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Approximation Algorithms 

Q.  Suppose I need to “solve” an NP-hard problem. What should I do? 

A.  Theory says you're unlikely to find a poly-time algorithm. 

 

Must sacrifice one of three desired features. 

 Solve problem to optimality. 

 Solve problem in poly-time. 

 Solve arbitrary instances of the problem. 

 

-approximation algorithm. 

 Guaranteed to run in poly-time. 

 Guaranteed to solve arbitrary instance of the problem 

 Guaranteed to find solution within ratio  of true optimum. 

 

Challenge.  Need to prove a solution's value is close to optimum, without 

even knowing what optimum value is! 



Load Balancing 
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Load Balancing 

Input.  m identical machines; n jobs, job j has processing time tj. 

 Job j must run contiguously on one machine. 

 A machine can process at most one job at a time. 

 

Def.  Let J(i) be the subset of jobs assigned to machine i.  The 

load of machine i is Li = j  J(i) tj.  

 

Def. The makespan is the maximum load on any machine L = maxi Li. 

 

 

Load balancing.  Assign each job to a machine to minimize makespan. 
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List-scheduling algorithm. 

 Consider n jobs in some fixed order. 

 Assign job j to machine whose load is smallest so far. 

 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n) using a priority queue. 

Load Balancing:  List Scheduling 

List-Scheduling(m, n, t1,t2,…,tn) { 

   for i = 1 to m { 

      Li  0 

      J(i)   

   } 

 

   for j = 1 to n { 

      i = argmink Lk 

      J(i)  J(i)  {j} 

      Li  Li + tj 
   } 

} 

jobs assigned to machine i 

load on machine i 

machine i has smallest load 

assign job j to machine i 

update load of machine i 
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Load Balancing:  List Scheduling Analysis 

Theorem. [Graham, 1966]  Greedy algorithm is a 2-approximation. 

 First worst-case analysis of an approximation algorithm. 

 Need to compare resulting solution with optimal makespan L*. 

 

 

Lemma 1.  The optimal makespan L*  maxj tj.    

Pf.  Some machine must process the most time-consuming job.  ▪ 

 

Lemma 2.  The optimal makespan  

Pf.   

 The total processing time is  j tj . 

 One of m machines must do at least a 1/m fraction of total work.  ▪ 

 

 

 



L*  1
m

t jj .
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Load Balancing:  List Scheduling Analysis 

Theorem.  Greedy algorithm is a 2-approximation. 

Pf.  Consider load Li of bottleneck machine i. 

 Let j be last job scheduled on machine i. 

 When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj      Li - tj     Lk   for all 1  k  m. 

j 

0 
L = Li Li - tj  

machine i 

blue jobs scheduled before j 
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Load Balancing:  List Scheduling Analysis 

Theorem.  Greedy algorithm is a 2-approximation. 

Pf.  Consider load Li of bottleneck machine i. 

 Let j be last job scheduled on machine i. 

 When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj      Li - tj     Lk   for all 1  k  m. 

 Sum inequalities over all k and divide by m: 

 

 

 

 

 

 Now     ▪ 



L i   t j  1
m

Lkk

 1
m

tkk

 L *



Li    (Li  t j )

 L*

 t j

 L*

    2L *.

Lemma 2 

Lemma 1 
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Load Balancing:  List Scheduling Analysis 

Q.  Is our analysis tight? 

A.  Essentially yes. 

 

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m 

 

 

machine 2 idle 

machine 3 idle 

machine 4 idle 

machine 5 idle 

machine 6 idle 

machine 7 idle 

machine 8 idle 

machine 9 idle 

machine 10 idle 

list scheduling makespan = 19 = 2m-1 

m = 10 



9 

Load Balancing:  List Scheduling Analysis 

Q.  Is our analysis tight? 

A.  Essentially yes. 

 

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m 

 

 

m = 10 

optimal makespan = 10 = m. Thus, ratio=(2m-1)/m  2 for large m 
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Load Balancing:  LPT Rule 

Longest processing time (LPT).  Sort n jobs in descending order of 

processing time, and then run list scheduling algorithm. 

LPT-List-Scheduling(m, n, t1,t2,…,tn) { 

   Sort jobs so that t1 ≥ t2 ≥  … ≥ tn 

   

   for i = 1 to m { 

      Li  0 

      J(i)   

   } 

 

   for j = 1 to n { 

      i = argmink Lk 

      J(i)  J(i)  {j} 

      Li  Li + tj 

   } 

} 

jobs assigned to machine i 

load on machine i 

machine i has smallest load 

assign job j to machine i 

update load of machine i 
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Load Balancing:  LPT Rule 

Observation.  If at most m jobs, then list-scheduling is optimal. 

Pf.  Each job put on its own machine.  ▪ 

 

Lemma 3.  If there are more than m jobs, L*  2 tm+1. 

Pf.  

 Consider first m+1 jobs t1, …, tm+1. 

 Since the ti's are in descending order, each takes at least tm+1 time.  

 There are m+1 jobs and m machines, so by pigeonhole principle, at 

least one machine gets two jobs.  ▪ 

 

Theorem.  LPT rule is a 3/2 approximation algorithm. 

Pf.  Same basic approach as for list scheduling. 

 

               ▪ 



L i   (Li  t j )

 L*

 t j

 1
2
L*

    3
2
L *.

Lemma 3 
( by observation, can assume number of jobs > m ) 
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Load Balancing:  LPT Rule 

Q.  Is our 3/2 analysis tight? 

A.  No. 

 

 

 

Theorem.  [Graham, 1969]  LPT rule is a 4/3-approximation. 

Pf.  More sophisticated analysis of same algorithm.  

 

Q.  Is Graham's 4/3 analysis tight? 

A.  Essentially yes. 

 

Ex:  m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and 

one job of length m. 

 

 

 



Set Cover: A general greedy heuristic 
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Set Cover 

Set Cover Problem is based on a set U of n elements and a list S1, . . . , 

Sm of subsets of U; we say that a set cover is a collection of these 

sets whose union is equal to all of U 

 

In the version of the problem we consider here, each set Si has an 

associated weight wi ≥ 0.  

The goal is to find a set cover C so that the total weight 

 

 

 

 

is minimized.  

 

Note that this problem is at least as hard as the decision version of 

Set Cover we encountered earlier 
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Set Cover greedy 

The algorithm will have the property that it builds the cover one set at 

a time; to choose its next set, it looks for one that seems to make 

the most progress toward the goal.  

What is a natural way to define “progress” in this setting?  

Desirable sets have two properties: They have small weight wi, and they 

cover lots of elements.  

Neither of these properties alone, however, would be enough for 

designing a good approximation algorithm.  

Instead, it is natural to combine these two criteria into the single 

measure wi /|Si|—that is, by selecting Si, we cover |Si| elements at 

a cost of wi, and so this ratio gives the “cost per element covered,” 

a very reasonable thing to use as a guide. 
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Set Cover greedy 

Of course, once some sets have already been selected, we are only 

concerned with how we are doing on the elements still left 

uncovered.  

So we will maintain the set R of remaining uncovered elements and 

choose the set Si that minimizes wi /|Si ∩ R|. 
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Set Cover greedy algorithm (bad) example 
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Set Cover greedy algorithm analysis 

Recall the intuitive meaning of the ratio wi /|Si ∩ R| used by the 

algorithm; it is the “cost paid” for covering each new element. Let’s 

record this cost paid for element s in the quantity cs. 

We add the following line to the code immediately after selecting the 

set Si. 

 

 

 

The values cs do not affect the behavior of the algorithm at all; we 

view them as a bookkeeping device to help in our comparison with 

the optimum w∗.  

As each set Si is selected, its weight is distributed over the costs cs of 

the elements that are newly covered.  

Thus these costs completely account for the total weight of the set 

cover, and so we have 
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Set Cover greedy algorithm analysis 

The key to the analysis is to ask how much total cost any single set Sk 

can account for—in other words, to give a bound on 

 

 

relative to the weight wk of the set.  

Giving an upper bound on the ratio 

 

 

 

that holds for every set says, in effect, “To cover a lot of cost, you 

must use a lot of weight.”We know that the optimum solution must 

cover the full cost 

 

via the sets it selects; so this type of bound will establish that it needs 

to use at least a certain amount of weight. This is a lower bound on 

the optimum, just as we need for the analysis. 
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Set Cover greedy algorithm analysis 

Our analysis will use the harmonic function 

 

 

 

It is known that H(n) = Θ(ln n). 

 

Here is the key to establishing a bound on the performance of the 

algorithm. 

 

 

Pf. To simplify the notation, we will assume that the elements of Sk are 

the first d = |Sk| elements of the set U; that is, Sk = {s1, . . . , sd}. 

Furthermore, let us assume that these elements are labeled in the 

order in which they are assigned a cost csj by the greedy algorithm 

(with ties broken arbitrarily).  

There is no loss of generality in doing this, since it simply involves a 

renaming of the elements in U. 
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Set Cover greedy algorithm analysis 

Now consider the iteration in which element sj is covered by the greedy 

algorithm, for some j ≤ d. At the start of this iteration, sj , sj+1, . . . , 

sd ∈ R by our labeling of the elements.  

This implies that |Sk ∩ R| is at least d − j + 1, and so the average cost 

of the set Sk is at most 

 

Note that this is not necessarily an equality, since sj may be covered in 

the same iteration as some of the other elements sj′’ for j′’ < j. In 

this iteration, the greedy algorithm selected a set Si of minimum 

average cost; so this set Si has average cost at most that of Sk. It 

is the average cost of Si that gets assigned to sj, and so we have 

 

 

We now simply add up these inequalities for all elements s ∈ Sk 
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Set Cover greedy algorithm analysis 

Where  d∗ = maxi |Si| denotes the maximum size of any set. 

Let C∗ denote the optimum set cover, so that  

 

For each of the sets in C∗, (11.10) implies 

 

 

Because these sets form a set cover, we have  

 

Combining these with (11.9), we obtain the desired bound: 

 

 

 


