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Abstract 
This paper presents an approach by which asynchronous circuits 
can be realised with a conventional EDA tool flow and conventional 
standard cell libraries. Based on a gate-level asynchronous circuit 
implementation technique, direct-mapping, and by identifying the 
delay constraints and exploiting certain EDA tool features, this pa- 
per demonstrates that a conventional EDA tool flow can be used to 
describe, place, route and timing-verify asynchronous circuits. 

Categories and Subject Descriptors 
B7.1. [Integrated Circuits]: Types and Design Styles 

General Terms 
Design, Experimentation, Standardization 
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1. INTRODUCTION 
Asynchronous design has often been quoted as an altemative de- 

sign approach which can help overcome the implementation prob- 
lems of Deep-Sub-Micron (DSM), high-performance synchronous 
circuits, i.e. maintaining low clock skew, efficient clock buffer- 
ing, high-power consumption, high Electromagnetic Interference 
(EMI) [9][3]. However, the adoption of asynchronous design has 
been hindered by the lack of commercial support and inability to 
design asynchronous systems using conventional tools. In this pa- 
per we show how a class of asynchronous circuits can be manually 
described, timing-constrained and timing-verified and then auto- 
matically placed and routed using conventional EDA tools. Our 
emphasis is on asynchronous control circuits but the same princi- 
ples can be applied to asynchronous datapaths. 

2. ASYNCHRONOUS CIRCUITS IN EDA 
A variety of approaches exist for the design and implementation 

of asynchronous circuits [5]. Transition-based approaches spec- 
ify circuits and systems in terms of signal transitions using Petri- 
nets [ 111, then using Signal Transition Graphs (STGs) [2] map the 
specification into an implementable Asynchronous Finite State Ma- 
chine (AFSM) form. Micropipeline circuits [ 161 are asynchronous 
pipelines that may incorporate logic between their stages. Program- 
mingkompilation approaches [8][ 191 start from a circuit specifi- 
cation in a formal language, then through a sequence of syntax- 
transformations derive circuit descriptions. Finally, FSM-based 
asynchronous design approaches include asynchronous Huffman 
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machines [ I  81, Burst-Mode AFSMs [15][21] and Direct-mapped 
AFSMs [6][ 141. However, only a few of these approaches are suit- 
able for EDA. The fundamental requirement is that they use stan- 
dard logic gates. An important additional requirement is that the 
derived circuits possess easy to determine timing constraints, which 
can be supported throughout the stages of an EDA flow. 

Two industrial-strength asynchronous EDA tool flows actually 
exist, the Tangram tool set which has been used to design the 80C5 1 
microcontroller [20] and the Theseus Logic tool flow [7]. However, 
the former is based on proprietory tools, whereas the latter uses 
proprietory standard cell libraries. 

In this work we fully-automate the timing verification, placement 
and routing of asynchronous circuits using standard EDA tools and 
standard cell libraries based the direct-mapping approach intro- 
duced by L. A. Hollaar [6], which uses set-reset flip-flops for gener- 
ating and storing the states of a “one-hot’’ encoded AFSM [18]. The 
one-hot encoding eliminates general races between state variables 
and simplifies the circuit implementation as the logic that generates 
the state signals assumes a regular form. One-hot AFSMs have the 
attractive property that their timing constraints for correct opera- 
tion are independent of the actual circuit specification, in contrast 
to other asynchronous design approaches. In Hollaar’s implemen- 
tation each state corresponds to a set-reset flip-flop. The condition 
for entering a state is fed to the set input of the state’s flip-flop, 
whereas the condition for leaving the state is fed to its reset input. 
The set and reset conditions can be implemented by combinational 
logic. The reset condition is in most cases the setting of a successor 
state [6][13]. 

Figure 1 shows an set-reset flip-flop AFSM implementation of a 
sequential portion of a state diagram. Portions of states S I ,  s2 and 
s3 are shown. State s2 is entered on the transition of signal x. The 
circuit operates as follows: if input x is asserted, then the output 
of the NAND gate to which x is input will drop as both x and sl  
are high. The consequence of this is the setting of state s2 and the 
resetting of state s l .  

I 

s1 s2 s3 

I 
I Figure 1: One-hot Gate-Level AFSM segment 

2.1 One-Hot Gate-level AFSM Delay Analysis 
In this section the delay assumptions for correct operation of 

one-hot gate-level AFSMs are identified. For a gate-level AFSM, 
the following delay paths may be defined: 
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0 (a) Set input delay, i.e. delay between the set input of a state (the set 
input of the state flip-flop) and the state output, A(s). 

(b) Reset input delay, i.e., delay between the reset input of a state 
(the reset input of the state flip-flop) and the inverted state output, 

(c) State setting delays (set paths), i.e. delays between the prede- 
cessor state signal outputs and the state output. This comprises the 
delays through combinational logic and the state flip-flop. For state 
n with m predecessors these delays can be represented as 4(l)(sp). 
A+)(sp), ... An(,)(sp) form predecessors. 

(d) State resetting delays (reset paths), i.e. delays between the com- 
plementary output of a state (inverted version) and the state signal 
outputs of its predecessors. This comprises the delays through po- 
tentially combinational logic and the flip-flops of the predecessor 
states. For state n with m predecessors these delays can be repre- 
sented as A,,(])(rp), A,(2)(rp), ... A,,(,,,)(fp) form predecessors. 

These critical delays are identified for state s2 in the simple gate- 
level AFSM segment of Figure 1. In order to ensure correct circuit 
operation one-hot critical races between two or more states must be 
avoided for all states of the AFSM. 

2.1.1 
The correct order of state transitions is 1041 I - t O I .  The con- 

dition for correct operation is that the next state must be properly 
entered before the previous state is left. In CMOS one-hot AF- 
SMs [ 141 this translates to selecting appropriate transistor sizes for 
the n-type transistors, used to enter a state, and p-type transistors, 
used to leave a state. 

In gate-level AFSMs, the condition for correct operation depends 
on the threshold points of the set-reset flip-flops, i.e. the point 
where flip-flops change state. If all the NAND gates forming the 
set-reset flip-flops are identical, then it is nearly impossible to make 
the circuit fail for a 2 state transition, as the circuit is delay insen- 
sitive, i.e. will work correctly for arbitrary delays of wires and 
gates. However, if NAND gates of different thresholds are used 
(different $ transistor sizing for example) it is possible that the 
previous state's flip-flop changes state, before the next state's has 
flipped. This type of failure is illustrated in Figure 2, where the out- 
put waveforms of an HSPICE [ IO] simulation of two AFSM states 
sl and s2 are shown. The top and bottom panels of Figure 2 show 
the two outputs of state flip-flops sl and s2, i.e. s l  and nsl and 
s2 and ns2 respectively. Failure has been achieved by moving the 
threshold point of the s l  flip-flop towards VDD and loading 1x2. 
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It is possible to express delay constraints which will ensure one- 
hot race free transitioning even if the NAND gates are non uni- 
form. A state n is entered by a set path, A,,(sp), whereas it is left 
by a corresponding reset path, &(rp). Thus, for one-hot race free 
operation, the delay through the reset path and through the com- 
binational logic leading back to the set input of the state must be 

longer than the delay of setting the state once the set input is being 
driven (for all possible set arid reset paths), i.e.: 

An(r~)  + ( A ~ s P )  - Ns)) > A(s) * 
+ A~(sP) > 2 4 s )  (EQ1) 

To ensure that this delay assumption holds it is possible to bias 
the A(s) and A(r) delays so that A(s) < A(r) holds. 

2.1.2 One-hot race between three or .more states. 
In the case of three states different transition orders are possi- 

ble: loo-+ 1 10+01 O-tOI 1 -+001 or loo-+ 1 1 C l t  1 1 1+011+~001. 
In any case, state 101 shou'ld not be reached. The prohibited 101 
state can only be reached if the middle of the three states has been 
set and reset before the left state has been reset. This can only oc- 
cur if the right state is set (thus resetting the middle state) and the 
middle state reset faster than the middle state can reset the state on 
the left, i.e. the situation to avoid is: A(sp of right state) + A(rp of 
right state) < A(rp of middle state). For two si:ates, n-1 and n, the 
opposite condition must hold for correct operation (for all pos,sible 
set and reset paths), i.e.: 

M S P )  + > A ~ - I ( v )  (BQ2) 
Due to the nature of one-hot coding, ensuring that one-hot crit- 

ical races do not occur for .more than three states can be achieved 
by ensuring that two and three state races do not occur for every 
possible sequence of two and three states of the AFSM. 

To summarise, correct circuit operation for a one-hot gate-level 
AFSM can be guaranteed if equations (EQI) and (EQ2) above hold 
for all states of the AFSM. In the next sections we identify the: fea- 
tures of the EDA tools that c:an be used to implement asynchronous 
circuits. 

2.2 Asynchronous Circuit Specifications 
In order to describe a gate-level asynchronous circuit into a syn- 

thesis tool, a circuit netlist form must be used, since synthesis is 
not (as yet) possible. One such form is the Synopsys GTECH [17] 
(Generic TECHnology) format, which allows fix a circuit to be de- 
scribed in terms of generic technology-independent unsized gates. 
It is then possible to both map the GTECH specification into any 
technology and to specify path constraints which will appropriately 
size the technology mapped gates. 

2.3 Delay Constraints and Hierarchy 
In asynchronous circuit design, only true path delays are rele- 

vant to the circuit operation For example, the delay constraints 
described in the previous section may be verified by measuring the 
true path delays for the corresponding paths. 'However, it is often 
the case that static timing :analysis reports a path delay inappro- 
priately, i.e. by combining arrival times of signals which will not 
change. In addition, timing analysis is particulrirly confused by the 
feedback of state registers. Careful hierarchical definition of the 
circuit can overcome this problem. Paths which are to be measured 
and constrained by the synthesis tool should not contain feedback. 
For example, the,set and reset NAND gates may need to be con- 
strained so that A(s) < A@:) holds. If a cell is described so as to 
make feedback external to it, it is then possible for delay constraints 
to be fulfilled appropriately by the synthesis tool. 

2.4 Constraint Specification 
The delay constraints of direct-mapped AFSMs presented in Sec- 

tion 2.1 are relative, i.e. the delays of critical circuit paths are inter- 
related. There is currently little support for relative constraint !Spec- 
ification in contemporary E:DA tools, even though standards such 
as SDF (Standard Delay Format) v3.0 support them [12]. How- 
ever, it is possible to specify absolute timing constraints OIL cir- 
cuit paths through the commonly used GCF (General Constraint 
Format) timing constraints [I]. Experiments performed with Ca- 
dence's Pearl timing analyser demonstrated that timing analysis for 
GCF path-delay constraints considers the true paths between 
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the specified points. GCF constraints are also compatible with Ca- 
dence’s P&R (Placement and Routing) tools. However, as GCF 
constraints are designed to be imposed only on external, top-level 
pins, it was found necessary to introduce dummy pins to a physi- 
cal design file (DEF format) to be able to constrain the appropriate 
paths. 

2.5 Physical Design 
Hierarchical P&R allows for timing constraints to be localised 

to the individual circuits and makes the process of constraining cir- 
cuits manageable. The breakdown of a system into constituent parts 
is a very natural process for asynchronous systems, as these are 
generally composed of asynchronous blocks which communicate 
with each other via delay-insensitive asynchronous handshaking 
protocols. Therefore, it is straightforward to draw block boundaries 
at the handshake interfaces. In this way, constraints are localised, 
and at the top (block) level, where blocks communicate, it must be 
ensured that the handshake data are ‘‘bundled’, i.e. synchronised, 
to their corresponding handshake control signals. 

reqout 0.06/0.03 0.09/0.09 0.20/0.14 
waitr 0.04/0.03 0.10/0.09 0.17/0.14 
idle 0.06/0.03 0.13/0.09 0.22/0.20 

3. AN EXAMPLE DESIGN 

0.24/0.19 
0.20/0.23 
0.23/0.18 

We now demonstrate the process of realising a fully-asynchronous 
circuit using a conventional EDA flow by manually constraining 
an example circuit: an asynchronous, 5-stage, 32-bit pipeline, con- 
structed out of fully-decoupled four-phase latch controllers [4][ 131. 
The circuit was mapped to the VST-UMC 0.18pm technology. 

3.1 Constraint Specification 
Table 1 shows the delay analysis for the critical paths of the 

unconstrained version of the circuit. The timings of Table 1 are 
obtained by mapping the GTECH circuit specification to the tech- 
nology library and then measuring the critical path delays. The 
numbers in bold represent the path delays reported by the Pearl 
FindPathsBetween command (with false paths blocked) on 
the critical paths, whereas the numbers in italics represent the path 
delays reported by the DC report-timing command. The DC 
timings are obtained by measuring the path delays at appropriate 
levels of hierarchy so that false paths are not considered. As Pearl 
allows for false paths to be blocked at the top level, the Pearl tim- 
ings are more accurate as they include input and output loading. 

Table 1: Unconstrained Latch Controller Delay Analysis (in ns) 
Table 2 shows the delay analysis for the constrained circuit. This 

version of the circuit was technology mapped and then constrained 
so that the the delay of the reset gate of the state flip-flops was at 
least twice that of the set gate, i.e. A(r) 2 2A(s), and the bundled- 
data assumption on the output request holds, i.e all data outputs 
are synchronised to signal reqout. Imposing the A(r) 2 2A(s) 
synthesis constraint to all states ensures that after circuit synthesis 
the delay constraints necessary for correct circuit operation of the 
one-hot AFSM, i.e. A,(sp) + A,(rp) > 2A(s) and A,(sp) + A,(rp) > 
A,-~(rp), will be fulfilled for all states. 

1 waita II 0.04/0.03 1 0.11/0.09 I 0.17/0.14 I 0.20/0.18 1 

Table 2: Constrained Latch Controller Delay Analysis (in ns) 
By using the data of Table 2 the conditions for correct circuit op- 

eration can be calculated. In this way, constraints can be specified 

which can propagate throughout the physical part of the EDA flow. 
The values of the critical delays are shown in Table 3. As can be 
seen by this table, A,(sp) + A,(rp) > A,-l(rp) is a tighter constraint 
to AnbP) + MrP) > 2 4 s ) .  

I State 11 A(,)(sp) + A(,)(rp) 11 286) 1 A(,-~)(rp) I 
ackin 
waita 
reqout 
waitr 0.37 
idle 0.45 

I 

Table 3: Constrained Latch Controller Critical Delays (in ns) 
From the figures of Table 3 an absolute upper delay bound can 

be obtained for the reset path of each state, i.e. A(rp). This value is 
equal to the sum of the set and reset paths of the next state. There 
is no upper bound on the set path, i.e. A(sp), but there is a lower 
bound for both the set and reset paths due to the same delay .con- 
straint equation. Table 4 shows appropriate minimum and maxi- 
mum absolute delay constraints on the set and reset paths. These 
delay constraints can be specified in GCF file format, for them to 
be used in the physical parts of the EDA flow, by using the GCF 
pat h-delay construct. 

I State I] A(sp)range I A(rp)range 1 
I ackin II > 0.20 I > 0.23. < 0.37 I 

Table 4: AFSM Delay Constraints (in ns) 

When the circuit enters the physical design phase of the EDA 
flow and is P&R, the path delays will change. As the delay con- 
straints are expressed as absolute numbers and not relatively, it is 
likely that although the absolute timings may have changed, the 
relative timings are still within the appropriate ranges and absolute 
timing violations reported by the tools are not affecting the cir- 
cuit’s operation. If contemporary EDA tool flows did support rela- 
tive timing constraints that would be ideal for describing the timing 
constraints of asynchronous circuits. Then, it would be possible 
to use relative timing constraint specifications to ensure that asyn- 
chronous circuits operate correctly and absolute timing constraints 
for paths that impact on the circuit’s performance. 

3.2 Physical Design 
Cadence’s Designplanner was used for hierarchical design, Sil- 

icon Ensemble for block-level P&R and IC Craftsman for the top- 
level routing. The top-level floorplan and final layout are shown 
in Figure 3. The five stages correspond to the same synthesis- 
constrained latch controller circuit (as described in the previous 
section), only with different aspect ratios. After floorplanning, each 
stage was P&R separately in both the time-driven (with GCF con- 
straints) and in the non time-driven (connection-driven) mode of 
the P&R tools. 

~ l l l l l l  r- I 

s tage5 

1 1 ~id~!!~L ‘?d 
Figure 3: Asynchronous Pipeline Floorplan and Layout 

Even in time-driven mode, small violations, less than 50ps, of 
the path constraints manifested. Figure 4 graphically represents the 
violations reported by Pearl after P&R for the non time-driven and 
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time-driven versions of the 32-bit fully-decoupled latch controller 
circuits respectively. The violations shown are minimum path vio- 
lations, i.e. the paths were faster than specified. 

waita 
reqout 
waitr 
idle 

0 1 2 3 4 5 6 7 8 9  0 1 2 3 4 5 6 7  
Figure 4: Range of Timing Violations (in ns) 

Table 5 shows the timings of the post-layout critical paths of the 
time-driven design. As can be seen by these timings the circuit will 
operate correctly even though the timing analyser reports absolute 
timing violations. Contrasting this table with Table 3, which con- 
tains the critical post-synthesis delays, we can see that the defined 
absolute delays have controlled the placement and routing process 
effectively and have produced a circuit with delays very close to 
the specification. 

0.19 0.04 0.11 
0.25 0.10 0.09 
0.23 0.04 0.14 
0.22 0.04 0.09 

waitr I( 0.40 11 0.08 I 0.30 
idle 1 1  0.39 1 1  0.12 I 0.17 

Table 5: Time-driven Post-Layout Path Delays (in ns) 

4. CONCLUSIONS 
We have shown that it is indeed possible to exploit features of 

conventional synchronous EDA flows to implement asynchronous 
circuits. It is relatively straightforward to express the relative tim- 
ing constraints that a gate-level direct-mapped control circuit must 
fulfill for correct operation. Thus, it is possible to perform timing 
verification of the asynchronous circuit's path constraints at various 
stages of the EDA flow. Further on, by exploiting the support for 
timing-driven design that EDA tools provide, it is possible to per- 
form time-driven P&R, hence allowing for the asynchronous cir- 
cuit's critical path delays to stay close to the specification during 
the physical design stages. However, as relative timing constraints 
are not as yet supported by commercial EDA flows, the timing 
constraints of an asynchronous circuit must be described as abso- 
lute constraints particular to a specific implementation technology. 
Such constraints are effectively stricter than the equivalent relative 
constraints which they represent and limit circuit performance. 
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