
1

Divide-and-Conquer

Divide-and-conquer.

 Break up problem into several parts.

 Solve each part recursively.

 Combine solutions to sub-problems into overall solution.

Most common usage.

 Break up problem of size n into two equal parts of size ½n.

 Solve two parts recursively.

 Combine two solutions into overall solution in linear time.

Consequence.

 Brute force: n2.

 Divide-and-conquer: n log n. Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Computational Geometry:
Closest Pair of Points

3

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

 Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

 Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with (n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate (or y coordinate)

 Otherwise: rotate or enhance a bit our algorithm
to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

4

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

5

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

L

6

Designing the algorithm

Setting up the recursion. It would be useful if every recursive call on a

set P’ P, beings with two lists: a list P’x in which all the points in P’

have been sorted by increasing x-coord, and a list P’y in which all the

points in P’ have been sorted by increasing y-coord

We can ensure that this remains true throughout the algorithms as

follows:

 [1] Before any recursion begins, we sort all the points in P by x-

coord and again by y-coord, producing lists Px and Py. Attached to

each entry in each lists is a record of the position of that point in

both lists

 [2] The first level of recursion works as follows (with all further

levels working completely analogously): We define Q to be the set

of points in the first ceil(n/2) positions of the list Px (the “left“

half) and R to be the set of points in the final floor(n/2) positions

of the list Px (the “right“ half)

7

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

L

8

Designing the algorithm

Setting up the recursion (cont’ed). By a single pass through each Px and

Py in O(n) time, we can create the following four lists:

 [i] Qx consisting of the points in Q sorted by increasing x-coord

 [ii] Qy consisting of the points in Q sorted by increasing y-coord

 [iii] Rx consisting of the points in R sorted by increasing x-coord

 [iv] Rx consisting of the points in R sorted by increasing y-coord

For each entry of each of these lists, as before, we record the position

of the point in both lists it belongs to

We recursively determine a closest pair of points in Q (with access to

the lists Qx and Qy)

Suppose that q*
0 and q*

1 are (correctly) returned as a closest pair of

points in Q

Similarly, we determine a closest pair of points in R, obtaining r*
0 and

r*
1

9

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

 Conquer: find closest pair in each side recursively.

12

21

L

10

Designing the algorithm

Combining the solutions. Let δ be the minimum of d(q*
0, q

*
1) and d(r*

0, r
*
1)

The real question is: Are there points q ϵ Q and r ϵ R for which d(q,r)<δ ?

If not, then we have already found the closest pair in one of our

recursive calls

But if there are, then the closest such q and r form the closest pair in P

11

Closest Pair of Points

Algorithm.

 Divide: draw vertical line L so that roughly ½n points on each side.

 Conquer: find closest pair in each side recursively.

 Combine: find closest pair with one point in each side.

 Return best of 3 solutions.

12

21
8

L

seems like (n2)

12

Designing the algorithm

Combining the solutions.

Let x* denote the x-coord of the rightmost point in Q, and let L denote

the vertical line described by the equation x= x*

This line “separates” Q from R. Here is a simple fact:

Corollary. If there exists q ϵ Q and r ϵ R for which d(q,r) < δ, then each

of q and r lies within a distance δ of L

So, if we want to find a close q and r, we can restrict our search to the

narrow band consisting only of points in P within δ of L

Let SP denote this set, and let Sy denote the list consisting of the

points in S sorted by increasing y-coord

By a single pass through the list Py, we can construct Sy in O(n) time

Corollary (restated). There exist q ϵ Q and r ϵ R for which d(q,r) < δ, if

and only if there exist s,s’ ϵ S for which d(s,s’) < δ

13

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

14

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

 Observation: only need to consider points within of line L.

12

21

L

 = min(12, 21)

15

12

21

1

2

3

4
5

6

7

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

 Observation: only need to consider points within of line L.

 Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)

16

12

21

1

2

3

4
5

6

7

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

 Observation: only need to consider points within of line L.

 Sort points in 2-strip by their y coordinate.

 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)

17

Closest Pair of Points

Def. Let si be the point in the 2-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| 12, then the distance between

si and sj is at least .

Pf.

 No two points lie in same ½-by-½ box.

 Two points at least 2 rows apart

have distance 2(½). ▪

Fact. Still true if we replace 12 with 7.

27

29
30

31

28

26

25

½

 2 rows

½

½

39

i

j

18

Designing the algorithm

Finalizing the algorithm.

We make one pass through Sy, and for each s ϵ S, we compute the

distance to each of the next 11 points in S.

The Restated Corollary implies that in doing so, we will have computed

the distance of each pair of points in S (if any) that are at distance

less than δ from each other.

So having done this, we can compare the smallest such distance to δ, and

we can report one of two things:

 [i] the closest pair of points in S, if their distance is less than δ, or

 [ii] the (correct) conclusion that no pairs of points in S are within δ

of each other

In case [i], this pair is closest pair in P,

In case [ii], the closest pair found by our recursive calls is the closest

pair in P

19

Closest Pair Algorithm

Closest-Pair(p1, …, pn)

 Compute separation line L such that half the points

 are on one side and half on the other side, i.e.,

 construct Px and Py

 (p0
*,P1

*)= Closest-Pair-Rec(Px, Py)

Closest-Pair-Rec(Px, Py){

 if |P| 3 then check pairwise distance, return;

 Construct Qx, Qy, Rx, Ry
 1 = Closest-Pair-Rec(left half)

 2 = Closest-Pair-Rec(right half)

 = min(1, 2)

 x*= max x-coord of a point in set Q

 L= {(x,y) : x=x*}

 S= points in P within distance δ of L

 Construct Sy, i.e., sort remaining points by y-coord

 Scan points in y-order and compare distance between

 each point and next 11 neighbors. If any of these

 distances is less than , update .

 return .}

O(n log n)

2T(n / 2)

O(n)

O(n)

O(n)

O(n)

20

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

 Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

 Sort by merging two pre-sorted lists.

T(n) 2T n /2 O(n) T(n) O(n log n)

T(n) 2T n /2 O(n log n) T(n) O(n log2 n)

