
Optimal Cache Replacement

2

Optimal Offline Caching

Caching.

 Cache with capacity to store k items.

 Sequence of m item requests d1, d2, …, dm.

 Cache hit: item already in cache when requested.

 Cache miss: item not already in cache when requested: must bring

requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: k = 2, initial cache = ab,

 requests: a, b, c, b, c, a, a, b.

Optimal eviction schedule: 2 cache misses.

a b

a b

c b

c b

c b

a b

a

b

c

b

c

a

a b a

a b b

cache requests

3

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until

farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.

Pf. Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ...

current cache: c d e f

future queries:

cache miss eject this one

4

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into

the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one

with no more cache misses.

a x

an unreduced schedule

c

a d c

a d b

a c b

a x b

a c b

a b c

a b c

a

c

d

a

b

c

a

a

a b

a reduced schedule

c

a b c

a d c

a d c

a d b

a c b

a c b

a c b

a

c

d

a

b

c

a

a

a b c a a b c a

5

Reduced Eviction Schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S' with no more cache misses.

Pf. (by induction on number of unreduced items)

 Suppose S brings d into the cache at time t, without a request.

 Let c be the item S evicts when it brings d into the cache.

 Case 1: d evicted at time t', before next request for d.

 Case 2: d requested at time t' before d is evicted. ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d evicted at time t',
before next request

e

doesn't enter cache at requested
time

Case 1 Case 2

6

Farthest-In-Future: Analysis

Theorem. FF is optimal eviction algorithm.

Pf. (by induction on number or requests j)

Let S be reduced schedule that satisfies invariant through j requests.

We produce S' that satisfies invariant after j+1 requests.

 Consider (j+1)st request d = dj+1.

 Since S and SFF have agreed up until now, they have the same cache

contents before request j+1.

 Case 1: (d is already in the cache). S' = S satisfies invariant.

 Case 2: (d is not in the cache and S and SFF evict the same element).

S' = S satisfies invariant.

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as SFF through the first j+1 requests.

7

 j

Farthest-In-Future: Analysis

Pf. (continued)

 Case 3: (d is not in the cache; SFF evicts e; S evicts f  e).

– begin construction of S' from S by evicting e instead of f

– now S' agrees with SFF on first j+1 requests; we show that having

element f in cache is no worse than having element e

same f same f e e

S S'

 j same d same f d e

S S'

j+1

8

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action,

and let g be item requested at time j'.

 Case 3a: g = e. Can't happen with Farthest-In-Future since there

must be a request for f before e.

 Case 3b: g = f. Element f can't be in cache of S, so let e' be the

element that S evicts.

– if e' = e, S' accesses f from cache; now S and S' have same cache

– if e'  e, S' evicts e' and brings e into the cache; now S and S'

have the same cache

same e same f

S S'

j'

Note: S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

must involve e or f (or both)

9

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action,

and let g be item requested at time j'.

 Case 3c: g  e, f. S must evict e.

Make S' evict f; now S and S' have the same cache. ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)

10

Caching Perspective

Online vs. offline algorithms.

 Offline: full sequence of requests is known a priori.

 Online (reality): requests are not known in advance.

 Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.

LRU. Evict page whose most recent access was earliest.

Theorem. FF is optimal offline eviction algorithm.

 Provides basis for understanding and analyzing online algorithms.

 LRU is k-competitive.

 LIFO is arbitrarily bad.

FF with direction of time reversed!

