Ford algorithm
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Correctness
	Correctness
	Correctness (continued)
	Detection of negative-weight cycles
	Linear programming
	Linear-programming algorithms
	Linear-programming algorithms
	Solving a system of difference constraints
	Solving a system of difference constraints
	Solving a system of difference constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Satisfying the constraints
	Satisfying the constraints
	Satisfying the constraints
	Proof (continued)
	Bellman-Ford and linear programming
	Application to VLSI layout compaction
	VLSI layout compaction

	19-Shortest-Paths-III
	Introduction to Algorithms�6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

	XX-Computational-Geometry
	Introduction to Algorithms�6.046J/18.401J/SMA5503�
	Computational geometry
	Computational geometry
	Orthogonal range searching
	Orthogonal range searching
	1D range searching
	1D range searching
	1D range searching
	Example of a 1D range tree
	Example of a 1D range tree
	Example of a 1D range query
	General 1D range query
	Pseudocode, part 1:�Find the split node
	Pseudocode, part 2: Traverse left and right from split node
	Analysis of 1D-RANGE-QUERY
	2D range trees
	2D range trees
	Analysis of 2D range trees
	d-dimensional range trees (d  2)
	Primitive operations: Crossproduct
	Primitive operations:�Orientation test
	Primitive operations:�Sidedness test
	Line-segment intersection
	Sweep-line algorithm
	Slide Number 25
	Sweep-line algorithm
	Analysis
	Correctness




