4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.
- Job j starts at sj and finishes at f;.
. Two jobs compatible if they don't overlap.

. Goal: find maximum subset of mutually compatible jobs.

> Time

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

. [Earliest start time] Consider jobs in ascending order of start time
S;-
. [Earliest finish time] Consider jobs in ascending order of finish

. [Shortest interval] Consider jobs in ascending order of interval
|en9'|'h fJ - Sj'

. [Fewest conflicts] For each job, count the number of conflicting
jobs ¢;. Schedule in ascending order of conflicts c;.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

IA
H

Sort jobs by finish times so that £, < £, < ...

jobs selected

A« ¢
for j =1 ton {
if (job j compatible with A)
A« AU {3}
}

return A

Implementation. O(n log n).
- Remember job j* that was added last to A.
. Job jis compatible with A if s;> fix.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
. Assume greedy is not optimal, and let's see what happens.
. Let iy, iy, ... iydenote set of jobs selected by greedy.
- Let ji, jo, ... jm denote set of jobs in the optimal solution with
i1 = j1, 2= j2, .., i, = j. for the largest possible value of r.

job i.,; finishes before j,.

|
|
|
. |
st :
I
|
|
|
|

E N
I

why not replace job j,.1
with job i.,.4?

Greedy: iy iy i

v

OPT: J1 J2 Jr

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
. Assume greedy is not optimal, and let's see what happens.
. Let iy, iy, ... iydenote set of jobs selected by greedy.
- Let ji, jo, ... jm denote set of jobs in the optimal solution with
i1 = j1, 2= j2, .., i, = j. for the largest possible value of r.

job i.,; finishes before j,.

Greedy: iy iy i

v

solution still feasible and optimal,
but contradicts maximality of r.

OPT: J1 J2 Jr

4.2 Interval Partitioning

Interval Partitioning

Interval partitioning.
- Lecture j starts at s; and finishes at f;.
. Goal: find minimum number of classrooms to schedule all lectures so
that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

9 9:30 10 10:30 11 11:30 12 12:30 1 .30 2 2:30 3 3:30 4 4:30 Tim
ime

Interval Partitioning

Interval partitioning.
- Lecture j starts at s; and finishes at f;.
. Goal: find minimum number of classrooms to schedule all lectures so
that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

b g i
a e h
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 T'm'
ime

10

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed > depth.

Ex: Depth of schedule below = 3 = schedule below is optimal.

1

a, b, c all contain 9:30

Q. Does there always exist a schedule equal to depth of intervals?

e e

9 9:30 10 10:30 11 11:30 12 12:30 1 .30 2 2:30 3 3:30 4 4:30 Tim
ime

1

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start ftime:
assign lecture to any compatible classroom.

IA
0]

Sort intervals by starting time so that s; < s,

d <« 0 <«— number of allocated classrooms

<

for j =1 to n {
if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else
allocate a new classroom d + 1

schedule lecture j in classroom d + 1
d«d+1

Implementation. O(n log n).
. For each classroom k, maintain the finish time of the last job added.

. Keep the classrooms in a priority queue.

12

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.
. Let d = number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j,
that is incompatible with all d-1 other classrooms.
. Since we sorted by start time, all these incompatibilities are caused
by lectures that start no later than s;.
. Thus, we have d lectures overlapping at time s; + «.
. Key observation = all schedules use > d classrooms. -

13

4.3 Shortest Paths in a Grap

-Princeton Vi W
BT = B % = =
0 3) 3
= 3 & patf %,
r%.g e o \:(aﬂ“‘““ e g% Eh! H am\\)“m‘s% Q
% 1 &
&5 % Wyt 'y o P Y %,
& @ T o = e &, £
o 3 % %, PRNCETON g ST 'Y
e B e 0 3 CEMETERY. % LTl % 2
o 4 Princetari, ' % o & = ?’5
2 Cemetan % 2 2T g 4]
ot & + g3 ha % ® %
S 4 % & T B Wm kS %
R [o et o i]
wie? J%, e s KT %«)& s %0}
Claveland <) ‘“QQ\ p# ny ok 5 2 i ?awnlk\‘“ %
g 5 @ &
% %‘yq?@ & we‘“ i A %é
e = &
% £ 3o g B
Uy P o Merger S iy P;cﬁ-‘e'
ENP gcaouw I Court
1 uNictpa ou '35
,9‘3‘ 595) aé@m\% 629
% % L
b & PRINCETOMN = 5
G]
w0 @4‘(\ WHIYERSITY ’5/% '%tge
< 206 5 4 i
S A o .«
#" F) Y W
5 2k & 8
s 3 = &
&] &
.)
&
o7
G, \3@@ %, 57
% %
@ % ! wr®
& S & g
& & %
2 4 £ 5 SPRINGDALE
5 &
< %’g i i—?%»p GOLF CLUB
@ g

shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.
. Directed graph G = (V, E).
. Source s, destination t.
. Length 7, = length of edge e.

Shortest path problem: find shortest directed path from s to t.
T

cost of path = sum of edge costs in path

9/@ 23

1 18 Cost of path s-2-3-5-1
6
30 /,q 19 = 48.
11
15

5
6
20 16

15

Dijkstra's Algorithm

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
. Initialize S={s}, d(s)=0.
. Repeatedly choose unexplored node v which minimizes

z(v)= min d(u)+/,,
e=(u,v):ues

add v to S, and set d(v) = n(v). shortest path to some u in explored
! part, followed by a single edge (u, v)

16

Dijkstra's Algorithm

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
. Initialize S={s}, d(s)=0.
. Repeatedly choose unexplored node v which minimizes

z(v)= min d(u)+/,,
e=(u,v):ues

add v to S, and set d(v) = n(v). shortest path to some u in explored
! part, followed by a single edge (u, v)

17

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S])
Base case: |S| =1 is trivial.
Inductive hypothesis: Assume true for |S| =k > 1.
. Let v be next node added to S, and let u-v be the chosen edge.
. The shortest s-u path plus (u, v) is an s-v path of length =(v).
. Consider any s-v path P. We'll see that it's no shorter than n(v).
. Letf x-y be the first edge in P that leaves S,
and let P* be the subpath to x.
. P is already too long as soon as it leaves S.

£ (P) : P+ 1 (xy) ; do) + 1 (x, Y)TZ (y) : n(v)

nonnegative inductive defn of n(y) Dijkstra chose v
weights hypothesis instead of y

18

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain z(v)= (ml;n . d(u) + ¢,
e=(wVv):ue

- Next node to explore = node with minimum n(v).
- When exploring v, for each incident edge e = (v, w), update

a(w)=min { 7(w), 7()+L,}.

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by n(v).

PQ Oper‘a‘hon Binary heap | d-way Heap | Fib heap T

n log n dlogyn
T
D 0 n o
Total n? m log n mlog,,n m+nlogn

T Individual ops are amortized bounds

19

