Optimal Cache Replacement

Optimal Offline Caching

Caching.

- Cache with capacity to store k items.
- Sequence of m item requests $d_1, d_2, ..., d_m$.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule. Pf. Algorithm and theorem are intuitive; proof is subtle.

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses.

an unreduced schedule

a reduced schedule

Reduced Eviction Schedules

Claim. Given any unreduced schedule S, can transform it into a reduced schedule S' with no more cache misses.

Pf. (by induction on number of unreduced items) time

- Suppose S brings d into the cache at time t, without a request.
- . Let c be the item S evicts when it brings d into the cache.
- Case 1: d evicted at time t', before next request for d.
- Case 2: d requested at time t' before d is evicted.

Theorem. FF is optimal eviction algorithm.

Pf. (by induction on number or requests j)

Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FF} through the first j+1 requests.

Let S be reduced schedule that satisfies invariant through j requests. We produce S' that satisfies invariant after j+1 requests.

- Consider $(j+1)^{s\dagger}$ request d = d_{j+1} .
- Since S and S_{FF} have agreed up until now, they have the same cache contents before request j+1.
- Case 1: (d is already in the cache). S' = S satisfies invariant.
- Case 2: (d is not in the cache and S and S_{FF} evict the same element). S' = S satisfies invariant.

- Pf. (continued)
 - Case 3: (d is not in the cache; S_{FF} evicts e; S evicts f \neq e).
 - begin construction of S' from S by evicting e instead of f

- now S' agrees with $S_{\rm FF}$ on first j+1 requests; we show that having element f in cache is no worse than having element e

Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'. \uparrow must involve e or f (or both)

 Case 3a: g = e. Can't happen with Farthest-In-Future since there must be a request for f before e.

- Case 3b: g = f. Element f can't be in cache of S, so let e' be the element that S evicts.
 - if e' = e, S' accesses f from cache; now S and S' have same cache
 - if e' ≠ e, S' evicts e' and brings e into the cache; now S and S' have the same cache

```
Note: S' is no longer reduced, but can be transformed into a reduced schedule that agrees with S_{\rm FF} through step j{+}1
```

Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'. \uparrow must involve e or f (or both)

otherwise S' would take the same action

Case 3c: g ≠ e, f. S must evict e.
Make S' evict f; now S and S' have the same cache.

Caching Perspective

Online vs. offline algorithms.

- Offline: full sequence of requests is known a priori.
- Online (reality): requests are not known in advance.
- Caching is among most fundamental online problems in CS.

Theorem. FF is optimal offline eviction algorithm.

- Provides basis for understanding and analyzing online algorithms.
- LRU is k-competitive.
- LIFO is arbitrarily bad.