
4.1  Interval Scheduling 
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Interval Scheduling 

Interval scheduling. 

 Job j starts at sj and finishes at fj. 

 Two jobs compatible if they don't overlap. 

 Goal: find maximum subset of mutually compatible jobs. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 

it's compatible with the ones already taken. 

 

 [Earliest start time]  Consider jobs in ascending order of start time 

sj. 

 

 [Earliest finish time]  Consider jobs in ascending order of finish 

time fj. 

 

 [Shortest interval]  Consider jobs in ascending order of interval 

length  fj - sj. 

 

 [Fewest conflicts]  For each job, count the number of conflicting 

jobs cj. Schedule in ascending order of conflicts cj. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 

it's compatible with the ones already taken. 

 

breaks earliest start time 

breaks shortest interval 

breaks fewest conflicts 
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Greedy algorithm.  Consider jobs in increasing order of finish time. 

Take each job provided it's compatible with the ones already taken. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 Remember job j* that was added last to A. 

 Job j is compatible with A if sj  fj*. 

 

Sort jobs by finish times so that f1  f2  ...  fn. 

 

 

A   

for j = 1 to n { 

   if (job j compatible with A) 

      A  A  {j} 

} 

return A   

jobs selected  

Interval Scheduling:  Greedy Algorithm 
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Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 

 

Pf.  (by contradiction) 

 Assume greedy is not optimal, and let's see what happens. 

 Let i1, i2, ... ik denote set of jobs selected by greedy. 

 Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.  

j1 j2 jr 

i1 i1 ir ir+1 

. . . 

Greedy: 

OPT: jr+1 

why not replace job jr+1 
with job ir+1? 

job ir+1 finishes before jr+1 
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j1 j2 jr 

i1 i1 ir ir+1 

Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 

 

Pf.  (by contradiction) 

 Assume greedy is not optimal, and let's see what happens. 

 Let i1, i2, ... ik denote set of jobs selected by greedy. 

 Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

 

. . . 

Greedy: 

OPT: 

solution still feasible and optimal, 
but contradicts maximality of r. 

ir+1 

job ir+1 finishes before jr+1 



4.2  Interval Partitioning 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

 

Ex:  This schedule uses 4 classrooms to schedule 10 lectures. 

Time 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

 

Ex:  This schedule uses only 3. 

Time 
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Interval Partitioning:  Lower Bound on Optimal Solution 

Def.  The depth of a set of open intervals is the maximum number that 

contain any given time. 

 

Key observation.  Number of classrooms needed    depth. 

 

Ex:  Depth of schedule below = 3    schedule below is optimal. 

 

 

Q.  Does there always exist a schedule equal to depth of intervals? 

 

Time 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 For each classroom k, maintain the finish time of the last job added. 

 Keep the classrooms in a priority queue. 

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Analysis 

Observation.  Greedy algorithm never schedules two incompatible 

lectures in the same classroom. 

 

Theorem.  Greedy algorithm is optimal. 

Pf.   

 Let d = number of classrooms that the greedy algorithm allocates. 

 Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms. 

 Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than sj. 

 Thus, we have d lectures overlapping at time sj + . 

 Key observation    all schedules use  d classrooms.  ▪ 



4.3  Shortest Paths in a Graph 

shortest path from Princeton CS department to Einstein's house 
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Shortest Path Problem 

Shortest path network. 

 Directed graph G = (V, E). 

 Source s, destination t. 

 Length e = length of edge e. 

 

Shortest path problem:  find shortest directed path from s to t. 

 

 

 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48. 
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cost of path = sum of edge costs in path 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 

 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 

 Initialize S = { s }, d(s) = 0. 

 Repeatedly choose unexplored node v which minimizes 

 

 

add v to S, and set d(v) = (v). 
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shortest path to some u in explored 
part, followed by a single edge (u, v) 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 

 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 

 Initialize S = { s }, d(s) = 0. 

 Repeatedly choose unexplored node v which minimizes 

 

 

add v to S, and set d(v) = (v). 
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:),(
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e 
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Dijkstra's Algorithm:  Proof of Correctness 

Invariant.  For each node u  S, d(u) is the length of the shortest s-u path. 

Pf.  (by induction on |S|) 

Base case:  |S| = 1 is trivial. 

Inductive hypothesis:  Assume true for |S| = k    1. 

 Let v be next node added to S, and let u-v be the chosen edge. 

 The shortest s-u path plus (u, v) is an s-v path of length (v). 

 Consider any s-v path P. We'll see that it's no shorter than (v). 

 Let x-y be the first edge in P that leaves S, 

and let P' be the subpath to x. 

 P is already too long as soon as it leaves S. 

 

  (P)    (P') +  (x,y)    d(x) +  (x, y)    (y)    (v) 

nonnegative 
weights 

inductive 
hypothesis 

defn of (y) Dijkstra chose v 
instead of y 
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Dijkstra's Algorithm:  Implementation 

For each unexplored node, explicitly maintain  

 

 Next node to explore = node with minimum (v). 

 When exploring v, for each incident edge e = (v, w), update 

 

 

Efficient implementation.  Maintain a priority queue of unexplored 

nodes, prioritized by (v). 

†  Individual ops are amortized bounds 

PQ Operation 

Insert 

ExtractMin 

ChangeKey 

Binary heap 

log n 

log n 

log n 

Fib heap † 

1 

log n 

1 

Array 

n 

n 

1 

IsEmpty 1 1 1 

Priority Queue 

Total m log n m + n log n n2 

Dijkstra 

n 

n 

m 

n 

d-way Heap 

d log d n 

d log d n 

log d n 

1 

m log m/n n 

  



(v)  min
e  (u,v) : uS

d(u)  e  .



(w)  min { (w),  (v) e }.


