
4.1 Interval Scheduling

2

Interval Scheduling

Interval scheduling.

 Job j starts at sj and finishes at fj.

 Two jobs compatible if they don't overlap.

 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

3

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided

it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of start time

sj.

 [Earliest finish time] Consider jobs in ascending order of finish

time fj.

 [Shortest interval] Consider jobs in ascending order of interval

length fj - sj.

 [Fewest conflicts] For each job, count the number of conflicting

jobs cj. Schedule in ascending order of conflicts cj.

4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided

it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

5

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).

 Remember job j* that was added last to A.

 Job j is compatible with A if sj  fj*.

Sort jobs by finish times so that f1  f2  ...  fn.

A  

for j = 1 to n {

 if (job j compatible with A)

 A  A  {j}

}

return A

jobs selected

Interval Scheduling: Greedy Algorithm

6

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

 Assume greedy is not optimal, and let's see what happens.

 Let i1, i2, ... ik denote set of jobs selected by greedy.

 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

7

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

 Assume greedy is not optimal, and let's see what happens.

 Let i1, i2, ... ik denote set of jobs selected by greedy.

 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.2 Interval Partitioning

9

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

10

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

11

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed  depth.

Ex: Depth of schedule below = 3  schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

12

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

number of allocated classrooms

13

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible

lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

 Let d = number of classrooms that the greedy algorithm allocates.

 Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.

 Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj + .

 Key observation  all schedules use  d classrooms. ▪

4.3 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

15

Shortest Path Problem

Shortest path network.

 Directed graph G = (V, E).

 Source s, destination t.

 Length e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48.

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge costs in path

16

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

17

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u

d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

e

18

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u  S, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k  1.

 Let v be next node added to S, and let u-v be the chosen edge.

 The shortest s-u path plus (u, v) is an s-v path of length (v).

 Consider any s-v path P. We'll see that it's no shorter than (v).

 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.

 P is already too long as soon as it leaves S.

  (P)   (P') +  (x,y)  d(x) +  (x, y)  (y)  (v)

nonnegative
weights

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

19

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

 Next node to explore = node with minimum (v).

 When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of unexplored

nodes, prioritized by (v).

† Individual ops are amortized bounds

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n

log n

log n

Fib heap †

1

log n

1

Array

n

n

1

IsEmpty 1 1 1

Priority Queue

Total m log n m + n log n n2

Dijkstra

n

n

m

n

d-way Heap

d log d n

d log d n

log d n

1

m log m/n n



(v)  min
e  (u,v) : uS

d(u)  e .



(w)  min { (w), (v) e }.

