Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: (3,4 hs value 40,

1 1 1
W= 11 2 6 2
3 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1. OPT does not select item i.
- OPT selects best of {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we don'+t
even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w,
- OPT selects best of { 1, 2, ..., i-1} using this new weight limit

0 if i=0
OPT(i,w)=9O0OPT(i—1, w) if w,>w
(max{ OPT(i—1,w), v;+ OPT(i—-1,w—w,;)} otherwise

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

¢
{1}
{12}
{1,2,3)
{1,2,3,4}
{1,2,3,4,5)

Knapsack Algorithm

0
o
o
o
o)
o)
o)

0
1
1
1
1
1

o O O O =
N N N N -~

OPT: {4,63}
value = 22 + 18 = 40

1
7
7
7
7

W+1

1 1

7 7
el

wW=11

1
7

1
7

1
7

24 25 25
18 22 24 28 29
18 22 28 29 34

v

HEREEDRDEED
o o o0 o0 o O O o o o

1 1
7 7
25 25

2o oL
34 [40°

O D W N -

1
6
18
22
28

1

N o 0N

Knapsack Problem: Running Time

Running time. ©(n W).
. Not polynomial in input size!
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum.

Sequence Alignment

String Similarity

How similar are two strings?

« Ocurrance

(o

- Il - NAnE
. - [- 0 -

5 mismatches, 1 gap

» OCcurrence

O mismatches, 3 gaps

Edit Distance

Applications.

. Basis for Unix diff.

. Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty 5; mismatch penalty o,
. Cost = sum of gap and mismatch penalties.

CCTACT .CTGACCTACT
CCTACT CCTGAC.TACT

Otc+ OlgT+ OLag* 20ica 23+ Ocp

10

Sequence Alignment

Goal: Given two strings X = x; X, ... X, and Y =y;y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i<i’, but j>j'.

cost(M) = Zaxiyj + > o+ D> 6

(X, Y)) € M i :X; unmatched j:y; unmatched
mjsﬂlratch g;ﬁo
X1 X2 X3 X4 X5 X6
Ex: CTACCG VS. TACATG. Sl A] e . -
Sol: M = X5-y1, X3-Y2, X4-Y3, X5-Y4, X6~Ye. . T

Yi Y2 Y3 Y4 Y5 Ys

1

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x;and y; y, .. .Y;.

. Case 1. OPT matches x;-y;.

- pay mismatch for x;-y; + min cost of aligning two strings

X1 X ... Xigandyyys ... Y

. Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; X, ... x;.yand y; y, . . . y;
. Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; x, ... x;and y1 y, . .. Y1

jo (if i=0
Ay, y, +0OPT(i-1, j—1)
o+O0PT(i—1,)) otherwise
\ o+O0OPT(, j-1)

io if j=0

N

OPT(i, j)=9 min

Sequence Alignment: Algorithm

Analysis. ®(mn) fime and space.
English words or sentences: m, n <10.
Computational biology: m = n =100,000. 10 billions ops OK, but 10GB array?

13

