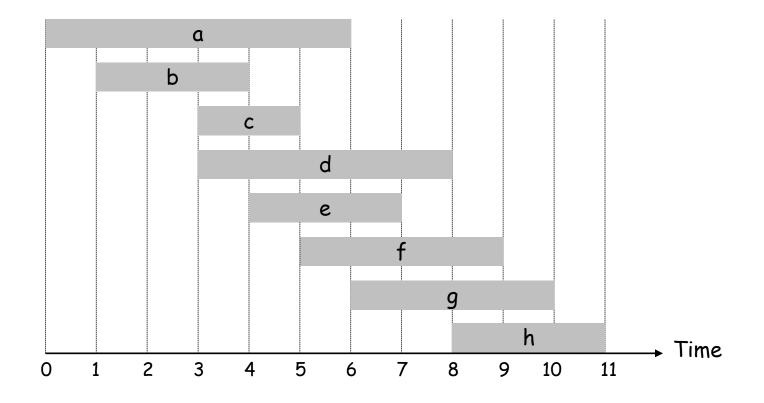
4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.

- Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- . Goal: find maximum subset of mutually compatible jobs.



Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- $\hfill\$ [Earliest start time] Consider jobs in ascending order of start time $s_{j}.$
- . [Earliest finish time] Consider jobs in ascending order of finish time $f_{\rm j}.$
- . [Shortest interval] Consider jobs in ascending order of interval length $f_{\rm j}$ $s_{\rm j}.$
- [Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.

\checkmark^{jobs \ selected}

A \leftarrow \phi

for j = 1 to n {

if (job j compatible with A)

A \leftarrow A \cup \{j\}

}

return A
```

Implementation. O(n log n).

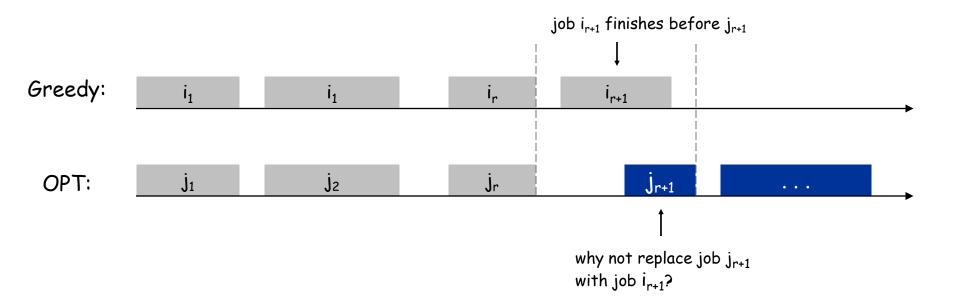
- Remember job j* that was added last to A.
- Job j is compatible with A if $s_j \ge f_{j^*}$.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let i_1 , i_2 , ... i_k denote set of jobs selected by greedy.
- Let j_1 , j_2 , ... j_m denote set of jobs in the optimal solution with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

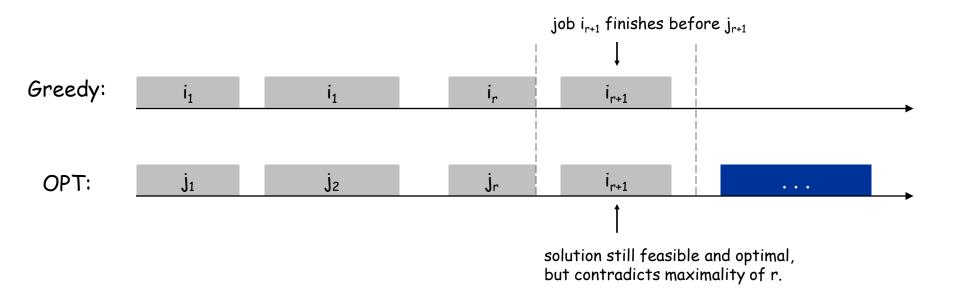


Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let i_1 , i_2 , ... i_k denote set of jobs selected by greedy.
- Let j_1 , j_2 , ... j_m denote set of jobs in the optimal solution with $i_1 = j_1$, $i_2 = j_2$, ..., $i_r = j_r$ for the largest possible value of r.

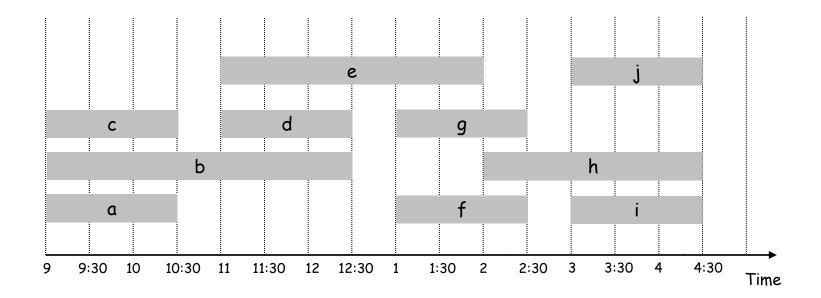


4.2 Interval Partitioning

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- Ex: This schedule uses 4 classrooms to schedule 10 lectures.

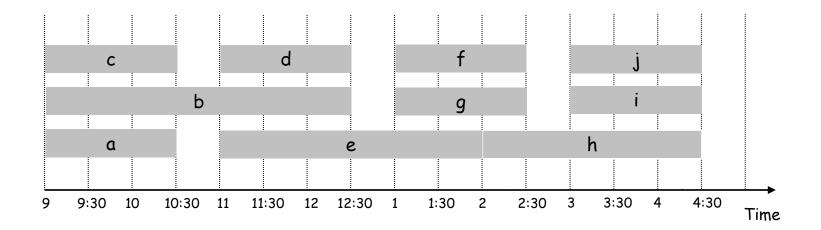


Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.



Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

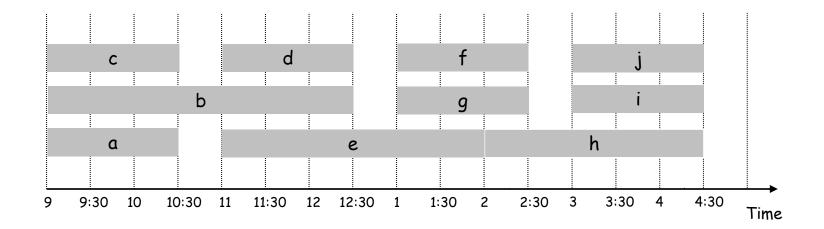
Key observation. Number of classrooms needed \geq depth.

```
Ex: Depth of schedule below = 3 \Rightarrow schedule below is optimal.

\uparrow

a, b, c all contain 9:30
```

Q. Does there always exist a schedule equal to depth of intervals?



Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 \le s_2 \le \ldots \le s_n.

d \leftarrow 0 \leftarrow number of allocated classrooms

for j = 1 to n {

    if (lecture j is compatible with some classroom k)

        schedule lecture j in classroom k

    else

        allocate a new classroom d + 1

        schedule lecture j in classroom d + 1

        d \leftarrow d + 1

}
```

Implementation. O(n log n).

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.

Interval Partitioning: Greedy Analysis

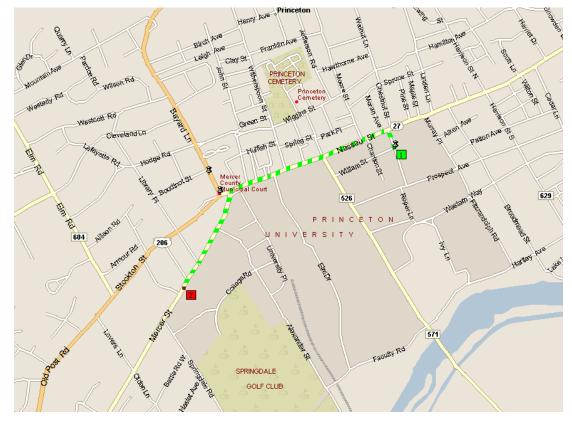
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

- Let d = number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_j.
- Thus, we have d lectures overlapping at time $s_j + \varepsilon$.
- Key observation \Rightarrow all schedules use \ge d classrooms. -

4.3 Shortest Paths in a Graph



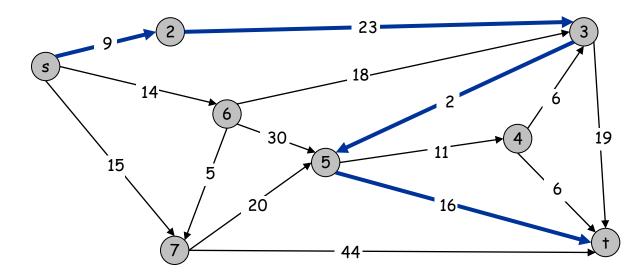
shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E).
- Source s, destination t.
- Length ℓ_e = length of edge e.

Shortest path problem: find shortest directed path from s to t.



Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 48.

Dijkstra's Algorithm

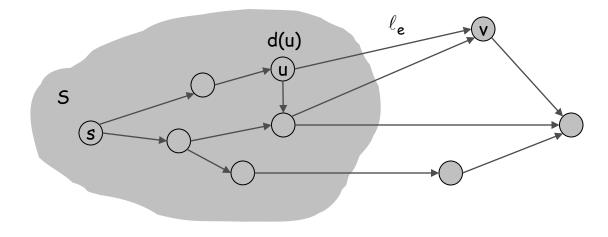
Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set d(v) = $\pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)



Dijkstra's Algorithm

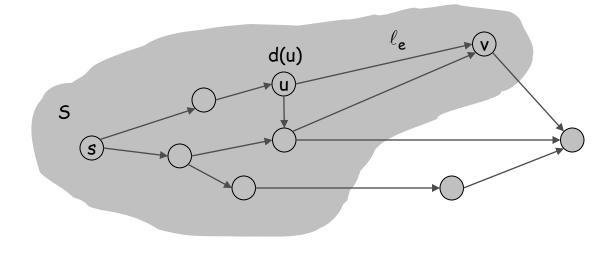
Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set d(v) = $\pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)



Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path. Pf. (by induction on |S|)

S

instead of y

S

Base case: |S| = 1 is trivial.

weights

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

hypothesis

$$\ell (P) \ge \ell (P') + \ell (x,y) \ge d(x) + \ell (x,y) \ge \pi(y) \ge \pi(v)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
nonnegative inductive defn of $\pi(y)$ Dijkstra chose v

Ρ

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge e = (v, w), update

 $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap [†]
Insert	n	n	log n	d log _d n	1
ExtractMin	n	n	log n	d log _d n	log n
ChangeKey	m	1	log n	log _d n	1
IsEmpty	n	1	1	1	1
Total		n²	m log n	m log _{m/n} n	m + n log n

† Individual ops are amortized bounds