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Introduction to Algorithms 
6.046J/18.401J 

Prof. Charles E. Leiserson 

LECTURE 1  
Analysis of Algorithms 
• Insertion sort 
• Asymptotic analysis 
• Merge sort 
• Recurrences 
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Analysis of algorithms 

The theoretical study of computer-program 
performance and resource usage. 

What’s more important than performance? 
• modularity 
• correctness 
• maintainability 
• functionality 
• robustness 

• user-friendliness 
• programmer time 
• simplicity 
• extensibility 
• reliability 
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Why study algorithms and 
performance? 

• Algorithms help us to understand scalability. 
• Performance often draws the line between what 

is feasible and what is impossible. 
• Algorithmic mathematics provides a language 

for talking about program behavior. 
• Performance is the currency of computing. 
• The lessons of program performance generalize 

to other computing resources.  
• Speed is fun! 
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The problem of sorting 

Input: sequence  〈a1, a2, …, an〉  of numbers. 

Example: 
Input:  8  2  4  9  3  6 

Output:  2  3  4  6  8  9 

Output: permutation  〈a'1, a'2, …, a'n〉  such 
that  a'1 ≤ a'2 ≤ … ≤ a'n . 
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Insertion sort 
INSERTION-SORT (A, n) ⊳ A[1 . . n]  
 for j ← 2 to n 
  do key ← A[ j] 
   i ← j – 1 
   while i > 0 and A[i] > key 
    do A[i+1] ← A[i] 
     i ← i – 1 
   A[i+1] = key 

“pseudocode” 
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Insertion sort 
INSERTION-SORT (A, n) ⊳ A[1 . . n]  
 for j ← 2 to n 
  do key ← A[ j] 
   i ← j – 1 
   while i > 0 and A[i] > key 
    do A[i+1] ← A[i] 
     i ← i – 1 
   A[i+1] = key 

“pseudocode” 

sorted 

i j 

key 
A: 

1 n 
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Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 

2 3 4 6 8 9 done 



September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.19 

Running time 

• The running time depends on the input: an 
already sorted sequence is easier to sort. 

• Parameterize the running time by the size of 
the input, since short sequences are easier to 
sort than long ones. 

• Generally, we seek upper bounds on the 
running time, because everybody likes a 
guarantee. 
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Kinds of analyses 
Worst-case: (usually) 

• T(n) = maximum time of algorithm 
on any input of size n. 

Average-case: (sometimes) 
• T(n) = expected time of algorithm 

over all inputs of size n. 
• Need assumption of statistical 

distribution of inputs. 
Best-case: (bogus) 

• Cheat with a slow algorithm that 
works fast on some input. 
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Machine-independent time 

What is insertion sort’s worst-case time? 
• It depends on the speed of our computer: 

• relative speed (on the same machine), 
• absolute speed (on different machines). 

BIG IDEA: 
• Ignore machine-dependent constants. 
• Look at growth of T(n) as n → ∞ . 

“Asymptotic Analysis” 
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Θ-notation 

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3) 

Math: 
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and 

n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) 
for all n ≥ n0 } 

Engineering: 
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Asymptotic performance 

n 

T(n) 

n0 

• We shouldn’t ignore 
asymptotically slower 
algorithms, however. 

• Real-world design 
situations often call for a 
careful balancing of 
engineering objectives. 

• Asymptotic analysis is a 
useful tool to help to 
structure our thinking. 

When n gets large enough, a Θ(n2) algorithm 
always beats a Θ(n3) algorithm. 
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Insertion sort analysis 
Worst case: Input reverse sorted. 

( )∑
=
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n

j
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Average case: All permutations equally likely. 

( )∑
=

Θ=Θ=
n

j
njnT

2
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Is insertion sort a fast sorting algorithm? 
• Moderately so, for small n. 
• Not at all, for large n. 

[arithmetic series] 
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Merge sort 

MERGE-SORT  A[1 . . n] 
1. If n = 1, done. 
2. Recursively sort A[ 1 . . n/2 ] 

and A[ n/2+1 . . n ] . 
3. “Merge” the 2 sorted lists. 

Key subroutine: MERGE 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Time = Θ(n) to merge a total 
of n elements (linear time). 
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Analyzing merge sort 

MERGE-SORT A[1 . . n] 
1. If n = 1, done. 
2. Recursively sort A[ 1 . . n/2 ] 

and A[ n/2+1 . . n ] . 
3. “Merge” the 2 sorted lists 

T(n) 
Θ(1) 
2T(n/2) 

Θ(n)   
Abuse 

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically. 
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Recurrence for merge sort 

T(n) = 
Θ(1) if n = 1; 
2T(n/2) + Θ(n) if n > 1. 

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence. 

• CLRS and Lecture 2 provide several ways 
to find a good upper bound on T(n). 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n) 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n/2) T(n/2) 

cn 



September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.44 

Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

T(n/4) T(n/4) T(n/4) T(n/4) 

cn/2 cn/2 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Θ(1) 

h = lg n 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Θ(n) 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Θ(n) 
Total = Θ(n lg n) 

…
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Conclusions 

•  Θ(n lg n) grows more slowly than Θ(n2). 
• Therefore, merge sort asymptotically 

beats insertion sort in the worst case. 
• In practice, merge sort beats insertion 

sort for n > 30 or so. 
• Go test it out for yourself! 
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