4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don' \dagger overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_{j}.
- [Earliest finish time] Consider jobs in ascending order of finish time f_{j}.
- [Shortest interval] Consider jobs in ascending order of interval length $f_{j}-s_{j}$.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_{j}. Schedule in ascending order of conflicts c_{j}.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
breaks earliest start time
breaks shortest interval
breaks fewest conflicts

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
    , jobs selected
A}\leftarrow
for j = 1 to n {
    if (job j compatible with A)
        A}\leftarrowA\cup{\mp@code{{}
}
return A
```

Implementation. $O(n \log n$).

- Remember job j^{*} that was added last to A.
- Job j is compatible with A if $s_{j} \geq f_{j *}$.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots . i_{k}$ denote set of jobs selected by greedy.
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots . i_{k}$ denote set of jobs selected by greedy.
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

4.2 Interval Partitioning

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3 .

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.
Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.
a, b, c all contain 9:30
Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots\leq\mp@subsup{s}{n}{}
d }\leftarrow0\longleftarrow\mathrm{ number of allocated classrooms
for j = 1 to n {
    if (lecture j is compatible with some classroom k)
    schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d}\leftarrowd+
}
```

Implementation. $O(n \log n)$.

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.

- Let $d=$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, we have d lectures overlapping at time $\mathrm{s}_{\mathrm{j}}+\varepsilon$.
- Key observation \Rightarrow all schedules use \geq d classrooms. "

4.3 Shortest Paths in a Graph

Shortest Path Problem

Shortest path network.

- Directed graph $G=(V, E)$.
- Source s, destination t.
- Length $\ell_{e}=$ length of edge e.

Shortest path problem: find shortest directed path from s to t.
cost of path = sum of edge costs in path

Cost of path s-2-3-5-t
$=9+23+2+16$ $=48$.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

add v to S, and set $d(v)=\pi(v)$.
shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

add v to S, and set $d(v)=\pi(v)$.
shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $\mathrm{u} \in \mathrm{S}, \mathrm{d}(\mathrm{u})$ is the length of the shortest s - u path. Pf. (by induction on $|S|$)
Base case: $|S|=1$ is trivial.
Inductive hypothesis: Assume true for $|S|=k \geq 1$.

- Let v be next node added to S, and let $u-v$ be the chosen edge.
- The shortest s-u path plus (u, v) is an $s-v$ path of length $\pi(v)$.
- Consider any $s-v$ path P. We'll see that it's no shorter than $\pi(v)$.
- Let $x-y$ be the first edge in P that leaves S, and let P^{\prime} be the subpath to x.
. P is already too long as soon as it leaves S.

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge $e=(v, w)$, update

$$
\pi(w)=\min \left\{\pi(w), \pi(v)+\ell_{e}\right\} .
$$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap ${ }^{\dagger}$
Insert	n	n	$\log n$	$d \log _{d} n$	1
ExtractMin	n	n	$\log n$	$d \log _{d} n$	$\log n$
ChangeKey	m	1	$\log n$	$\log _{d} n$	1
IsEmpty	n	1	1	1	1
Total		n^{2}	$m \log _{n}$	$m \log _{m / n} n$	$m+n \log n$

\dagger Individual ops are amortized bounds

