
4.1 Interval Scheduling

2

Interval Scheduling

Interval scheduling.

 Job j starts at sj and finishes at fj.

 Two jobs compatible if they don't overlap.

 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

3

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided

it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of start time

sj.

 [Earliest finish time] Consider jobs in ascending order of finish

time fj.

 [Shortest interval] Consider jobs in ascending order of interval

length fj - sj.

 [Fewest conflicts] For each job, count the number of conflicting

jobs cj. Schedule in ascending order of conflicts cj.

4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided

it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

5

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).

 Remember job j* that was added last to A.

 Job j is compatible with A if sj fj*.

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

 if (job j compatible with A)

 A A {j}

}

return A

jobs selected

Interval Scheduling: Greedy Algorithm

6

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

 Assume greedy is not optimal, and let's see what happens.

 Let i1, i2, ... ik denote set of jobs selected by greedy.

 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

7

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

 Assume greedy is not optimal, and let's see what happens.

 Let i1, i2, ... ik denote set of jobs selected by greedy.

 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.2 Interval Partitioning

9

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

10

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

11

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed depth.

Ex: Depth of schedule below = 3 schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

12

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d d + 1

}

number of allocated classrooms

13

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible

lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

 Let d = number of classrooms that the greedy algorithm allocates.

 Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.

 Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj + .

 Key observation all schedules use d classrooms. ▪

4.3 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

15

Shortest Path Problem

Shortest path network.

 Directed graph G = (V, E).

 Source s, destination t.

 Length e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48.

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge costs in path

16

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv

s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

17

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv

s

v

u

d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

e

18

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u S, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k 1.

 Let v be next node added to S, and let u-v be the chosen edge.

 The shortest s-u path plus (u, v) is an s-v path of length (v).

 Consider any s-v path P. We'll see that it's no shorter than (v).

 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.

 P is already too long as soon as it leaves S.

 (P) (P') + (x,y) d(x) + (x, y) (y) (v)

nonnegative
weights

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

19

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

 Next node to explore = node with minimum (v).

 When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of unexplored

nodes, prioritized by (v).

† Individual ops are amortized bounds

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n

log n

log n

Fib heap †

1

log n

1

Array

n

n

1

IsEmpty 1 1 1

Priority Queue

Total m log n m + n log n n2

Dijkstra

n

n

m

n

d-way Heap

d log d n

d log d n

log d n

1

m log m/n n

(v) min
e (u,v) : uS

d(u) e .

(w) min { (w), (v) e }.

