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Abstract—This paper addresses the problem of identifying the
minimum pipelining needed in an asynchronous circuit (e.g.,
number/size of pipeline stages/latches required) to satisfy a given
performance constraint, thereby implicitly minimizing area and
power for a given performance. The paper first shows that the
basic pipeline optimization problem for asynchronous circuits is
NP-complete. Then, it presents an efficient branch and bound
algorithm that finds the optimal pipeline configuration. The exper-
imental results on a few scalable system models demonstrate that
this algorithm is computationally feasible for moderately sized
models.

Index Terms—Asynchronous circuits, complexity analysis,
pipeline optimization.

I. INTRODUCTION

MOST designs use a global clock to synchronize data
flow. Recently, however, asynchronous designs have

demonstrated potential benefits in low power, high average
performance, composability, design reuse, and improved noise
immunity and electromagnetic compatibility. Many tools and
techniques have been developed to address hazard freedom
and area minimization. Estimation and optimization of their
performance, however, remain somewhat of a stumbling block.
The basic problem is that the complex interaction of various
handshaking protocols makes direct optimization for perfor-
mance very difficult.

There are two basic approaches to the performance optimiza-
tion of asynchronous circuits. The first approach involves using
performance analysis techniques to guide manual or semi-
automated design changes (e.g., [25]). The alternative approach
is to develop synthesis techniques that directly optimize for
performance. Successful efforts in this area have addressed
transistor sizing [5], technology mapping [6], and allocation
and scheduling (e.g., [1]–[3]) in high-level synthesis.

This paper formalizes a new performance optimization area
for asynchronous circuits called pipeline optimization. In par-
ticular, most previous researches are either at a much lower
level than pipelining (e.g., logic synthesis) or assuming that
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the pipelining is fixed (e.g., in high-level synthesis). More
specifically, to the best of the authors’ knowledge, no automated
tool exists to indicate the degree of pipelining (e.g., number of
pipeline stages) needed to achieve a given performance. In other
words, while it is well known that good pipelining design styles
in asynchronous circuits are critical to reduce the asynchronous
control circuit overhead (e.g., [25]–[27]), it is more difficult to
determine the best means of breaking up a large combinational
block into pipeline stages to achieve a given performance. In
fact, recent experiences suggest that this optimization problem
is getting more difficult. Namely, Caltech researchers propose
partitioning asynchronous data paths into bit slices and pipelin-
ing between bit slices to achieve higher throughput [8], [18].
When combined with standard pipelining between functional
component boundaries, this creates a complex two-dimensional
(2-D) pipeline. As a general rule in asynchronous design, the
number of pipeline stages increases the power and area of the
design due to extra completion sensing and control logic. Thus,
one reasonable objective for pipeline optimization is to identify
the minimal pipelining needed to satisfy a given performance
constraint, thereby implicitly minimizing area and power for a
given performance.

This paper first proposes an abstract performance model of
the circuit on which the basic pipeline optimization problem
can be defined. This abstract performance model is sufficient
to characterize a variety of pipelining schemes, including
those from Williams, Caltech, and the University of Manchester
[10], [18], [26], [27]. However, it is currently restricted to de-
terministic pipelines (no choice) and only considers fixed de-
lays. It is also limited to designs that have the important
property of slack elasticity, which guarantees that their input/
output behavior does not change if the degree of pipelining
within the design changes [17]. The authors first explore the
complexity of the optimization problem. One contribution of
this paper is a proof that the defined asynchronous pipeline
optimization problem is NP-complete. In addition, the au-
thors present an efficient branch and bound algorithm that
demonstrates the feasibility of the optimization problem for
moderately sized models. The experimental results on a few
scalable models of asynchronous systems demonstrate that the
branch and bound solver can successfully find the optimal so-
lution among over 230 pipeline configurations. It may be worth
pointing out similarities with a somewhat analogous problem
of retiming [22] in the domain of synchronous circuits. In par-
ticular, like the problem here, a basic version of retiming is to
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Fig. 1. Williams PS0 pipeline scheme.

achieve a desired cycle time with the fewest number of latches.
In addition, like retiming, the authors do not significantly
change the structure of the circuit. That is, the authors currently
do not consider resynthesizing the circuit jointly with pipeline
optimization. The key difference between the two problems,
however, is that in the synchronous domain an initial assign-
ment of latches must be given and the number of latches along
any cycle must not be changed. In contrast, for the problem
here, the initial latch assignment is not necessary and the
correctness requirements on the number of latches along a cycle
are different. Interestingly, the basic version of retiming can be
solved in polynomial time [15].

The rest of this paper is organized as follows. Section II
presents a pipeline analysis background. Section III describes
the circuit model on which the authors formulate the optimiza-
tion problem. Section IV then proves the NP-completeness of
the problem while Section V describes a relatively efficient ex-
act solution based on a branch and bound approach. Sections VI
and VII present experimental results, conclusions, and potential
directions for future work.

II. BACKGROUND: ASYNCHRONOUS PIPELINES

AND THEIR PERFORMANCE

An asynchronous pipeline is typically partitioned into sets of
stages that communicate via point-to-point asynchronous chan-
nels. Each channel includes a set of wires for data in the forward
direction and handshaking control signal going in the reverse
direction. A deterministic pipeline is a pipeline system that does
not contain choice pipeline stages that exhibit choice behavior
such as arbitration, splits, and merges. This structure is formally

captured in a labeled directed graph called a circuit model, in
which each node is a stage, each edge represents a channel, and
each node is labeled with the above set of delays. The ith stage
is associated with a function evaluation and reset delay τ(F e

i )
and τ(F r

i ) that map to the latency through the stage during
evaluation and reset, that is, evaluation and precharge delay of a
processing block in Fig. 1. In addition, each stage is associated
with completion sensing delays for evaluation and reset τ(De

i )
and τ(Dr

i ), and/or control overhead delays for evaluation and
reset τ(Ce

i ) and τ(Cr
i ). An implementation example is depicted

in Fig. 1.
Marked graphs are typically used to analyze the performance

of an asynchronous circuit in terms of the above quantities
[13], [21], [26], [27], [29]. A marked graph contains nodes
that represent transitions of signals, edges that represent de-
pendencies between signal transitions, and an initial marking
of tokens on edges that represents the initial state of the
system. For performance analysis, the signal transitions in the
marked graph are associated with the corresponding delays in
the circuit model. In particular, each cycle in the graph has
a cycle metric that is the sum of the delays of all associated
transitions divided by the number of tokens that can reside in
the cycle. The cycle time of a deterministic pipeline is defined
as the largest cycle metric in its marked graph representa-
tion [5], [21]. Note that the cycle time is the inverse of the
throughput (measured as the average data items processed per
unit time).

For efficiency and clarity, it is useful to realize that the
cycles in the marked graph can be partitioned into three classes.
The first corresponds to local pipeline constraints and to the
interaction of neighboring pipeline stages in the circuit model.
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Fig. 2. Cycle time of asynchronous pipelines. (a) Local cycle time. (b) Algorithmic cycle time. (c) Fork–join cycle time.

For example, consider the simple three-stage pipeline and
corresponding marked graph illustrated in Fig. 2(a).1 This
marked graph models pipelines using Williams PS0 template

1Note that the places in the marked graphs are omitted for brevity.

style. For this marked graph, there exists three one-token cycles,
containing only one token, as

τ (F e
1 ) + τ (F e
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The intuition behind the first of the three cycles is as follows.
After stage 1 evaluates, stage 2 can evaluate, followed by
stage 3. Once stage 3 evaluates, the results from stage 2 are no
longer needed and it can precharge. Once stage 2 precharges,
stage 1 can reevaluate, completing the cycle. The intuition of
the other cycles is similar. The local cycle time is the maximum
of these delays and, because there are no loops in the undirected
version of the optimization circuit graph, this is also the overall
cycle time of the circuit. More formally, the local cycle time
is the maximum delay of the cycles in the marked graph that
do not have corresponding cycles in the undirected version of
the circuit model. For the delay parameters given in Fig. 2(a),
the cycle time evaluates to 14 ns. Note that for general PS0
pipelines that contain fork-and-join, the above equations must
be modified to include delays associated with additional control
overhead. In fact, the authors know of no pipeline style in which
the local cycle time constraint is determined by more than three
pipeline stages.

The second and third classes map to loops in the undirected
version of the circuit model. The second corresponding to
algorithmic loop dependencies involves sequences of signal
transitions that map to directed loops in the circuit model,
and maps to an algorithmic cycle time. For example, in asyn-
chronous pipeline rings that implement iterative algorithms,
e.g., Williams asynchronous divider [26], [28], the cycle time
may be dictated by how long it takes for a data or bubble
(i.e., a single token) to travel around the ring. This concept is
abstractly illustrated in the ring of six pipeline stages depicted
in Fig. 2(b).

The third class, fork-join dependencies, corresponds to se-
quences of signal transitions that map to other undirected
loops in the circuit model corresponding to alternate paths
between pairs of circuit stages, i.e., fork-and-join paths. In
synchronous pipelines, the number of pipeline stages along
different paths between two stages must be the same to en-
sure correctness. In contrast, this is guaranteed for the cor-
rect operation of an asynchronous pipeline. However, widely
unbalanced numbers of stages in fork-and-join paths may
impact performance because one path may prevent data or
bubble injection into the other path. These cycles define a
fork-join cycle time that may also limit circuit performance.
The optimization techniques developed in this paper focus on
the general class of pipelines consisting of local, algorithmic,
and fork-and-join cycles, where only sequences of up to three
stages contribute local pipeline constraints. This covers general
deterministic circuits using most pipeline strategies of current
interest. In fact, the authors know no pipeline strategies in
which the local pipeline constraint is delimited by more than
three stages. In addition, the authors assert that extensions to
pipeline strategies in which fewer than three [19], [20], [23] or
more than three stages yield local pipeline cycles are straight
forward.

III. PIPELINE OPTIMIZATION MODEL

The performance marked graph models used for analyzing
pipelines assume a fixed pipeline structure and thus cannot
be directly used as a model to optimize the pipeline struc-

ture itself. More specifically, a pipeline optimization model
must characterize the set of possible pipeline structures. This
section describes the proposed pipeline optimization model.
The authors first describe a model for the most general
pipeline optimization problem and then restrict the model
targeted to an important subproblem called pipeline buffer
optimization.

The pipeline optimization model is a labeled directed graph
(S,U,M,F, L, κ) with nodes S, edges U ⊆ S2, binary labels
on edges M : U → B, and two sets of positive integer labels
on nodes F : S → κ and L : S → κ. The edges U represent
unpartitionable combinational blocks called units. The unit ui

has function evaluation and reset delays τ( fe
i ) and τ( fr

i ),
completion sensing delays for function evaluation and reset
τ(de

i ) and τ(dr
i ), as well as control overhead delays for function

evaluation and reset τ(ce
i ) and τ(cr

i ).
The nodes S represent candidate boundaries between pipe-

line stages called slots. The labels F denote slots that have pre-
assigned latches that delineate pipeline stage boundaries. For
F (s) ≥ 1, the first latch may be an abstract latch that does not
represent any explicit storage element. In particular, many of
the Williams PS0 and Caltech’s style pipelines [16], [26], [27]
need not have explicit latches to separate pipeline stages.
Rather, each stage has an internal storage for this purpose.
Consequently, the first latch in these styles simply delineates
a pipeline stage boundary. In contrast, any second or additional
latches must be associated with explicit storage elements. As
an example, PS1 is an optimized form of PS0 where each
stage is followed by an explicit storage element. In this paper,
these explicit storage elements are called pipeline buffers. For
convenience, the authors let κ denote the maximum number of
latches assigned to any slot.

The labels M denote the edges ui for which independent
data can initially reside. The authors require that every loop
in the pipeline optimization model contains at least one edge
that is labeled with a data. However, loops may have multiple
such labeled edges, reflecting the algorithmic intention to have
multiple independent data flowing simultaneously through the
circuit. Thus, more generally, the authors require that every
loop in the pipeline optimization model be assigned enough
abstract latches to support the number of edges ui labeled with
independent data. For example, for both Williams PS0 and
PC0 schemes, the minimum number of latches to support d
independent data is 2d + 1 [25]–[27]. Also, the authors must
consider terminal slots that have either no incoming or no
outgoing edges. To ensure that the cycle time can be computed,
the authors require that terminal slots be preassigned abstract
latches. Otherwise, it is unclear how to account for the delay of
units attached to terminal slots when computing the cycle time.
These two conditions together ensure that the cycle time is well
defined.

The function evaluation delay of stagei is defined as
τ(F e

i ) =
∑

uj∈stagei
τ( fe

j ). The reset delay of stagei is usu-
ally defined as τ(F r

i ) = maxuj∈stagei
τ( fr

j ) based on the as-
sumption that all units within a stage reset (e.g., precharge)
simultaneously. The completion sensing delays of stagei are
set to the last unit’s completion sensing delay for both function
evaluation and reset. The intuition here is that the completion
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Fig. 3. Before optimization. (a) Asynchronous linear pipeline structure.
(b) Pipeline optimization model. (c) Performance marked graph model.

Fig. 4. After optimization. (a) Asynchronous linear pipeline structure.
(b) Pipeline optimization model. (c) Performance marked graph model.

sensing units for the other units are not needed and can be
discarded. Similarly, the control overhead delays of stagei (for
both function evaluation and reset) are defined as the number of
input control signals to Fi and Ri.

The labels L denote number of abstract latches to be assigned
to each slot, also referred to as latch assignment. The min-latch
pipeline optimization problem is to find the minimum cardinal-
ity latch assignment that yields a cycle time that is well defined
and less than or equal to a given constraint δ. An example
of the optimization for an asynchronous linear pipeline along
with changes in the associated pipeline optimization model
and performance marked graph is illustrated in Figs. 3 and 4.
Note that the choice of adding pipeline buffers or splitting
stages is based on the design flow at hand. For example,
in some high-performance design flows, the pipeline stages
used are essentially at the gate level and are indivisible. Thus,
the only choice is to add pipeline buffers [18]. In medium-
grained performance systems, however, choosing the degree of
pipelining is an important design factor [4].

Example: To make this model more concrete, consider
the pipeline optimization model for a Huffman decoder [4]

Fig. 5. Asynchronous Huffman decoder model and its detailed delay
information.

depicted in Fig. 5 using the PS0 pipeline scheme. The model
decomposes the Huffman circuit into 11 units separated by nine
slots and includes the estimated delays for each unit. There are
three loops in this optimization model, each representing an
algorithmic loop dependency. The maximum sum of the unit
evaluation delays (reset evaluation delays) along any such loop
represents a lower bound on the cycle time. In this case, the
evaluation delays of the top loop dominate, yielding a lower
bound of 46.2

The authors also identify an important subproblem of the
pipeline optimization problem in which adding latches only to
those slots already preassigned with at least one latch was con-
sidered. In other words, the authors assume that the degree of
functional pipelining has already been fixed and consider only
the problem of adding pipeline buffers to improve performance.
In particular, the authors define pipeline buffer optimization
as finding the minimum number of additional pipeline buffers
required to yield a cycle time that is well defined and less than
or equal to a given constraint δ.

Figs. 6 and 7 illustrate how the various forms of performance
bottlenecks described in Fig. 2 can all be resolved by either
splitting existing pipeline stages or adding new pipeline buffers,
respectively.

IV. COMPLEXITY ANALYSIS

Given that the basic synchronous retiming problem can be
optimally solved in polynomial time [15], it seems prudent to
determine the complexity of the problems here before exploring
efficient algorithms. This section proves that the problems are
NP-complete for the simplified pipelining performance model
depicted in Fig. 8. This graph is equivalent to the more
complicated marked graph in Fig. 2(a) for the special case of
τ( fr

i ) = τ( fr), τ(de
i ) = τ(dr

i ) = τ(ce
i ) = τ(cr

i ) = 0, for all i
units. The proof of NP-completeness for a variety of more com-
plex marked graphs, including the graph depicted in Fig. 2(a),
then follows directly by restriction [11]. The intuition behind

2Thus, our optimization problem is to find the minimum abstract latch
assignment that yields a cycle time of no larger than 46.
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Fig. 6. Asynchronous pipeline optimization by inserting abstract latches. (a) Improving the throughput of the linear pipeline depicted in Fig. 2(a) by pipelining
slow stages. (b) Improving the throughput of the small ring depicted in Fig. 2(b) by pipelining two stages, increasing the number of bubbles in the ring.
(c) Improving the throughput of the fork-and-join structure in Fig. 2(c) by pipelining the short branch.
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Fig. 7. Asynchronous pipeline optimization by adding pipeline buffers. (a) Improving the throughput of the linear pipeline depicted in Fig. 2(a) by adding
pipeline buffers. (b) Improving the throughput of the small ring depicted in Fig. 2(b) by adding two pipeline buffers, increasing the number of bubbles in the ring.
(c) Improving the throughput of the fork-and-join structure in Fig. 2(c) by adding two pipeline buffers to the short branch.
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Fig. 8. Marked graph of an abstract performance model.

these results is that, in general, the number of potentially
optimal pipeline configurations in an asynchronous circuit is
much larger than considered by synchronous retiming for a
similar-sized problem.

A. Complexity Analysis of Asynchronous Pipeline
Optimization Problem

The authors define the asynchronous pipeline decision
(APD) problem as the task of determining whether there exists
a pipelining strategy using K or less abstract latches for which
the pipeline cycle time is well defined and less than or equal to
δ. This problem is proved to be NP-complete by reduction from
3-satisfiability (3SAT) problem in two steps.

First, let Z be a set of variables zi and X be a collection of
sum-of-product clauses over positive and negative literals of Z
such that each clause xi ∈ X has |xi| = 3. The 3SAT problem
is a well-known problem whose task is to determine whether
there exists a satisfying truth assignment for X . The complexity
of the 3SAT problem has been well established.

Theorem 1—Complexity of the 3SAT [7]: 3SAT problem is
NP-complete.

Consider a simplified pipeline optimization model G =
(S,U) without fork-and-join paths, where S is a set of slots
and U is a set of units. The authors define a 3U1L assignment
as the task of determining whether there exists a set of slots
S ′ ⊂ S with cardinality less than or equal to K, for which every
terminal slot is in S ′ and every three consecutive unit sequence
should span at least one slot in S ′. The first step of the proof
involves showing that the 3U1L problem is NP-complete.

To do this, the authors follow the same reduction strategy
to the vertex cover problem from 3SAT [11]. It was observed
that ensuring every three-unit sequence is spanned by at least
one slot in S ′ is equivalent to ensuring that every middle unit is
touched by at least one slot in S ′. Mapping units to edges and
slots to vertices, this is equivalent to ensuring that all middle
edges must be covered by selected vertices, which is the key
point behind the following proof.

Lemma 1—Complexity of 3U1L Assignment (3U1L): The
3U1L problem is NP-complete.

Proof (Sketch): First, the 3U1L problem is in NP because
a modified depth-first-search algorithm can verify that every
terminal slot is in S ′, every three-unit sequence contains a slot
in S ′, and that S ′ is the appropriate size in polynomial time.
To prove 3U1L is NP-hard, the authors show that the 3SAT
problem can be reduced to the problem here.

The authors first construct a graph G = (S,U) and a pos-
itive integer K ≤ |S| such that G has a 3U1L assignment
with K or less latch assignment if and only if X is satisfi-

able. The graph consists of three different subgraphs. First,
for each variable zi ∈ Z, the authors create a truth-setting
subgraph Ti = (Si, Ui) with Si = {ti, zi, z̄i, t̄i} and Ui =
{{ti, zi}, {zi, z̄i}, {z̄i, t̄i}}. For each clause xj ∈ X , there is a
satisfaction-testing subgraph Aj = (S ′

i, U
′
i) consisting of three

slots and three units joining them to form a cycle with three
slots, i.e.,

S ′
j = {a1[ j], a2[ j], a3[ j]}

U ′
j = {{a1[ j], a2[ j]} , {a2[ j], a3[ j]} , {a3[ j], a1[ j]}} .

The third and last subgraph consists of only communication
units and is the only subgraph that depends on which literals
occur in the clauses of the 3SAT problem. For each clause
xj ∈ X , let the three literals in xj be denoted by pi, qi, and
ri. Then, let the communication units of Aj be given by

U ′′
j = {{pj , a1[ j]} , {qj , a2[ j]} , {rj , a3[ j]}} .

The instance of 3U1L is composed by setting K = 3|Z| + 2|X|
and G = (S,U), where S is the union of all Si and S ′

j and U
is the union of Ui, U ′

j , and U ′′
j . The first subgraph is a simple

di-graph that has no fork-and-join paths, the second subgraph
is a ring structure, and the third subgraph generates only forks
with no joins. Thus, G by construction has no fork-and-join
paths. Note also that this construction clearly has polynomial
time complexity.

Now, the authors show that the original 3SAT problem is
satisfiable if and only if the constructed 3U1L problem is
satisfiable. First, suppose that S ′ ⊆ S is a valid solution of
3U1L for G with |S ′| ≤ K. S ′ must contain at least three
slots from each Ti and at least two slots from each Aj . Since
K = 3|Z| + 2|X|, however, the authors can further conclude
that S ′ must contain exactly three slots from each Ti, two
of which are terminal slots, and exactly two slots from each
Aj . Note that the third (nonterminal) slot chosen in each Ti

defines which variable, zi or z̄i, is set to one in the solution to
the 3SAT problem. To see how this truth assignment satisfies
each of the clauses xj ∈ X , consider the three units in U ′′

j .
Exactly one of these three units must not be attached to a slot
in S ′ ∩Aj because only two of the three slots in Aj can be
in S ′. This slot thus must be connected to a slot zi (z̄i) that
is in S ′, which implies that the clause xj is satisfied. For the
other direction, suppose a truth assignment satisfies X . The
corresponding 3U1L solution S ′ contains three slots from each
Ti, two of which are the terminal slots and one defined by the
truth assignment, and two slots from each Aj , corresponding
to the slots not connected to the third (nonterminal) slot of Ti.
This set of selected slots ensures that every three consecutive
unit sequence has at least one selected slot. �

Fig. 9 shows an example of the proposed constructed
graph for the 3SAT problem Z = {z1, z2, z3, z4} and
X = {{z1, z̄3, z̄4}, {z̄1, z2, z̄4}}. For example, the 3U1L so-
lution S ′ = {z1, z2, z̄3, z̄4, a2[1], a3[1], a1[2], a3[2]} identifies
the satisfying solution to the 3SAT problem z1 = 1, z2 = 1,
z3 = 0, and z4 = 0.
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Fig. 9. 3U1L instance resulting from a 3SAT instance.

The second step of the proof requires the following use-
ful definitions. The authors define a sequence of units to be
decomposed into k stages by slot assignment if the units are
part of k distinct stages (as defined by the slot assignment). A
sequence of units is said to be a violating unit sequence (VUS)
if the sequence must be decomposed into at least four stages in
order to satisfy the cycle time constraint δ, i.e., there does not
exist any slot assignment that yields a well-defined cycle time
less than or equal to δ that decomposes the sequence of units
into three or fewer stages. A sequence of slots is said to be a
violating slot sequence (VSS) if it is spanned by a VUS, i.e.,
there exists a VUS that connects the sequence of slots.

Theorem 2: The local cycle time is less than or equal to δ
if and only if every VUS spans parts of at least four stages,
i.e., contains units in four distinct stages. In other words, the
corresponding VSS must contain at least three abstract latches.

Proof (Sketch): ⇐: The authors first prove that if every
VUS spans at least four stages, the local cycle time does
not violate δ. To prove this, the authors prove the equivalent
statement that if the cycle time constraint δ is not satisfied by
the local cycle time, there must exist a VUS that constitutes
at most three stages. To see this, note that to violate δ for
the local cycle time there must exist at least three consecutive
stages whose cycle time is larger than δ. The sequence of units
that corresponds to this sequence of stages is a VUS, thereby
completing this part of the proof.
⇒: If local cycle time is less than or equal to δ, every VUS

constitutes parts of at least four stages. This follows directly
from the definition of a VUS. �

Finally, the NP-completeness of the APD problem is proven
by restricting the APD problem to τ( fe

i ) = 0.2, δ = 0.99, and
circuit graphs that have no fork-and-join paths and a sufficient
number of data tokens in every ring structure such that the
algorithmic cycle time is smaller than δ.

Theorem 3: The APD problem is NP-complete.
Proof (Sketch): The authors first show that the APD prob-

lem ∈ NP. To verify that a given solution π to the APD problem
is valid, it must be verified that it has less than or equal to K
slots and that it yields a circuit whose cycle time satisfies the
given cycle time constraint δ. The first part involves counting
the number of slots in π and the second part of the problem
involves finding the longest sequence of three stage delays that
can be solved using a trivially modified version of depth first
search. Thus, both of these steps take polynomial time.

Next, to prove that the APD problem is NP-hard, a poly-
nomial time algorithm that maps any instance of the 3U1L

problem to an instance of the restricted APD problem is pro-
vided. First, the authors construct an APD problem instance
G′ from an instance of 3U1L problem. Every unit ui in G is
divided into two units ui,0 and ui,1 in G′. Moreover, for each
new slot created, the authors create two additional slots and
add units in-between the three slots to make a directed ring of
size 3. Thus, G′ consists of 5|U | units and |S| + 3|U | slots. The
transformation from G to G′ can be done easily in polynomial
time and does not introduce fork-and-join paths.

Next, the authors prove that there exists a subset of slots with
cardinality less than or equal to K latches that satisfies any
instance of the 3U1L problem if and only if there exists a latch
assignment using K ′ = K + 3|U | that satisfies the constructed
instance of the APD problem.

Consider both directions of the if and only if condition. First,
suppose there exists a latch assignment with K latches that
satisfies the 3U1L problem. It was observed that a property
of the construction is that every five-unit sequence in G′ has
a corresponding three-unit sequence in G. In particular, every
five-unit sequence in the constructed graph G′ consists of two
newly added slots and two slots that were consecutive in G, one
of which must be in the solution to the 3U1L problem. Consider
the slot assignment in which, in addition to the selected latches
in the 3U1L solution, every newly added slot is assigned a latch.
First, notice that this assignment requires less than or equal to
K + 3|U | latches. Second, notice that the solution guarantees
that every five-unit sequence in the constructed graph spans
three latches. Thus, Theorem 2 guarantees that the local cycle
time is less than or equal to δ. Since the circuit model is
restricted to graphs with no fork-and-join paths, fork–join
dependencies do not exist in the resulting graph. Moreover,
loop dependencies in the resulting graph are satisfied by con-
struction. Thus, the latch assignment satisfies the constructed
instance of the APD problem.

Conversely, suppose there exists a satisfying latch assign-
ment using less than or equal to K ′ = K + 3|U | latches for
an instance of the APD problem. Another property of the
construction is that every three-unit sequence in G has two
corresponding five-unit sequences in G′. Each corresponding
five-unit sequence spans two slots that were consecutive in G
and two newly created slots. Any solution to the APD problem
must assign a latch to one of the consecutive slots in G.
Consider the solution to the 3U1L problem created by selecting
these slots in G. Each three-unit sequence in G spans a selected
slot and the number of selected slots must be less than or equal
to K, thereby completing the proof. �

Fig. 10 shows an example of mapping a 3U1L problem where
K = 1 to an APD problem where K ′ = K + 3|U | = 10. Unit
u1 in G is divided into two units u1,0 and u1,1 in G′. Units u2

and u3 are also divided in the same manner. Moreover, for each
new slot created, the authors create two additional slots and
add units in-between the three slots to make a directed ring of
size 3. Any APD solution must have every slot in the interme-
diate ring assigned a latch because each intermediate ring spans
five units; however, these assignments have no relation to the
slot assignments of the 3U1L problem. In particular, two APD
solutions exist in which, in addition to the above assignment of
latches to slots, either S1 or S2 is assigned a latch (ensuring
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Fig. 10. Example of mapping a 3U1L problem instance to an APD problem
instance.

the two five-unit sequences S0, S01_0, S1, S12_0, S2, S23_0 and
S01_0, S1, S12_0, S2, S23_0, S3 both have three latches as-
signed to them). This suggests that the 3U1L problem also
has two solutions, with either slot S1 or S2 assigned a latch.
Indeed, by directly analyzing the 3U1L problem illustrated in
Fig. 10(b), the authors can confirm that both assignments are
valid 3U1L solutions and that there is no other solution.

B. Complexity Analysis of Pipeline Buffer
Optimization Problem

First, it was assumed that τ( fe
i ) = τ( fr

i ) = τ(de
i ) =

τ(dr
i ) = τ(ce

i ) = τ(cr
i ) = 0 for all pipeline buffers. The au-

thors define the pipeline buffer decision (PBD) problem as
the task of determining whether there exists a pipeline buffer
optimization strategy using K or less pipeline buffers for which
the pipeline cycle time is less than or equal to δ. The authors
prove that the complexity of the PBD problem is NP-complete
by restriction.

Finally, the authors prove the NP-completeness of the PBD
problem by restriction such that τ(F e

i ) = 0.2 (which means
function evaluation delay of every stage before the pipeline
buffer optimization is 0.2) and δ = 0.59.

Theorem 4: The PBD Problem is NP-Complete.
Proof (Sketch): By restriction. Allow a maximum of one

pipeline buffer for each stage. Now the PBD problem itself is
exactly a 3U1L problem since every local cycle time is 0.6 and
each local cycle requires a pipeline buffer to meet δ. �

V. ASYNCHRONOUS PIPELINE OPTIMIZER (APO)

There exists a variety of techniques that may be used to
solve the minimization problem. The most general technique
is to cast the problem as an integer programming problem
and use generic IP solvers. Alternatively, one could define a
binary decision diagram (BDD) [12] describing the possible
solutions for each VSS and take the product of all such BDDs.
Any path through the BDD that leads to 1 represents the
candidate of a valid solution, and the path with the minimal
number of “1” branch represents a candidate for the minimal
solution [24]. Both of these solution strategies, however, do
not take advantage of the structure of the solution space and
thus may be inefficient. In contrast, this section proposes an
efficient branch and bound algorithm that incorporates a new
lower-bound technique tailored to the problem. Moreover, the

Fig. 11. Overview of APO.

authors assert that the branch and bound algorithm is more
robust than the possible BDD-based techniques because it may
be terminated early to obtain a nonoptimal solution, whereas
BDD-based approaches may catastrophically fail if the BDD
size blows up.

The APO consists of a branch and bound framework that in-
teracts with a cycle time analyzer to check for algorithmic con-
straints as well as both a lower-bound routine and a feasibility
checker to prune branches off the decision tree. The overview
of APO is depicted in Fig. 11. The theoretical foundation of a
satisfying node is based on the notion of properly decomposed
(PD) VUSs as explained in the subsequent section. Subsequent
sections describe the constitute algorithms in detail.

A. Proper Decomposition of VUS

A VUS is PD by a slot assignment if the following conditions
are satisfied.

Condition 1—Covering Condition: VUS is decomposed into
at least four stages by the slot assignment.

Condition 2—Satisfying Condition: VUS does not contain
any (complete) sequence of stages that violates δ.

Let M be a set of VUS such that every sequence of units is
either a subset of a VUS in M or a superset of a VUS in M , that
is, no sequence can just partially intersect or be disjoint with all
VUS in M .

Lemma 2: The local cycle time is met if and only if all
VUS ∈ M are PD.

Proof (Sketch): ⇐: Consider a three-stage sequence of
units that violates the cycle time. It is either a superset or a
subset of at least a VUS in M . If it is the superset of a VUS in
M , it cannot be a three-stage or less sequence. (Contradiction
of Condition 1.) If it is the subset of a VUS in M , it should be
PD. (Contradiction of Condition 2.)
⇒: Proof by the definition of VUS. �
The key theorem that identifies the optimization approach

follows directly from the above lemma.
Theorem 5: If and only if all VUS ∈ M are PD with the

minimum slot assignment, then the local cycle time is met with
the minimum abstract latches.

B. Branch and Bound Algorithm

The nodes in the branch and bound tree represent slots.
Each node has up to two children, one representing the partial
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solution in which the slot is assigned an abstract latch, referred
to as a slot-assigned-child, and the other representing the partial
solution in which the slot is not assigned an abstract latch,
referred to as a slot-excluded-child. Each node is associated
with the set of VSSs that contains that slot. Each time a new
abstract latch is added to a partial solution, the authors compute
the subset of associated VSSs that is PD and modify the marked
graph representation. When all VSSs are PD, the marked graph
is analyzed to verify that the cycle metrics associated with other
dependencies are less than the cycle time constraints δ. The
authors do not search the subtree rooted at a slot-assigned-child
when 1) the number of abstract latches assigned up to that child
node plus the derived lower bound for that subtree is larger
than the current best solution; or 2) the child node represents
a solution better than the current best, in which case the current
best solution is updated; or 3) the cycle metrics associated
with any loop dependency involving only functional evaluation
delays exceed δ.3 The authors do not search the subtree rooted
at a slot-excluded-child when it is determined that there exists
no feasible solution for a VSS associated with the slot.

Nodes associated with slots assigned with the least number
of abstract latches are searched first and nodes associated with
slots that have been excluded in a parent are never searched. The
authors break ties between nodes that represent slots that have
equal number of assigned abstract latches by prioritizing the
slot that is associated with the most uncovered VSS computed
once at the beginning of the search. The authors prioritize as-
signing abstract latches over pipeline buffers, thereby greedily
avoiding increasing the latency of the design.

In traditional branch and bound approaches to covering prob-
lems, the MIS_QUICK independent-set-based lower-bound al-
gorithm [12] is widely used because it is simple and fast. This
algorithm is generalized to the optimization problem as follows.
For each node in the branch and bound tree, the authors create a
lower-bound graph consisting of a vertex for each VSS and an
edge between every two VSSs that share at least one slot. Each
vertex is labeled with the number of additional abstract latches
needed to be assigned for the VSS to be satisfied (which, recall,
is only one of two conditions to be PD). Each edge is labeled
with the number of slots shared between the two VSSs. The
weight of a vertex is defined as the sum of connected edge labels
divided by the vertex label. The authors identify the vertex with
the minimum weight and decrease all connected vertices by
the minimum of the identified vertex’s label and the connecting
edge label. Then, they remove the identified vertex along with
all connected edges and iterate. It can be easily verified that
the sum of the identified vertices’ labels is a lower bound of
the problem. Fig. 12 shows an example of one iteration of the
lower-bound heuristic.

C. Cycle Time Analysis

This section describes an efficient method based on Karp’s
algorithm to find the largest cycle metric of potential solutions.
The time complexity of the traditional approach proposed

3This last condition is because additional abstract latches cannot decrease
cycle metrics associated with data-limited loop dependencies.

Fig. 12. Example of the lower-bound heuristic.

Fig. 13. Conversion procedure to di-graph for the cycle time analysis.

Fig. 14. Example of di-graph construction and reduction.

by [21] is O(P 3) where P is the set places in the marked
graph. The naive application of Karp’s algorithm [9], [14] to
the problem is to create a vertex for each marked place and
to create edges between two vertices if there exists a path
between their corresponding places. The weight of an edge is
the largest sum delay of such paths. Karp’s algorithm will then
find the maximum mean cycle that is equivalent to the largest
cycle metric. To improve the time complexity of this procedure,
a new conversion procedure described in Fig. 13 is proposed.

The key idea of the procedure is to iteratively remove any
vertex associated with an unmarked place by bypassing the
vertex with edges from incoming vertices to outgoing ver-
tices with a corresponding weight. Interestingly, the resulting
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TABLE I
EXPERIMENTAL RESULTS FOR ASYNCHRONOUS PIPELINES, RINGS, AND HUFFMAN DECODER. QUANTITIES WITH A SUBSCRIPT 1

REFER TO EXPERIMENTS WITH THE LOWER-BOUND DISABLED WHILE QUANTITIES WITH A SUBSCRIPT 2
REFER TO EXPERIMENTS WITH THE LOWER-BOUND ENABLED

reduced di-graph may have more simple cycles4 than the
original, which at first glance may suggest that the maximum
mean cycle is not preserved. However, all additional simple
cycles originate from nonsimple cycles and consequently are
guaranteed to have metrics no larger than the maximum mean
cycle. Thus, as proven in Theorem 6, the graph reduction
preserves the largest cycle metric.

Theorem 6: Any cycle C ′′ in the di-graph that does not
correspond to a simple cycle in the marked graph is not a
maximum mean cycle of the di-graph.

Proof (Sketch): Let the sum of the delay along the ith
simple cycle Ci be D(Ci) and the number of tokens along Ci be
T (Ci). Let the cycle corresponding to the largest cycle metric
in the marked graph be denoted Ck.

The cycle C ′′ exists if and only if there exists a corre-
sponding nonsimple cycle in the marked graph. This non-
simple cycle can be divided into multiple simple cycles
Cm, . . . , Cn. Then, the mean cycle of C ′′ = ((D(Cm) + · · · +
D(Cn))/(T (Cm) + · · · + T (Cn)). Because D(Ck)/T (Ck) >
D(Cl)/T (Cl) (l = m, . . . , n), the mean cycle of C ′′ is no
larger than D(Ck)/T (Ck). �

The time complexity of the proposed graph transformation
is O(P 2). The subsequent Karp algorithm takes O(V · E) =
O(P ′3), where V is the set of marked places in the detailed
marked graph and E is the set of edges between marked places.
A simple example of the construction and reduction of di-graph
is illustrated in Fig. 14. In this example, the number of ver-
tices is two while the number of places in the original marked
graph is seven.

VI. EXPERIMENTAL RESULTS

The authors have implemented the algorithm in C. To dem-
onstrate its feasibility and limitations, it was applied to the
asynchronous Huffman decoder model depicted in Fig. 5 as

4For a graph G = (V, E), a simple cycle is a sequence 〈v1, v2, , vk〉 of
distinct vertices from V such that {vi, vi+1} ∈ E for 1 ≤ i ≤ k and such that
{vk, v1} ∈ E.

well as three scalable asynchronous circuit structures: a linear
pipeline, a pipeline ring, and a pipelined ring-of-ring structure.
The authors tested linear pipelines and pipeline rings with
15, 20, 25, and 30 slots. The last structure [linear feedback
shift register (LFSR)] was tested with complicated interacting
rings containing five data tokens. For all examples, the Williams
PS0 pipeline scheme was chosen. For all scalable examples, the
function evaluation delay, the function reset delay, the comple-
tion sensing delay for evaluation, and the completion sensing
delay for reset are randomly generated between 10.0 and 30.0,
5.0 and 15.0, 1.0 and 20.0, and 1.0 and 10.0, respectively.

Tables I and II show the experimental results of the algorithm
with and without the lower-bound algorithm (presented in Sec-
tion V-B) enabled. When the lower-bound algorithm is enabled,
the run time is cut by half. The results demonstrate that using
the lower-bound algorithm, the optimal pipeline configuration
for moderately sized problem is feasible. It is also important
to note that for large systems, the run time can be reduced by
either removing slots from consideration or preassigning slots
with abstract latches. For instance, the authors ran additional
experiments where for each structure they preassigned several
selected slots with abstract latches. As shown in Tables I and II,
the run times are significantly reduced.

Table III shows the interesting results of asynchronous
pipeline buffer matching. To achieve the local cycle time (20),
adding only a few fast (with τ( fe) = τ( fr) = 2) pipeline
buffers is required. In particular, an initial fork-and-join path
with 17 and three stages in their respective branches was
optimally balanced by adding only eight fast pipeline buffers
to the short branch.

VII. CONCLUSION

This paper formalizes a new asynchronous pipeline opti-
mization problem common to a variety of pipelining styles
and proves that it is NP-complete. It then proposes an effi-
cient branch and bound algorithm for the exact solution. The
experimental results suggest that the algorithm is feasible for
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TABLE II
EXPERIMENTAL RESULTS FOR ASYNCHRONOUS PIPELINES, RINGS, AND HUFFMAN DECODER. QUANTITIES WITH

A SUBSCRIPT 1 REFER TO EXPERIMENTS WITH THE LOWER-BOUND DISABLED WHILE QUANTITIES

WITH A SUBSCRIPT 2 REFER TO EXPERIMENTS WITH THE LOWER-BOUND ENABLED

TABLE III
EXPERIMENTAL RESULTS FOR ASYNCHRONOUS FORK-AND-JOIN PIPELINES TO DEMONSTRATE PIPELINE BUFFER OPTIMIZATION

moderately sized systems. Moreover, complexity reduction
methods for its application to larger systems are also presented
and evaluated. However, the approach is not practical for very
large systems and heuristics practical for large systems or
ones that enable hierarchical analysis of large systems are an
important area of future research.

Although the algorithm as described is restricted to models
that do not exhibit choice, the approach can also heuristically
be applied to systems with choice modeled by, e.g., free-choice
Petri nets. The idea is to sequentially apply the algorithm to
distinct choice-free behaviors (e.g., marked graph components)
from those with the highest probability to those with the lowest
probability. Specifically, the abstract latches assigned in one
iteration would be assumed preassigned for the remainder of
the optimization process. Other more effective strategies may
also be possible and are an interesting area of future research.
In addition, extensions that allow stochastic delays may also be
possible and useful.

Slack optimization is the pipeline buffer optimization sub-
problem in which the design is guaranteed to meet the local cy-
cle time constraints. This problem is particularly important for
fine-grain pipeline design styles for which manual decomposi-
tion can readily guarantee local and algorithmic cycles times,
but identifying the optimal locations for additional pipeline
buffers to satisfy fork and join constraints is more challenging.

Thus, important areas of future research include determining
if this problem is also NP-complete and developing targeted
algorithms that tradeoff complexity for optimality.
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