
September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.1

Introduction to Algorithms
6.046J/18.401J

Prof. Erik Demaine

LECTURE 2
Asymptotic Notation
• O-, Ω-, and Θ-notation
Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.2

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.3

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3) (c = 1, n0 = 2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

(c = 1, n0 = 2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

funny, “one-way”
equality

(c = 1, n0 = 2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)
(Logicians: λn.2n2 ∈ O(λn.n3), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.10

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

f(n) = n3 + O(n2)
means
f(n) = n3 + h(n)
for some h(n) ∈ O(n2) .

EXAMPLE:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.11

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

n2 + O(n) = O(n2)
means
for any f(n) ∈ O(n):
 n2 + f(n) = h(n)
 for some h(n) ∈ O(n2) .

EXAMPLE:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

Ω-notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

Ω-notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

EXAMPLE:)(lg nn Ω= (c = 1, n0 = 16)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

Θ-notation (tight bounds)

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.16

Θ-notation (tight bounds)

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

EXAMPLE:)(2 22
2
1 nnn Θ=−

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.17

ο-notation and ω-notation

ο(g(n)) = { f(n) : for any constant c > 0,
there is a constant n0 > 0
such that 0 ≤ f(n) < cg(n)
for all n ≥ n0 }

EXAMPLE: (n0 = 2/c)

O-notation and Ω-notation are like ≤ and ≥.
o-notation and ω-notation are like < and >.

2n2 = o(n3)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.18

ο-notation and ω-notation

ω(g(n)) = { f(n) : for any constant c > 0,
there is a constant n0 > 0
such that 0 ≤ cg(n) < f(n)
for all n ≥ n0 }

EXAMPLE:)(lgnn ω= (n0 = 1+1/c)

O-notation and Ω-notation are like ≤ and ≥.
o-notation and ω-notation are like < and >.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Solving recurrences

• The analysis of merge sort from Lecture 1
required us to solve a recurrence.

• Recurrences are like solving integrals,
differential equations, etc.
Learn a few tricks.

• Lecture 3: Applications of recurrences to
divide-and-conquer algorithms.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

EXAMPLE: T(n) = 4T(n/2) + n
• [Assume that T(1) = Θ(1).]
• Guess O(n3) . (Prove O and Ω separately.)
• Assume that T(k) ≤ ck3 for k < n .
• Prove T(n) ≤ cn3 by induction.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Example of substitution

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual

whenever (c/2)n3 – n ≥ 0, for
example, if c ≥ 2 and n ≥ 1.

desired

residual

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

This bound is not tight!

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

A tighter upper bound?

We shall prove that T(n) = O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.27

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

2

2)(
cn

ncn
≤

−−=
for no choice of c > 0. Lose!

[desired – residual]

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

T(n) = 4T(n/2) + n
 = 4(c1(n/2)2 – c2(n/2)) + n
 = c1n2 – 2c2n + n
 = c1n2 – c2n – (c2n – n)
 ≤ c1n2 – c2n if c2 ≥ 1.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.31

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

Pick c1 big enough to handle the initial conditions.

T(n) = 4T(n/2) + n
 = 4(c1(n/2)2 – c2(n/2)) + n
 = c1n2 – 2c2n + n
 = c1n2 – c2n – (c2n – n)
 ≤ c1n2 – c2n if c2 ≥ 1.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• The recursion-tree method promotes intuition,
however.

• The recursion tree method is good for
generating guesses for the substitution method.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

Example of recursion tree

T(n)
Solve T(n) = T(n/4) + T(n/2) + n2:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

2nn2

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

2
16
5 n

2nn2

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

2
16
5 n

2n

2
256
25 n

() ()() 1 3
16
52

16
5

16
52 ++++n

…

Total =
= Θ(n2)

n2

(n/2)2

geometric series

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba
(by an nε factor).

 Solution: T(n) = Θ(nlogba) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba
(by an nε factor).

 Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

Three common cases (cont.)
Compare f (n) with nlogba:
3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

• f (n) grows polynomially faster than nlogba (by
an nε factor),

 and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.

 Solution: T(n) = Θ(f (n)) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.46

Examples

 EX. T(n) = 4T(n/2) + n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
 CASE 1: f (n) = O(n2 – ε) for ε = 1.
 ∴ T(n) = Θ(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.47

Examples

 EX. T(n) = 4T(n/2) + n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
 CASE 1: f (n) = O(n2 – ε) for ε = 1.
 ∴ T(n) = Θ(n2).

EX. T(n) = 4T(n/2) + n2
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
 CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
 ∴ T(n) = Θ(n2lg n).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.48

Examples

 EX. T(n) = 4T(n/2) + n3
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
 CASE 3: f (n) = Ω(n2 + ε) for ε = 1
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
 ∴ T(n) = Θ(n3).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.49

Examples

 EX. T(n) = 4T(n/2) + n3
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
 CASE 3: f (n) = Ω(n2 + ε) for ε = 1
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
 ∴ T(n) = Θ(n3).

EX. T(n) = 4T(n/2) + n2/lg n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n.
 Master method does not apply. In particular,

for every constant ε > 0, we have nε = ω(lg n).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.50

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.51

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a

f (n)

a f (n/b)

a2 f (n/b2)

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.52

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.53

nlogbaΤ (1)

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

#leaves = ah
 = alogbn
 = nlogba

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight.

Θ(nlogba)

…

nlogbaΤ (1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.55

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

Θ(nlogbalg n)

…

nlogbaΤ (1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.56

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight.

nlogbaΤ (1)

Θ(f (n))

	01-Analysis-of-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Course information
	Analysis of algorithms
	Why study algorithms and performance?
	The problem of sorting
	Insertion sort
	Insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Running time
	Kinds of analyses
	Machine-independent time
	Q-notation
	Asymptotic performance
	Insertion sort analysis
	Merge sort
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Analyzing merge sort
	Recurrence for merge sort
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Conclusions

	02-Asymptotic-Notation-and-Recurrences
	Introduction to Algorithms�6.046J/18.401J
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Set definition of O-notation
	Set definition of O-notation
	Set definition of O-notation
	Macro substitution
	Macro substitution
	Macro substitution
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (tight bounds)
	-notation (tight bounds)
	o-notation and -notation
	o-notation and -notation
	Solving recurrences
	Substitution method
	Substitution method
	Example of substitution
	Example (continued)
	Example (continued)
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound!
	A tighter upper bound!
	A tighter upper bound!
	Recursion-tree method
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	The master method
	Three common cases
	Three common cases
	Three common cases (cont.)
	Examples
	Examples
	Examples
	Examples
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem

	03-Divide-and-Conquer
	Introduction to Algorithms�6.046J/18.401J
	The divide-and-conquer design paradigm
	Merge sort
	Merge sort
	Master theorem (reprise)
	Master theorem (reprise)
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Recurrence for binary search
	Recurrence for binary search
	Powering a number
	Powering a number
	Powering a number
	Fibonacci numbers
	Fibonacci numbers
	Computing Fibonacci numbers
	Computing Fibonacci numbers
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Matrix multiplication
	Standard algorithm
	Standard algorithm
	Divide-and-conquer algorithm
	Divide-and-conquer algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s algorithm
	Strassen’s algorithm
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	H-tree embedding
	H-tree embedding
	H-tree embedding
	Conclusion

	04-Quicksort
	Introduction to Algorithms�6.046J/18.401J
	Quicksort
	Divide and conquer
	Partitioning subroutine
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Pseudocode for quicksort
	Analysis of quicksort
	Worst-case of quicksort
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Best-case analysis
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	More intuition
	Randomized quicksort
	Randomized quicksort analysis
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Quicksort in practice

	05-Linear-Time-Sorting
	Introduction to Algorithms�6.046J/18.401J
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions
	Appendix: Punched-card technology
	Herman Hollerith�(1860-1929)
	Punched cards
	Hollerith’s tabulating system
	Operation of the sorter
	Origin of radix sort
	“Modern” IBM card
	Web resources on punched-card technology

	06-Order-Statistics
	Introduction to Algorithms�6.046J/18.401J
	Order statistics
	Randomized divide-and-conquer algorithm
	Example
	Intuition for analysis
	Analysis of expected time
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Summary of randomized order-statistic selection
	Worst-case linear-time order statistics
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Analysis
	Analysis
	Analysis
	Minor simplification
	Developing the recurrence
	Solving the recurrence
	Conclusions

	07-Hashing-I
	Introduction to Algorithms�6.046J/18.401J
	Symbol-table problem
	Direct-access table
	Hash functions
	Resolving collisions by chaining
	Average-case analysis of chaining
	Search cost
	Search cost
	Search cost
	Search cost
	Choosing a hash function
	Division method
	Division method (continued)
	Multiplication method
	Multiplication method example
	Resolving collisions by open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Probing strategies
	Probing strategies
	Analysis of open addressing
	Proof of the theorem
	Proof (continued)
	Implications of the theorem

	08-Hashing-II
	Introduction to Algorithms�6.046J/18.401J
	A weakness of hashing
	Universal hashing
	Universality is good
	Proof of theorem
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Constructing a set of universal hash functions
	Universality of dot-product hash functions
	Proof (continued)
	Fact from number theory
	Back to the proof
	Proof (completed)
	Perfect hashing
	Collisions at level 2
	No collisions at level 2
	Analysis of storage

	09-Randomly-Built-BST
	Introduction to Algorithms�6.046J/18.401J
	Binary-search-tree sort
	Analysis of BST sort
	Node depth
	Expected tree height
	Height of a randomly built binary search tree
	Convex functions
	Convexity lemma
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Jensen’s inequality
	Jensen’s inequality
	Jensen’s inequality
	Analysis of BST height
	Analysis (continued)
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Post mortem
	Post mortem (continued)
	Thought exercises

	10-Balanced-Search-Trees
	Introduction to Algorithms�6.046J/18.401J
	Balanced search trees
	Red-black trees
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Proof (continued)
	Query operations
	Modifying operations
	Rotations
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Pseudocode
	Graphical notation
	Case 1
	Case 2
	Case 3
	Analysis

	11-Augmenting Data Structures
	Introduction to Algorithms�6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

	12-Skip-Lists
	Introduction to Algorithms�6.046J/18.401J
	Skip lists
	One linked list
	Two linked lists
	Two linked lists as a subway
	Searching in two linked lists
	Searching in two linked lists
	Design of two linked lists
	Analysis of two linked lists
	Analysis of two linked lists
	More linked lists
	lg n linked lists
	Searching in lg n linked lists
	Skip lists
	INSERT(x)
	INSERT(x)
	Example of skip list
	Skip lists
	Skip lists
	With-high-probability theorem
	With-high-probability theorem
	With-high-probability theorem
	Boole’s inequality / union bound
	Analysis Warmup
	Analysis Warmup
	Proof of theorem
	Proof of theorem
	Coin flipping analysis
	Coin flipping analysis
	Coin flipping analysis (cont’d)
	Coin flipping analysis (cont’d)

	13-Amortized-Analysis
	Introduction to Algorithms�6.046J/18.401J
	How large should a hash table be?
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Worst-case analysis
	Tighter analysis
	Tighter analysis
	Tighter analysis (continued)
	Amortized analysis
	Types of amortized analyses
	Accounting method
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis (continued)
	Potential method
	Understanding potentials
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	Potential analysis of table doubling
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Conclusions

	14-Competitive-Analysis
	Introduction to Algorithms�6.046J/18.401J
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	On-line and off-line problems
	Worst-case analysis of self-organizing lists
	Average-case analysis of self-organizing lists
	The move-to-front heuristic
	Competitive analysis
	MTF is O(1)-competitive
	MTF is O(1)-competitive
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	What happens on an access?
	What happens on an access?
	What happens on an access?
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Addendum
	Addendum

	15-Dynamic-Programming
	Introduction to Algorithms�6.046J/18.401J
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	Recursive algorithm for LCS
	Recursive algorithm for LCS
	Recursion tree
	Recursion tree
	Recursion tree
	Dynamic-programming hallmark #2
	Dynamic-programming hallmark #2
	Memoization algorithm
	Memoization algorithm
	Memoization algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm

	16-Greedy-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Graphs (review)
	Adjacency-matrix representation
	Adjacency-matrix representation
	Adjacency-list representation
	Adjacency-list representation
	Adjacency-list representation
	Minimum spanning trees
	Minimum spanning trees
	Example of MST
	Example of MST
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Hallmark for “greedy” algorithms
	Hallmark for “greedy” algorithms
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	MST algorithms
	MST algorithms

	17-Shortest-Paths-I
	Introduction to Algorithms�6.046J/18.401J
	Paths in graphs
	Paths in graphs
	Shortest paths
	Well-definedness of shortest paths
	Well-definedness of shortest paths
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Triangle inequality
	Triangle inequality
	Single-source shortest paths�(nonnegative edge weights)
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Correctness — Part I
	Correctness — Part I
	Correctness — Part II
	Correctness — Part II
	Correctness — Part III
	Correctness — Part III
	Correctness — Part III (continued)
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Correctness of BFS

	18-Shortest-Paths-II
	Introduction to Algorithms�6.046J/18.401J
	Negative-weight cycles
	Negative-weight cycles
	Bellman-Ford algorithm
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Correctness
	Correctness
	Correctness (continued)
	Detection of negative-weight cycles
	Linear programming
	Linear-programming algorithms
	Linear-programming algorithms
	Solving a system of difference constraints
	Solving a system of difference constraints
	Solving a system of difference constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Satisfying the constraints
	Satisfying the constraints
	Satisfying the constraints
	Proof (continued)
	Bellman-Ford and linear programming
	Application to VLSI layout compaction
	VLSI layout compaction

	19-Shortest-Paths-III
	Introduction to Algorithms�6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

	XX-Computational-Geometry
	Introduction to Algorithms�6.046J/18.401J/SMA5503�
	Computational geometry
	Computational geometry
	Orthogonal range searching
	Orthogonal range searching
	1D range searching
	1D range searching
	1D range searching
	Example of a 1D range tree
	Example of a 1D range tree
	Example of a 1D range query
	General 1D range query
	Pseudocode, part 1:�Find the split node
	Pseudocode, part 2: Traverse left and right from split node
	Analysis of 1D-RANGE-QUERY
	2D range trees
	2D range trees
	Analysis of 2D range trees
	d-dimensional range trees (d  2)
	Primitive operations: Crossproduct
	Primitive operations:�Orientation test
	Primitive operations:�Sidedness test
	Line-segment intersection
	Sweep-line algorithm
	Slide Number 25
	Sweep-line algorithm
	Analysis
	Correctness

