
4.1  Interval Scheduling 
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Interval Scheduling 

Interval scheduling. 

 Job j starts at sj and finishes at fj. 

 Two jobs compatible if they don't overlap. 

 Goal: find maximum subset of mutually compatible jobs. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 

it's compatible with the ones already taken. 

 

 [Earliest start time]  Consider jobs in ascending order of start time 

sj. 

 

 [Earliest finish time]  Consider jobs in ascending order of finish 

time fj. 

 

 [Shortest interval]  Consider jobs in ascending order of interval 

length  fj - sj. 

 

 [Fewest conflicts]  For each job, count the number of conflicting 

jobs cj. Schedule in ascending order of conflicts cj. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 

it's compatible with the ones already taken. 

 

breaks earliest start time 

breaks shortest interval 

breaks fewest conflicts 
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Greedy algorithm.  Consider jobs in increasing order of finish time. 

Take each job provided it's compatible with the ones already taken. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 Remember job j* that was added last to A. 

 Job j is compatible with A if sj  fj*. 

 

Sort jobs by finish times so that f1  f2  ...  fn. 

 

 

A   

for j = 1 to n { 

   if (job j compatible with A) 

      A  A  {j} 

} 

return A   

jobs selected  

Interval Scheduling:  Greedy Algorithm 
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Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 

 

Pf.  (by contradiction) 

 Assume greedy is not optimal, and let's see what happens. 

 Let i1, i2, ... ik denote set of jobs selected by greedy. 

 Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.  

j1 j2 jr 

i1 i1 ir ir+1 

. . . 

Greedy: 

OPT: jr+1 

why not replace job jr+1 
with job ir+1? 

job ir+1 finishes before jr+1 
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j1 j2 jr 

i1 i1 ir ir+1 

Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 

 

Pf.  (by contradiction) 

 Assume greedy is not optimal, and let's see what happens. 

 Let i1, i2, ... ik denote set of jobs selected by greedy. 

 Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

 

. . . 

Greedy: 

OPT: 

solution still feasible and optimal, 
but contradicts maximality of r. 

ir+1 

job ir+1 finishes before jr+1 



4.2  Interval Partitioning 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

 

Ex:  This schedule uses 4 classrooms to schedule 10 lectures. 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

 

Ex:  This schedule uses only 3. 

Time 
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 

h 

c 

a e 

f 

g i 

j 

3 3:30 4 4:30 

d 

b 



11 

Interval Partitioning:  Lower Bound on Optimal Solution 

Def.  The depth of a set of open intervals is the maximum number that 

contain any given time. 

 

Key observation.  Number of classrooms needed    depth. 

 

Ex:  Depth of schedule below = 3    schedule below is optimal. 

 

 

Q.  Does there always exist a schedule equal to depth of intervals? 

 

Time 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 For each classroom k, maintain the finish time of the last job added. 

 Keep the classrooms in a priority queue. 

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Analysis 

Observation.  Greedy algorithm never schedules two incompatible 

lectures in the same classroom. 

 

Theorem.  Greedy algorithm is optimal. 

Pf.   

 Let d = number of classrooms that the greedy algorithm allocates. 

 Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms. 

 Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than sj. 

 Thus, we have d lectures overlapping at time sj + . 

 Key observation    all schedules use  d classrooms.  ▪ 



4.3  Shortest Paths in a Graph 

shortest path from Princeton CS department to Einstein's house 
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Shortest Path Problem 

Shortest path network. 

 Directed graph G = (V, E). 

 Source s, destination t. 

 Length e = length of edge e. 

 

Shortest path problem:  find shortest directed path from s to t. 

 

 

 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48. 
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cost of path = sum of edge costs in path 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 

 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 

 Initialize S = { s }, d(s) = 0. 

 Repeatedly choose unexplored node v which minimizes 

 

 

add v to S, and set d(v) = (v). 

,)(min)(
:),(
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S 

e 

shortest path to some u in explored 
part, followed by a single edge (u, v) 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 

 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 

 Initialize S = { s }, d(s) = 0. 

 Repeatedly choose unexplored node v which minimizes 

 

 

add v to S, and set d(v) = (v). 
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shortest path to some u in explored 
part, followed by a single edge (u, v) 
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Dijkstra's Algorithm:  Proof of Correctness 

Invariant.  For each node u  S, d(u) is the length of the shortest s-u path. 

Pf.  (by induction on |S|) 

Base case:  |S| = 1 is trivial. 

Inductive hypothesis:  Assume true for |S| = k    1. 

 Let v be next node added to S, and let u-v be the chosen edge. 

 The shortest s-u path plus (u, v) is an s-v path of length (v). 

 Consider any s-v path P. We'll see that it's no shorter than (v). 

 Let x-y be the first edge in P that leaves S, 

and let P' be the subpath to x. 

 P is already too long as soon as it leaves S. 

 

  (P)    (P') +  (x,y)    d(x) +  (x, y)    (y)    (v) 

nonnegative 
weights 

inductive 
hypothesis 

defn of (y) Dijkstra chose v 
instead of y 
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Dijkstra's Algorithm:  Implementation 

For each unexplored node, explicitly maintain  

 

 Next node to explore = node with minimum (v). 

 When exploring v, for each incident edge e = (v, w), update 

 

 

Efficient implementation.  Maintain a priority queue of unexplored 

nodes, prioritized by (v). 

†  Individual ops are amortized bounds 

PQ Operation 

Insert 

ExtractMin 

ChangeKey 

Binary heap 

log n 

log n 

log n 

Fib heap † 

1 

log n 

1 

Array 

n 

n 

1 

IsEmpty 1 1 1 

Priority Queue 

Total m log n m + n log n n2 

Dijkstra 

n 

n 

m 

n 

d-way Heap 

d log d n 

d log d n 

log d n 

1 

m log m/n n 

  



(v)  min
e  (u,v) : uS

d(u)  e  .



(w)  min { (w),  (v) e }.


