

Αλγόριθμοι

Διδάσκων – Δημήτριος Κατσαρός

Διάλεξη για θεώρημα Akra-Bazzi

The Akra-Bazzi theorem

Introduction

MergeSort is an example of a divide-and-conquer algorithm:

- \succ it divides the input,
- \succ "conquers" the pieces, and
- \succ combines the results

Analysis of such algorithms commonly leads to divide-and-conquer recurrences, which have this form:

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n) + g(n)$$

The Akra-Bazzi formula

The solution to virtually all divide and conquer solutions is given by the amazing *Akra-Bazzi* formula

Quite simply, the asymptotic solution to the general divide-and-conquer recurrence:

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n) + g(n)$$
$$T(n) = \Theta\left(n^p \left(1 + \int_1^n \frac{g(u)}{u^{p+1}} du\right)\right)$$
$$\sum_{i=1}^{k} a_i b_i^p = 1$$

is

where

The Akra-Bazzi formula for MergeSort

First, we find the value p that satisfies $2 \ge (1/2)^p = 1$ Looks like p = 1 does the job Then we compute the integral:

$$\begin{split} \Gamma(n) &= \Theta\left(n\left(1 + \int_{1}^{n} \frac{u-1}{u^{2}} du\right)\right) \\ &= \Theta\left(n\left(1 + \left[\log(u) + \frac{1}{u}\right]_{1}^{n}\right)\right) \\ &= \Theta\left(n\left(\log(n) + \frac{1}{n}\right)\right) \\ &= \Theta\left(n \times \log(n)\right) \end{split}$$

The Akra-Bazzi formula for a scary case

Let's try a scary-looking recurrence: T(n) = 2T(n/2) + (8/9)T(3n/4) + n²

Here,
$$a_1=2$$
, $b_1=1/2$, $a_2=8/9$, $b_2=3/4$

So we find the value of p that satisfies: $2(1/2)^{p} + (8/9)(3/4)^{p} = 1$

Equations of this form don't always have closedform solutions, so you may need to approximate p numerically sometimes

The Akra-Bazzi formula for a scary case

But in this case the solution is simple: p = 2Then we integrate:

$$\begin{aligned} \Gamma(n) &= \Theta\left(n^2 \left(1 + \int_1^n \frac{u^2}{u^3} du\right)\right) \\ &= \Theta\left(n^2 \left(1 + \log(n)\right)\right) \\ &= \Theta\left(n^2 \times \log(n)\right) \end{aligned}$$

The Akra-Bazzi theorem

Theorem. Suppose that the function T : $R \rightarrow R$ is nonnegative and bounded for $0 \le x \le x_0$ and satisfies the recurrence

$$T(x) = \sum_{i=1}^{n} a_i T(b_i x + h_i(x)) + g(x), \quad \text{for } x > x_0$$

where:

 x_0 is large enough so that T is well-defined,

 $a_1, ..., a_k$ are positive constants,

- b_1, \ldots, b_k are constants between 0 and 1,
- ✤ g(x) is a nonnegative function such that |g'(x)| is bounded by a polynomial,

$$|h_i(x)| = O(x/\log^2(x))$$

The Akra-Bazzi theorem

Theorem (cont'ed). Then

$$T(x) = \Theta\left(x^p\left(1 + \int_1^x \frac{g(u)}{u^{p+1}}du\right)\right)$$

where *p* satisfies:

$$\sum_{i=1}^{k} a_i b_i^p = 1$$

The Master theorem

Master Theorem. Let T be a recurrence of the form $T(n) = aT(\frac{n}{b}) + g(n)$

Case 1: if, for some constant $\varepsilon > 0$, $g(n) = O(n^{\log_b(a) - \epsilon})$ $T(n) = \Theta\left(n^{\log_b(a)}\right)$ **Case 2**: if, for some constant $k \ge 0$, $g(n) = \Theta(n^{\log_b(a)} \log^k(n))$ $T(n) = \Theta\left(n^{\log_b(a)} \log^{k+1}(n)\right)$

Case 3: if, for some constant $\varepsilon > 0$ and ag(n/b) < cg(n) for some constant c < 1 and sufficiently large n, $g(n) = \Omega(n^{\log_b(a) + \epsilon})$ $T(n) = \Theta(g(n))$