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Introduction to Algorithms 
6.046J/18.401J 

Prof. Erik Demaine 

LECTURE 2  
Asymptotic Notation 
• O-, Ω-, and Θ-notation 
Recurrences 
• Substitution method 
• Iterating the recurrence 
• Recursion tree 
• Master method 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 

EXAMPLE:  2n2 = O(n3) (c = 1, n0 = 2) 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 

EXAMPLE:  2n2 = O(n3) 

functions, 
not values 

(c = 1, n0 = 2) 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 

EXAMPLE:  2n2 = O(n3) 

functions, 
not values 

funny, “one-way” 
equality 

(c = 1, n0 = 2) 
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Set definition of O-notation 

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) 
for all n ≥ n0 } 
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Set definition of O-notation 

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) 
for all n ≥ n0 } 

EXAMPLE:  2n2 ∈ O(n3) 
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Set definition of O-notation 

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) 
for all n ≥ n0 } 

EXAMPLE:  2n2 ∈ O(n3) 
(Logicians: λn.2n2 ∈ O(λn.n3), but it’s 
convenient to be sloppy, as long as we 
understand what’s really going on.) 
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Macro substitution 

Convention:  A set in a formula represents 
an anonymous function in the set. 
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Macro substitution 

Convention:  A set in a formula represents 
an anonymous function in the set. 

f(n) = n3 + O(n2)  
means  
f(n) = n3 + h(n)   
for some h(n) ∈ O(n2) . 

EXAMPLE: 
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Macro substitution 

Convention:  A set in a formula represents 
an anonymous function in the set. 

n2 + O(n) = O(n2) 
means 
for any f(n) ∈ O(n): 
 n2 + f(n) = h(n)   
 for some h(n) ∈ O(n2) . 

EXAMPLE: 
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Ω-notation (lower bounds) 

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2). 
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Ω-notation (lower bounds) 

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n) 
for all n ≥ n0 } 

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2). 
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Ω-notation (lower bounds) 

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n) 
for all n ≥ n0 } 

EXAMPLE: )(lg nn Ω= (c = 1, n0 = 16) 

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2). 
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Θ-notation (tight bounds) 

Θ(g(n)) = O(g(n))  ∩  Ω(g(n)) 
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Θ-notation (tight bounds) 

Θ(g(n)) = O(g(n))  ∩  Ω(g(n)) 

EXAMPLE: )(2 22
2
1 nnn Θ=−
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ο-notation and ω-notation 

ο(g(n)) = { f(n) : for any constant c > 0,  
there is a constant n0 > 0 
such that 0 ≤ f(n) < cg(n) 
for all n ≥ n0 } 

EXAMPLE: (n0 = 2/c) 

O-notation and Ω-notation are like ≤ and ≥. 
o-notation and ω-notation are like < and >. 

2n2 = o(n3) 
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ο-notation and ω-notation 

ω(g(n)) = { f(n) : for any constant c > 0,  
there is a constant n0 > 0 
such that 0 ≤ cg(n) < f(n) 
for all n ≥ n0 } 

EXAMPLE: )(lgnn ω= (n0 = 1+1/c) 

O-notation and Ω-notation are like ≤ and ≥. 
o-notation and ω-notation are like < and >. 
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Solving recurrences 

• The analysis of merge sort from Lecture 1 
required us to solve a recurrence. 

• Recurrences are like solving integrals, 
differential equations, etc. 
Learn a few tricks. 

• Lecture 3: Applications of recurrences to 
divide-and-conquer algorithms. 
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Substitution method 

1. Guess the form of the solution. 
2. Verify by induction. 
3. Solve for constants. 

The most general method: 
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Substitution method 

1. Guess the form of the solution. 
2. Verify by induction. 
3. Solve for constants. 

The most general method: 

EXAMPLE:  T(n) = 4T(n/2) + n 
• [Assume that T(1) = Θ(1).] 
• Guess O(n3) .  (Prove O and Ω separately.) 
• Assume that T(k) ≤ ck3 for k < n . 
• Prove T(n) ≤ cn3 by induction. 
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Example of substitution 

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual 

whenever  (c/2)n3 – n ≥ 0, for 
example, if c ≥ 2 and n ≥ 1. 

desired 

residual 
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Example (continued) 
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases. 

• Base: T(n) = Θ(1) for all n < n0, where n0 
is a suitable constant. 

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough. 
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Example (continued) 
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases. 

• Base: T(n) = Θ(1) for all n < n0, where n0 
is a suitable constant. 

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough. 

This bound is not tight! 
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 

Assume that T(k) ≤ ck2 for k < n: 

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 

Assume that T(k) ≤ ck2 for k < n: 

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong!  We must prove the I.H. 



September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28 

A tighter upper bound? 

We shall prove that T(n) = O(n2). 

Assume that T(k) ≤ ck2 for k < n: 

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong!  We must prove the I.H. 

2

2 )(
cn

ncn
≤

−−=
for no choice of c > 0.  Lose! 

[ desired – residual ] 
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A tighter upper bound! 
IDEA:  Strengthen the inductive hypothesis. 
• Subtract a low-order term. 
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n. 
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A tighter upper bound! 
IDEA:  Strengthen the inductive hypothesis. 
• Subtract a low-order term. 
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n. 

T(n) = 4T(n/2) + n 
 = 4(c1(n/2)2 – c2(n/2)) + n 
 = c1n2 – 2c2n + n 
 = c1n2 – c2n – (c2n – n) 
 ≤ c1n2 – c2n  if c2 ≥ 1. 
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A tighter upper bound! 
IDEA:  Strengthen the inductive hypothesis. 
• Subtract a low-order term. 
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n. 

Pick c1 big enough to handle the initial conditions. 

T(n) = 4T(n/2) + n 
 = 4(c1(n/2)2 – c2(n/2)) + n 
 = c1n2 – 2c2n + n 
 = c1n2 – c2n – (c2n – n) 
 ≤ c1n2 – c2n  if c2 ≥ 1. 
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Recursion-tree method 

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm. 

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…). 

• The recursion-tree method promotes intuition, 
however.  

• The recursion tree method is good for 
generating guesses for the substitution method. 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 

T(n) 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 

T(n/4) T(n/2) 

n2 

Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

n2 

(n/4)2 (n/2)2 

T(n/16) T(n/8) T(n/8) T(n/4) 
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Example of recursion tree 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

Solve T(n) = T(n/4) + T(n/2) + n2: 
n2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

2nn2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

2
16
5 n

2nn2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 

Θ(1) 

2
16
5 n

2n

2
256
25 n

n2 

(n/2)2 

…
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 

Θ(1) 

2
16
5 n

2n

2
256
25 n

( ) ( )( ) 1 3
16
52

16
5

16
52 ++++n

…
 

Total  = 
= Θ(n2) 

n2 

(n/2)2 

geometric series 
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The master method 

The master method applies to recurrences of 
the form 

T(n) = a T(n/b) + f (n) ,  
where a ≥ 1, b > 1, and  f  is asymptotically 
positive. 
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Three common cases 
Compare f (n) with nlogba: 
1.  f (n) = O(nlogba – ε) for some constant ε > 0. 

• f (n) grows polynomially slower than nlogba 
(by an nε factor). 

 Solution: T(n) = Θ(nlogba) . 
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Three common cases 
Compare f (n) with nlogba: 
1.  f (n) = O(nlogba – ε) for some constant ε > 0. 

• f (n) grows polynomially slower than nlogba 
(by an nε factor). 

 Solution: T(n) = Θ(nlogba) . 

2.  f (n) = Θ(nlogba lgkn) for some constant k ≥ 0. 
• f (n) and nlogba grow at similar rates. 
Solution: T(n) = Θ(nlogba lgk+1n) . 
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Three common cases (cont.) 
Compare f (n) with nlogba: 
3.  f (n) = Ω(nlogba + ε) for some constant ε > 0. 

• f (n) grows polynomially faster than nlogba (by 
an nε factor), 

 and  f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1. 

 Solution: T(n) = Θ( f (n) ) . 
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Examples 

 EX. T(n) = 4T(n/2) + n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. 
 CASE 1: f (n) = O(n2 – ε) for ε = 1. 
 ∴ T(n) = Θ(n2). 
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Examples 

 EX. T(n) = 4T(n/2) + n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. 
 CASE 1: f (n) = O(n2 – ε) for ε = 1. 
 ∴ T(n) = Θ(n2). 

EX. T(n) = 4T(n/2) + n2 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2. 
  CASE 2: f (n) = Θ(n2lg0n), that is, k = 0. 
 ∴ T(n) = Θ(n2lg n). 
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Examples 

 EX. T(n) = 4T(n/2) + n3 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. 
  CASE 3: f (n) = Ω(n2 + ε) for ε = 1 
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2. 
 ∴ T(n) = Θ(n3). 
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Examples 

 EX. T(n) = 4T(n/2) + n3 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. 
  CASE 3: f (n) = Ω(n2 + ε) for ε = 1 
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2. 
 ∴ T(n) = Θ(n3). 

EX. T(n) = 4T(n/2) + n2/lg n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n. 
 Master method does not apply.  In particular, 

for every constant ε > 0, we have nε = ω(lg n). 



September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.50 

f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
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nlogbaΤ (1) 

f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

#leaves = ah 
 = alogbn 
 = nlogba 

…
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight. 

Θ(nlogba) 

…
 

nlogbaΤ (1) 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

CASE 2: (k = 0) The weight 
is approximately the same on 
each of the logbn levels. 

Θ(nlogbalg n) 

…
 

nlogbaΤ (1) 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
 

CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight. 

nlogbaΤ (1) 

Θ( f (n)) 
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