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Performance Evaluation of Asynchronous Concurrent
Systems Using Petri Nets
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Abstract-Some analysis techniques for real-time asynchronous con-
current systems are presented. In order to model clearly the synchro-
nization involved in these systems, an extended timed Petri net model
is used. The system to be studied is first modeled by a Petri net. Based
on the Petri net model, a system is classRiied into either: 1) a consistent
system; or 2) an inconsistent system. Most real-world systems fall into
the first class which is further subclassified into i) decision-free sys-
tems; ii) safe persistent systems; and iii) general systems. Procedures
for predicting and verifying the system performance of all three types
are presented. It is found that the computational complexity involved
increases in the same order as they are listed above.

Index Terms-Asynchronous, concurrent, performance, Petri net,
real time.

I. INTRODUCTION
THE RECENT advances in solid-state technology have pro-
Tvided computer designers with powerful functional capa-

bilities at low cost. This enables computer designers to isolate
the functions of a computing element and add intelligence to
functional units that can optimize their circuits locally. Such
an approach eliminates the cost involved in timne and band-
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width to submit these local events for a central judgment in
real time. This trend has led to the emergence of distributed
systems. Furthermore, the recent growth in microprocessor
architectures, their capabilities, and their low cost, have moti-
vated system designers to design computer systems as dis-
tributed networks of microprocessors. By using multiple
processing elements, system throughput can be improved and
processing requirements and capabilities unobtainable by uni-
processors can be satisfied. However, the success of multiple
processor systems greatly depends on the effectiveness of the
synchronization among the processing elements.
In this paper, we concentrate our discussion on techniques

for the prediction and verification of performance of dis-
tributed systems. We consider a distributed system as a set
of loosely or tightly coupled processing elements working
cooperatively and concurrently on a set of related tasks. In
general, there are two approaches for performance evalua-
tion [6], [2]: 1) deterministic models and 2) probabilistic
models. In deterministic models, it is usually assumed that
the task arrival times, the task execution times, and the
synchronization involved are known in advance to the anal-
ysis. With this information, a very precise prediction of the
system performance can be obtained. This approach is very
useful for performance evaluation of real-time control sys-
tems with hard deadline requirements.
In probabilistic models, the task arrival rates and the task

service times are usually specified by probabilistic distribution
functions. The synchronization among tasks is usually not
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modeled, because otherwise the number of system states be-
comes so large that it would be impossible to perform any
analyses. Probabilistic models usually give a gross prediction
on the performance of a system and are good for early stages
of system design when the system characteristics are not well
understood. In this paper, we focus on performance analysis
of real-time systems and therefore we have chosen the deter-
ministic approach. In particular, in order to model clearly the
synchronization involved in concurrent systems, the Petri net
model [16] is chosen.
In this approach, the system to be studied is first modeled

by a Petri net. Based on the Petri net model, a given system
is classified as either (Fig. 1): 1) a consistent system; or 2) an
inconsistent system (the defmitions are given in later sections
of the paper). Most real-world systems fall into the first class
and so we focus our discussion on consistent systems. Due
to the difference in complexity involved in the performance
analyses of different types of consistent systems, they are
further subclassified into: i) decision-free systems; ii) safe
persistent systems; and iii) general systems. Procedures for
predicting and verifying the system performance of all three
types are presented. It is found that the computational com-
plexity involved increases in the same order as they are listed
above.
The paper is divided into four sections. In Section II, a

brief introduction to Petri nets is given. In Section III, con-
sistent systems, decision-free systems, safe persistent sys-
tems, and general systems are defined. Analysis techniques
for each type of systems are discussed. Examples are used
extensively to illustrate the realism and the applicability of
the approaches. Finally, in Section IV, the results are sum-
marized and some areas of future research are discussed.

II. AN INTRODUCTION TO PETRI NETS
Petri nets [16], [1] are a formal graph model for modeling

the flow of information and control in systems, especially
those which exhibit asynchronous and concurrent properties.
A Petri net contains two types of nodes (Fig. 2): the circles
(called places) represent conditions and the bars (called tran-
sitions) represent events. A black dot (called a token) at a
place indicates the holding of the condition of the place. A
pattern of tokens in a Petri net (called a marking) represents
the state of the system. For example, Fig. 2 models a com-
munication protocol between two processes. The process on
the left is ready to send and the process on the right is ready
to receive.
To model the dynamic behavior of a system, the execution

of a process is represented by the firing of the corresponding
transition. The changes in system state are represented by the
movements of tokens in the net. The firing rules ofPetri nets
are as follows.

1) A transition is enabled if and only if each of its input
places has at least one token.
2) A transition can fire only if it is enabled.
3) When a transition fires:

i) a token is removed from each of its input places;
and

ii) a token is deposited into each of its output places.

PETRI NET

CONSISTENT INCONSISTENT
PETRJ NET PETRI NET

DECISION-FREE SAFE GENERAL
PETRI NET PERSISTENT PETRI NET

PETRI NET

Fig. 1. System classification.
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Fig. 2. Petri net model of a communication protocol between two
processes.

t t3- I
3a 3b 3c

Fig. 3. Execution of Petri net.

Fig. 3 shows the execution of a Petri net. At the beginning
[Fig. 3(a)], transition t1 is enabled because both of its input
places, A and B, have a token in them. Firing transition t, re-
moves one token from places A and B, and deposits a token
into each of its output places, namely, C and D [Fig. 3(b)].
At this point, transition t3 remains disabled because one of
its input place, E, still has no token in it. However, transition
t2 is enabled. Firing t2 removes a token from place C and,
deposits a token into place E [Fig. 3(c)]. Now transition t3
is enabled. Firing transition t3 removes a token from places
D and E and deposits a token into places A and B returning
the system to its initial configuration.

A. Control Flow Analyses
Petri nets have been used extensively to study the control

flow of computer systems. By analyzing the liveness, bound-
edness, and proper termination properties of the Petri net
model of a computer system, many desirable properties of
the system can be unveiled.
A Petri net is live [9], [11] if there always exists a firing

sequence to fire each transition in the net. By proving that
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the Petri net is live, the system is guaranteed to be deadlock
free.
A Petri net is bounded [121, [14] if for each place in the

next, there exists an upper bound to the number of tokens
that can be there simultaneously. If tokens are used to repre-
sent intermediate results generated in a system, by proving
that the Petri net model of the system is bounded, the amount
of buffer space required between asynchronous processes can
be determined and therefore information loss due to buffer
overflow can be avoided. If the upper bound on the number
of tokens at each place is one, then the Petri net is safe. Pro-
gramming constructs like critical regions [3] and monitors
[4], [10] can be modeled by safe Petri nets.
A Petri net is properly terminating [8], [17] if the Petri

net always terminates in a well-defined manner such that no
tokens are left in the net. By verifying that the Petri net is
properly terminated, the system is guaranteed to function in
a well behaved manner without any side effects on the next
initiation.

B. Extended Timed Petri Nets
In order to study the performance of a system, the Petri net

model is extended to include the notion of time [18]. In such
extended nets, an execution time r is associated with each
transition. When a transition initiates its execution, it takes
r units of time to complete its execution. With the extended
Petri net model, the performance of a computer system can
be studied.
For example, Fig. 4 shows a simple computer system with a

processor and two tape units. The input queue contains a set
of similar tasks to be processed by the system. Each task first
requires some computation by the processor together with a
tape unit for r, units of time. Then the system does some in-
put and output on the tape unit for r2 time units while the
processor continues its computation for r3 time units. After
that, the processor works on the task with the tape unit for r4
time units. The processor is then ready to start the next task
with the other tape unit while the current tape unit is being
rewound. Strictly speaking, Fig. 4 is not a Petri net as queues
are not defined in the Petri net model. However, when the
system performance is evaluated, only the control portion of a
system (i.e., the portion inside the square in Fig. 4) is used and
therefore is a Petri net. For the rest of this paper, queues will
be used to represent the system structure but the readers must
keep in mind that only the control portion of a system is used
in the evaluation of the system performance.
The problem studied in this paper is to find the maximum

performance of a system, i.e., to find the minimum cycle
time (for processing a task) of a system. As pointed out in
the introduction, different computational complexities are in-
volved in the analyses of systems of different types. The ap-
proaches for analyzing each type of system are studied sepa-
rately in detail in the following section. Before we come to
the analyses, some definitions are in order.
Definition: In a Petri net, a sequence of places and transi-

tions, PI tIP2 t2 * * *Pn, is a directed path from P1 to Pn if
transition ti is both an output transition of place Pi and an
input transition of place P(i.+1) for I < ii n - 1.

REWW4NG
TAPE

Fig. 4. Petri net model of a computer configuration.

Definition: In a Petri net, a sequence of places and transi-
tions, P1 t1P2 t2 ... Pn, is a directed circuit ifP1 t1P2t2 - * *Pn
is a directed path from PI to Pn and P1 equals PnI.
Definition: A Petri net is strongly connected if every pair

of places is contained in a directed circuit.
In the next section, we discuss performance analysis tech-

niques for strongly connected nonterminating [14] Petri
nets. Extensions to analyze weakly connected Petri nets
are quite straightforward and are left to the readers.

III. PERFORMANCE EVALUATION
A. Consistent and Inconsistent Systems
The first step involved in our approach to analyze the per-

formance of a system is to model it by a Petri net. A system
is a consistent (inconsistent) system if its Petri net model is
consistent (inconsistent). A Petri net is consistent (condition
A) if and only if there exists a nonzero integer assignment to
its transitions such that at every place, the sum of integers
assigned to its input transitions equals the sum of integers
assigned to its output transitions; otherwise, the system is
inconsistent. If a transition has n input arcs to a place, it is
counted as n input transitions to that place.

Fig. 5(a) is an inconsistent system and Fig. 5(b) is a con-
sistent system. In Fig. 5(a), there does not exist an integer
assignment to its transitions to satisfy condition A. This can
be verified by assigning an integer variable to each transition
and getting a contradiction in trying to solve the simultaneous
equations provided by conditionA:

for placeA: x +y =z
for place B: x = z
for place C: y = z
(2)+(3) x+y=2z

(1)
(2)
(3)
(4)

and therefore (4) contradicts (1).
Fig. 5(b) is a consistent Petri net. If each transition is as-

signed an integer of value 1, conditionA is satisfied.
The practical implication behind this system classification

is that the integer assigned to a transition is the relative num-
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QA~~~~y
B C

(a)

(b)
Fig. 5. (a) An inconsistent system. (b) A consistent system.

ber of executions of that transition in a cycle. If a system is
live and consistent, the system goes back to its initial config-
uration (state) after each cycle and then repeats itself. If a

system is inconsistent, either it produces an infinite number
of tokens (i.e., it needs infinite resources) or consumes tokens
and eventually comes to a stop. Most real-world systems
which function continuously with finite amount of resources

fall into the class of consistent systems. For the rest of this
paper, we focus our discussion on consistent systems and
further subclassify them into decision-free systems, persistent
systems, and general systems. Performance analysis techniques
for each subclass are discussed in the following subsections.

B. Decision-Free Systems
A system is a decision-free system if its Petri net model is

a decision-free Petri net (also known as marked graph [5],
[15].) A Petri net is decision-free if and only if for each place
in the net, there is one input arc and one output arc. This
means that tokens at a given place are generated by a prede-
fined transition (its only input transition) and consumed by a

predefined transition (its only output transition).
The computer configuration shown in Fig. 4 is a decision-

free system. The train system shown in Fig. 6 is another
decision-free system. The tokens in the net are used to repre-
sent trains. For the convenience of the passengers, trains wait
at stations for the next train to arrive so as to allow passengers

to transfer between trains before leaving stations. Similarly,
the chaining operations in the CRAY-1 computer [20] can be
modeled by a decision-free Petri net as shown in Fig. 6. The
results issued from one functional unit are immediately fed
into another functional unit and so on. For a decision-free
system, the maximum performance can be computed quite
easily. However, before we come to that result, we need the
following two theorems.
Theorem 1: For a decision-free Petri net, the number of

tokens in a circuit remains the same after any firing sequence.

Proof: Without loss in generality, a circuit containing five
places and five transitions in a decision-free Petri net is shown
in Fig. 7(a). Tokens in the circuit can only be produced or

Fig. 6. Petri net model of a train configuration.

(a)
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L> ti
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(b)

Fig. 7. (a) A cycle in a decision-free Petri net.

consumed by transitions in the circuit. When a transition con-
sumes a token, it produces one back into the circuit; there-
fore, the number of tokens in a circuit remains the same after
any firing sequence. QE.D.
This result has been proven by many researchers [5], [15].

The proof is included here just for the completeness of this
paper.
Definition: Let Si(ni) be the time at which transition ti
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initiates its nith execution. The cycle time C4 of transition
ti is defmed as

lm Si(ni)
ni--coni
Theorem 2: All transitions in a decision-free Petri net have

the same cycle time.
Proof: For any two transitions ti and t1 in a decision-free

Petri net, choose a circuit that contains both transitions. Such
a circuit must exist because the net is strongly connected.
Without loss in generality, assume that there are M{ tokens
in place i in the initial marking, Fig. 7(b). Let

k n
Ma = Mt and Mb= E Mi.

i=1 i=k+l

At time Si(ni),
ni - Mb < number of initiations of transition t1 < ni - Ma

Si(ni) Si(ni)
hnm > Cj > 11m
nib nig Mb niX-+ ni Ma

Since Ma and Mb are finite, as ni -+ oo, the left- and right-hand
side expressions approach Ci, i.e.,

Ci = C,.

Therefore, all transitions in a decision-free Petri net have the
same cycle time C. QE.D.
Theorem 3: For a decision-free Petri net, the minmum

cycle time (maximum performance) C is given by

C = max{Tk:k = 1,2, **,q}

such that Si(ni) = ai + Cni where

Tk = E ri = sum of the execution times of the transi-
ti ELk tion in circuit k

Nk = E M = total number of tokens in the places in
Pi ELk circuit k

q = number of circuits in the net

ai = constant associated with transition t1
Lk = loop (circuit) k
Mi = number of tokens in place Pi.

Similar results have been obtained in [19], [15]. The proof
given here uses a graph theoretical approach and is different
from the previous approaches. Based on this approach, we
develop a very fast procedure to verify the performance of a
system.
Before we prove Theorem 3, we would like to give an ex-

ample of the usage of Theorem 3 to clarify our notations. The
computer configuration with the execution time of each tran-
sition is shown in Fig. 8. According to Theorem 3, for

Tk 5+20+3+2
circuitAt,C2Et4Gts: -==15Nk 2

r5-2

Fig. 8. Computer configuration with execution times.

circuit At1Dt3Ft4:

circuit Bt, Ct2Et4:

circuit Bt1Dt3Ft4:

Tk 5+4+3+2 14
Nk 1

Tk 5+20+3 14
Nk 2

Tk 5+4+3 12
Nk 1

By enumerating all circuits in the net, the minimum cycle
time is 15.

Proofof Theorem 3: The proof is in two parts.
a) Minimum cycle time,C> max {TkINk, k = 1, 2, ,q}.
b) For C = max {Tk/Nk, k = 1, 2, - - *, q} there exists a1,

such that S,(ng) = a, + Cn1 and the firing rules are not violated.
Proofofa):
number of transitions that
are enabled simultaneously < number of tokens in circuit

= Nk (Theorem 1)
processing power required

by circuit per cycle = Tk= E2 ri
tiELk

< maximum processing power
of the circuit per cycle time

= CN*.

Therefore,

Tk . CNk for every circuit

and

C> max{ ,ok = 1,2,. .., q}

Lemma: For C = max{Tk/Nk, k=1, 2, q}

0 > Tk - CNk for all circuit k.

Proof:

C Tk k= 1,2, ,q
Nk

O > Tk -CNk-
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Proofofb): Let

C =max{-, k = 1 ,2.. , q}

Nk~ ~ ~ ~ i

In order not to violate the firing rules:

finish time of thenith initiation time of the ni +
execution of transition t, -< execution of transition t,

Si(ng) + r, < Si,(n + M,)
ai+ C'n + r, <ai + C(ni + Mij)

ai - CMi, + ri < a1.

sign of computer systems, the required performance is usually
given. With this information, the performance of a system
can be verified very efficiently. By the lemma, the perfor-
mance requirement (expressed in cycle time C) can be satis-
fied if and only if CNk - Tk >0 for all circuits. This can be
verified by the following procedure.
A Procedure for Verifying System Performance:
1) Express the token loading in an n X n matrix P, where n

is the number of places in the Petri net model of the system.
Entry (A, B) in the matrix equals x if there are x tokens in
place A, and place A is connected directly to place B by a
transition; otherwise (A,B) equals 0. Matrix P of the ex-
ample system in Fig. 8 is shown below:

A B C D E F

(1)

Similarly,

a1 - CM,k + r1 < ak (2)

(1)+ (2) ai- C(Mi,+M,k)+ ri+r,ak.

In general,

ai-C Mu.+ £ r.<a.
(u, u)ER weR

A

B

C

D

E

F

G
(3)

G

iUt 01110010-

0o o :0:0:10:0:
O O1 11 1 0 1 0 11O O

I- lTMr- -

0 :o:o:o :o:o o:
- . -, - I - I. -

MatrixP
where R is a path from transition i to transition s. In order
not to violate the firing rules, we have to find ai's such that
(3) is satisfied.
Procedure for assigning al 's such that

ai - C E mu. r. S a,. (3)
(u,v)ER wER

1) Define the distance from transition ti to transition t
(ti adjacent to t,) to be ri - CMi:

ti ti

ri Mij r

2) Find a transition ts, which is enabled initially and assign
0 to a8.
3) Assign au to each transition t. such that au is the greatest

distance from ts to t.,
i.e., au = max{ E r - C E

weR (u,v)ER J

where R is a path from ts to tu.
Such an assignment of ai's exists because by the lemma,

Tk - CNk <0, the greatest distance between any two nodes
is finite and the corresponding path would never contain a
loop. QE.D.
A drawback of the above approach is that all circuits in the

net must be enumerated; this can be very tedious. In the de-

2) Express transition time in an n X n matrix Q. Entry
(A, B) in the matrix equals to ri (execution time of transition
i) if A is an input place of transition i andB is one of its out-
put places. Entry (A, B) contains the symbol "w" ifA and B
are not connected directly as described above. Matrix Q for
the example system is

A

B

C

D

E

F

G

A B C D E F G

,<w w ',w ,w,

_~~~ ~

,w |w w ww 42: w w-_ - - - , - -

fw3w: ww w: 3

w 3 w w w w 3

2 ' wwww :wwiwew

Matrix Q

3) Compute matrix CP- Q (with n- w=oo for nEN),
then use Floyd's algorithm [7] to compute the shortest dis-
tance between every pair of nodes using matrix CP- Q as the
distance matrix. The result is stored in matrix S. There are
three cases.

a) All diagonal entries of matrix S are positive (i.e.,
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CNk - Tk >0 for all circuits)-the system performance is
higher than the given requirement.

b) Some diagonal entries of matrix S are zero's and the
rest are positive (i.e., CNk - Tk = 0 for some circuits and
CNk - Tk >0 for the other circuits)-the system perfor-
mance just meets the given requirement.

c) Some diagonal entries of matrix S are negative (i.e.,
CNk - Tk <0 for some circuits)-the system performance
is lower than the given requirement.
In the example, for C = 15, CP- Q is

A B C

A

B

C

D

E

F

G

D E F G
t L t .. 4 t -lI i

00 10 j 10 j00°°00 00

i °°I° 10 i 10 °i°°I°
Bi00 i 00 10 i1 00 00 00

I0 5: 0 0Boo Boo 100~~~~o o -5 Bo
i i

00 , 00 0 00 , 00 1 -4 , 00

,- B_, ..I
00 -3 :00 00 :00 00 :3:

I J

00 -3 00 00 00 300 , -3

-2 i °° °° °°°0000 00 °0000 00
l '!2

After applying Floyd's algorithm to find
between every pair of places, we have

A

B

C

D

E

F

G

the shortest distance

A B C D E F G

O 2 i 10 10I 5 j 6 22

0 :2 10:105 16 12

-10 -8 0 0O,O-5 ,-4 ,8

-9 -71 1 r-4,'-4:-7j
I , 1 T 13

0 '2 :io 510

i -5:-35 5-3

2- -O 8 8 -3 4 -7

._ ,_ l_

Matrix S

Since the diagonal entries are nonnegative, the performance
requirement of C = 15 is satisfied. Moreover, since entries
(A, A), (C, C), (E, E), and (G, G) are zero's, C = 15 is optimal
(i.e., it is the minimum cycle time). In addition, when a de-
cision-free system runs at its highest speed, CNk equals to Tk
for the bottleneck circuit. This implies that the places that are

in the bottleneck circuit will have zero diagonal entries in ma-
trix S. In the example, the bottleneck circuit isAt, Ct2Et4 Gt5.
With this information, the system performance can be im-
proved by either reducing the execution times of some transi-
tions in the circuit (by using faster facilities) or by introducing
more concurrency in the circuit (by introducing more tokens
in the circuit). Which approach should be taken is applica-
tion dependent and beyond the scope of this paper.
The above procedure can be executed quite fast. The for-

mulation of matrices P and Q takes O(n2) steps. The Floyd

algorithm takes O(n3) steps. As a whole, the procedure can
be executed in 0(n3) steps. Therefore, the perfornance re-
quirement of a decision-free system can be verified quite
efficiently.

C. Safe Persistent Systems
A system is a safe persistent system if its Petri net model

is a safe persistent Petri net. A Petri net is a safe persistent
Petri net if and only if it is a safe Petri net and for all reach-
able markings, a transition is disabled only by firing the tran-
sition. It differs from a decision-free Petri net in that it may
have more than one input (output) arcs to (from) a place.
However, like a decision-free Petri net, it models a deter-
ministic system. In a persistent Petri net, if a token enables
a transition, it will be consumed by that transition only, i.e.,
a token will never enable two or more transitions simulta-
neously. As a result, a safe persistent Petri net can always be
transformed into a decision-free Petri net.
Fig. 9(a) shows a persistent Petri net. It models the opera-

tions of a double buffer input port. Transitions t1 and t2
represent fetching the contents of buffer 1 and buffer 2, re-
spectively. Transition t3 represents storing the input into
the memory. To compute the performance of the system,
we first transform it into a decision-free system and then
use the algorithm discussed in the previous subsections to
compute the system performance.
A persistent Petri net can be transfonned into a decision-

free Petri net by tracing the execution of the system for
one cycle. For example, Fig. 9(b) is the decision-free system
corresponding to the persistent Petri net shown in Fig. 9(a).
Places A1 and A2 in Fig. 9(b) represent two different occur-
rences of place A in Fig. 9(a) in a cycle. Condition AI holds
when transition t, is enabled and condition A2 holds when
transition t2 is enabled. Similarly, place D is duplicated into
DI and D2. Condition D1 holds when transition t3 is enabled
and transition t2 will be enabled after firing t3 . Condition D2
holds when transition t3 is enabled and transition t, will be
enabled after firing t3 .

Initially, there is a token in places A and B and transition
t, is enabled in Fig. 9(a), and therefore there is a token in
places AI and B in Fig. 9(b). After firing tl, a token is de-
posited into places C and D in Fig. 9(a). This is represented
by depositing a token in places D1 and C in Fig. 9(c). By
following the execution of the system for a cycle, the cor-
responding decision-free system can be generated. The sys-
tem performance can then be computed by the procedure
discussed in Section III-B.

D. General Systems
A system is a general system if its Petri net model is a gen-

eral Petri net. A Petri net is a general Petri net if it is a con-
sistent Petri net and there exists a reachable marking such
that the firing of a transition disables some other transitions.
Figs. 10 and 11 show two general Petri nets. Fig. 10 models
the communication protocol from process P1 to processes
P2 and F3, such that the difference in the number of messages
sent from P1 to P2 and P3 is always less than three. It is not
a decision-free Petri net because place A has more than one
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t1

OUTPUT IH t OUTPUT
QUEUE QUEUE

Fig. 11. A general system (shared resource pipelines).

(b)
Fig. 9. (a) A persistent system. (b) The decision-free system cor-

responding to (a).

E3 PROCESS P2 PROCESS P3

Fig. 10. A general system (a communication protocol).

input and output arcs. It is not a persistent Petri net because,
in the configuration shown, the execution of either transition
t2 or transition t4 disables the other transition. This imtro-
duces the nondeterministic characteristic of a system.

Fig. 11 models two shared resource pipelines. Place A rep-

resents the condition that resource A is free. The system has
three units of resource A and they are used by the first and
second stages of the pipeline on the left, and by the second
stage of the pipeline on the right. Places J and K represent
the conditions that buffers for the left and right hand side
pipelines -are free, respectively. By the same reasons given
for Fig. 10, it is a general system.

Fig. 12 shows another general Petri net. Tokens at place

P1

Ij\44 4P20 OP3 4)PB

(r2,f 2) - (r3f3) -(r6f ) -(r7,f7)

P40 OP 0P7

(r4,f4 )

Fig. 12. A general system with specified execution times and relative
firing frequencies.

P1 can be consumed by either transition t1 or t5. In addi-
tion to this, the execution frequencies of the two transitions
are independent of each other. This introduces another
degree of freedom into the system. In order to fully specify
the dynamic characteristics of the system, the number of
executions of each transition per cycle has to be defined.
In the example, it is specified by the ordered pair, (r1, fj),
where ri is the execution time and fi is the execution fre-
quency per cycle of transition ti. General systems are very
difficult to analyze. In the next theorem, we show that it
is unlikely that a fast algorithm exists to verify the perfor-
mance of a general system. A method of computing the
upper and lower bounds of the performance of a conservative
general system [14] is proposed. For a nonconservative gen-
eral system, no good heuristics are known to the authors and
further research is needed.
Theorem 4: Verifying the performance of a conservative

general Petri net is anNP-complete problem [12].
Proof:

i) It is in NP because we can guess the optimal schedule
(execution sequence). The nondeterminisms of the general
Petri net are resolved and therefore the general Petri net can

be transformed into a decision-free Petri net according to the

(a)

D21
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guessed schedule. The performance can then be verified by
the procedure discussed in Section III-B.

ii) It is NP-complete because the set partitioning problem
(an NP-complete problem) can be reduced to the above
problem.
The Set Partition Problem [131: Given a set of integers, S =

{xl, x2, * * *, x"}, partition it into two subsets, SI and S2
such that (condition B)

S=S1 US2 and S1f S22=
n
iXi

and =xi= E X 2
iES, teS2 2

Reduction: Given S = {x1,x2,. * ,xn}, generate the gen-
eral Petri net shown in Fig. 13. It is easy to see that the sys-
tem has minimum cycle time, C = (En= 1 xi)/2, if and only if
the set S satisfies condition B.
A Method to Compute Upper and Lower Bounds of the

Performance ofa Conservative General System:
1) Upper Bound: We choose a schedule which satisfies

the execution frequency requirement and then use the algo-
rithm discussed in Section Ill-B to find the cycle time of the
system.

2) LowerBound (Fig. 12):
a) Find a nonzero integer assignment to the places such

that the sum of integers assigned to the input places of a tran-
sition equals the sum of integers assigned to the output places.
Such an integer assignment must exist because the system is
conservative [14]. Intuitively, the integer assigned to a place
represents the relative processing capability of a token at that
place. The weighted execution time of a transition is equal to
the product of the transition execution time and the sum of
the integers assigned to its input places. For example,

B, 1

Q

A token at place E has twice the processing capability of a
token at either place B, C, or D and transition t2 has weighted
execution time r2(1 + 1).

b) Assume that all tokens in the net are busy all the
time. Then

C X weighted processing capability > sum of weighted
execution time

C X ZsiMi > 2s1f r1

ck s1f1r
Ss1M1

where si = sum of integers assigned to the input places of
transition i.

Fig. 13. Reduction of the set partition problem to a general Petri net.

PETRI NET

C5NSISTENT
PETRI NET INCONSIBTENT

I PETRI NET

DECISION-FREE SAFE
PETF N'^ET PERSISTENT GENERALPETRJNE PETRI NET PETRI NET

I I I

FAST TRANSFORM NP-COMPLETE
ALGORITHM TO

DECISION-FREE
PETRI NET

Fig. 14. Summary of results.

IV. CONCLUSIONS
In this paper, we have discussed a systematic method to

evaluate and verify the performance of concurrent systems.
The system to be studied is first modeled by a Petri net.
Based on the Petri net model, the system is classified into
either 1) a consistent system or 2) an inconsistent system.
A consistent system is further subclassified into: i) a decision-
free system; ii) a safe persistent system; and iii) a general sys-
tem. The system classification and the results are summarized
in Fig. 14. The performance of decision-free systems and safe
persistent systems can be computed quite efficiently. In the
case of general systems, we have proven that the verification
of system performance is NP-complete. An approach for com-
puting the upper and lower bounds of the performance of a
conservative general system is proposed. However, the bounds
produced may be loose. For a nonconservative general system,
no good heuristics are known. Further research is needed.
Another difficulty that may arise in the proposed approach

is the inaccuracy in estimating the execution times of the pro-
cesses in a system. However, in real-time systems such as the
air traffic control systems, chemical plant control systems,
nuclear power plant control systems, etc., the execution times
of the processes may be predicted quite accurately. In the
case that the execution times cannot be estimated accurately,
the worst case execution times of the processes can be used.
The performance prediction obtained will be the worst case
system performance.

448



RAMAMOORTHY AND HO: ASYNCHRONOUS CONCURRENT SYSTEMS

ACKNOWLEDGMENT

We would also like to thank Dr. C. R. Vick and J. E. Scalf
for many helpful discussions related to this work.

REFERENCES

[1] T. Agerwala and M. J. Flynn, "On the completeness of represen-
tation schemes for concurrent systems," presented at the Conf.
Petri Nets and Related Methods, M.I.T., Cambridge, MA, July
1975.

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. Palacios-Gomez,
"Open, closed and mixed networks of queues with different
classes of customers," J. Ass. Comput. Mach., voL 22, Apr.
1975.

[3] P. Brinch Hansen, "Structured multiprogramming," Commun.
Ass. Comput. Mach., vol. 15, July 1972.

[4] P. Brinch Hansen, "Concurrent programming concepts," Com-
puting Surveys, vol 5, Dec. 1973.

[5] F. Commoner et al., "Marked directed graphs," J. Comput.
Syst. Sci., vol.5, 1971.

[6] D. Ferrari, Computer Systems Performance Evaluation. Engle-
wood Cliffs, NJ: Prentice-Hall, 1978.

[7] R. W. Floyd, "Algorithm 97, shortest path," Commun. Ass.
Comput. Mach., vol. 5, 1962.

[8] K. P. Gostelow, "Flow of control, resource allocation, and the
proper termination of programs," Ph.D. dissertation, School
Eng. Appl. Sci., Univ. California, Los Angeles, Dec. 1971.

[91 M. Hack, "Decidability questions for Petri nets," Ph.D. disserta-
tion, Dep. Elec. Eng., M.I.T., Cambridge, MA, Dec. 1975.

[10] C. A. R. Hoare, "Monitors: An operating system structuring
concept," Commun. Ass. Comput. Mach., vol. 17, Oct. 1974.

[11] R. C. Holt, "On deadlock in computer systems," Ph.D. disserta-
tion, Dep. Comput. Sci., Cornell Univ., Ithaca, NY, Jan. 1971.

[12] R. M. Karp and R. E. MiUler, "Properties of a model for parallel
computation: Determinacy, termination, queuing," SWAM J.
Appl. Math., vol. 14, Nov. 1966.

[13] R. M. Karp, "Reducibility among combinatorial problems," in
Complexity of Computer Computations. New York: Plenum,
1972.

[141 Y. E. Lien, "Termination properties of generalized Petri nets,"
SL4MJ. Comput., vol. 5, no. 2, June 1976.

[15] T. Murata, "Petri nets, marked graphs, and circuit-system theory,"
Circuits Syst., vol. 11, June 1977.

[16] J. L. Peterson, "Petri nets," Comput. Surveys, vol. 9, Sept. 1977.
[17] J. B. Postel, "A graph model analysis of computer communica-

tion protocols," Ph.D. dissertation, Dep. 'Comput. Sci., Univ.
California, Los Angeles, Jan. 1974.

[18] C. Ramchandani, "Analysis of asynchronous concurrent systems
by Petri nets," Project MAC, TR-120, M.I.T., Cambridge, MA,
1974.

[191 R. Reiter, "Scheduling parallel computations," J. Ass. Comput.
Mach., vol. 15, Oct. 1968.

[201 R. M. Russell, "The CRAY-1 computer system," Commun.
Ass. Comput. Mach., voL 21, Jan. 1978.

C. V. Ramamoorthy (M'57-SM'76-F'78), for a photograph and biog-
raphy, see page 117 of the March 1980 issue of this TRANSACTIONS.

Computing Machinery.

Gary S. Ho (S'77-M'79) was born in Hong
Kong on March 2, 1953. He received the B.S.,
M.S., and Ph.D. degrees in computer science
from the University of California, Berkeley,
in 1975, 1977, and 1979 respectively.
Currently he is working for Bell Laboratories,

Indian Hil, IL. His research interests include
distributed computer system, design method-
ology, performance evaluation, and computa-
tional complexity.
Dr. Ho is a member of the Association for

449


