IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1877

127

Modular Design of Asynchronous Circuits Defined by Graphs

RENE DAVID

Abstract—An universal cell (CUSA) permits one to realize any
asynchronous automaton by associating such a cell with a state and
a connection with a transition. There is no internal variable as-
signment and all kinds of hazards are avoided. In the first part of
the paper we shall present the principle of the CUSA and the syn-
thesis method using flow tables. It is an original method which
enables one to reduce the number of cells and useful connections.
In the second part, the method is adapted to a synthesis from a flow
graph. In this graph, a node is associated with a state, not neces-
sarily a total state, and a branch with a connection. This synthesis
method is easy and systematic. CUSA are now being produced by
industry and are available as IC’s.

Index Terms—Asynchronous cireuits, description by graphs,
modular networks, synthesis from graphs, synthesis without as-
signment, universal cell CUSA.

I. INTRODUCTION

HE SYNTHESIS of asynchronous automata is

usually reduced to the well known synthesis of com-
binational networks. Huffman’s method [1], which consists
of describing the function by a flow table, of an assignment
of the internal variables, then of a combinational synthesis
of these internal variables and outputs, is an illustration
of this synthesis. This method presents difficulties in as-
signing the internal variables while satisfying the adjacency
conditions and eliminating all of the hazards.

Since then, interesting solutions for carrying out an as-
signment and for eliminating hazards have been suggested
by numerous authors. However, it remains difficult to
apply these solutions to problem of increasing complexity.
Different cellular approaches to automata synthesis have
been carried out [2]-[7]. In the majority of cases they
greatly emphasize the combinational aspect, and they all
have limitations at the level of either the structure or the
complexity of the automata. Low and Maley’s work [5] is
certainly the closest to the present work. However, there
are two types of cells, for total stable states and for un-
stable states, respectively, and no simplification methods
are given. The method introduced here has been developed
in order to obtain a systematic and simple synthesis
without assignment. In order to do this a cell is associated
with each state. The essential contribution consists of in-
troducing a cell with a particular delay insuring that the
networks obtained do not show any first-order hazards,
and also of an original synthesis and simplification meth-
od.
Initially, a method of synthesis was carried out by using

. Manuscript received September 1, 1975; revised June 1, 1976.
The author is with the Laboratoire d’Automatique, LN.P. Grenoble,
BP 15,38040 Grenohle-Cedex, France.

a flow table as a description of the automaton [9], [10].
That work will be summarized in Section II. But the use
of flow tables is limited and it appeared necessary for large
systems to develop the synthesis starting immediately
from a graph describing an automaton more concisely [11].
In Section III, synthesis from a graph is presented; each
state, represented by a node in the graph, is not necessarily
a total state; some inputs may vary without any change of
state. - ;

This description and the synthesis which is deduced are
particularly well adapted to industrial type automata
which are rather complex.

' IL. PRINCIPLE OF SYNTHESIS FROM PRIMITIVE FLOW

TABLES [8]-[10]
In this section, the essential elements of synthesis will

briefly be summarized. For more details, the reader is re-

ferred to the works cited. It is assumed here that only one
input variable changes at a time.

A. Principle of the CUSA and Canonical Synthesis

_ The canonical synthesis principle with the help of CUSA
(in French Cellule Universelle pour Séquences Asyn-
chrones) consists of associating a cell with each total stable
state and a wire between two cells with each unstable state
or transition. The output of a cell is at level 1 if the system
is in the corresponding state.

Let us consider Fig. 1(a), as part of a primitive flow table,
and Fig. 1(b) the corresponding part of its primitive flow
graphl, associated with the state b. Near each branch of
this graph the input variable whose variation from 0 to 1
produces the corresponding transition is marked. For ex-
ample, passing from state d to state b corresponds to the
variation of x1 from O to 1, and passing from state b to state
a corresponds to the variation of x; from 110 0, i.e., to the
variation of x; from 0 to 1. Thus branchesd — b and b —
a are, respectively, labeled x and x7.

We shall associate a cell B, the output of which is ys,
with the state b, Let us see what logical and technological
conditions have to be satisfied by this cell B. _

Logical Conditions: To reach the state b it is necessary
to 1) be in one of the predecessor states a, d, or ¢; that is
to say, Ya + ya + ¥ = 1, and 2) reach the column where b
is stable; that is to say x1x2 = 1.

When the system has reached the state b, y, + ¥4 + Ye

1 A primitive flow graph is a graph in which each node is associated with

a total state, as a primitive flow table is a flow table in which each row is

.associated with a total state.

728

xqxg 00 40 7.

Fig. 1.
graph.

becomes 0 but yp has to keep the value 1 until the input

- state changes, that is to say x ;x5 becomes 0. So we get, -

.of the predecessor cell A%

¥ = Wa+ya+ ye + yp)xixa.

In the genéral case, let us consider the state an, TEpTe-
sented by.the cell A,,, the output of which is y». The output
_1 is denoted as y,,_1 and state

a, is stable for the input statex1 cesmgt == (xf
corresponds to either x, or xj, and x} to either x}, or 2,
respectively). .

We get the logical conditions

Yn = (E_ Yhat yn) I =i
=2

The CUSA may be realized as shown in Fig. 2(a). We
shall now discuss the delay A

Technological Conditions: The network has exactly the
same behavior at each transition: one CUSA takes the
value 1, while the precedmg one comes to the value 0. To
avoid all hazards, it is sufficient to insure that each tran-
sition behaves correctly.

_ Let us consider the transition from state a,—1 to state
an (Fig. 3: other inputs that x are constant and are not

- represented). The possible malfunctions are the following:

the 1 level is not propagated to-the CUSA A, which keeps

the 0 value; or it is propagated too quickly and a 1 value

appears on Yn+1; a hazard appears on the output 2.
These possible malfunctions are avoided by a delay A

_ introduced at the output of each cell. Let us see what must

- the rising input x* and its complement x*' is denoted by

o

be the properties of A. In Fig. 3 each CUSA is made up of
two gates S and P and a delay A. We shall denote the as-
sociated propagation times by subscripts r and f for a rise
and a fall of their outputs, respectively. The delay between

5(1,0).

1) To be sure that ¥, has enough time to achieve the
value 1, it is necessary that path 1 be longer than path 2
(Fig. 3).

8(1,0) + Pr+ A > Py
Ae>Pr— 8(1,0) — Pf— Afo-

2) To avoid the possibility of y,+: taking a transient
value 1, we find, similarly

A > 6(1,0) = P — ;= Mo,

3) The continuity of an output 2z, the value of which is
1 in states a,.-1 and a,, is insured if

Part of a pnm.:t:ve flow table and of the corresponding flow

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1977 -

: "l %
Sal - A
£ i ™ " =Y,
i : % S53]%d bt
4 ﬁ A= L TTTT e &
l\
-.x:-_ # ‘-—-—v—_..a

pu-nmory mputs

Fig. 2. CUSA. (a) Realization with OR, AND gates. (b) Symbolic repre-
sentation.

Fig. 3. Transition from state a,—1 to state a»:

A= A > P, = 8(1,0) = Pr= Xo.

The delay A which is in turn A, and A has to satisfy si-
multaneously the three preceding inequalities. The values
of Aro, Aso = Ag depend on the conditions of use (possible
delay between an input x and its complement x', fan-in,
fan-out, . ..) and of the technology (characteristics of the
components dispersion of these characteristics,...).
Considering the worst case, and a security margin, we re-
alize a delay which merely delays with a different value for
the rise (A;) and the fall (/) of its input level.

When the CUSA are carried out technologically, in-

cluding the delay designed once and for all, we have a ca-

nonical wiring which consists of interconnecting identical
CUSA as shown in Fig. 2.

From a primitive flow table, the canonical wmng con-
sists of associating a CUSA with each state and in wiring
such that (see Figs. 4 and 5): .

1) The primary inputs are associated with the column
of the corresponding state.

2) The secondary inputs correspond to the outputs of
the predecessor CUSA.

3) Each output is realized by an OR gate.

Remarks:

1) The CUSA may be realized with an OR and an AND
gates as shown in Fig. 2, or with 2 NOR gates (one has to
replace x} by x}'), or with 2 NAND gates (then the active
level is 0 and a network output is realized by a NAND
gate). - j : '

.2) CUSA are now available from the SESCOSEM
French company as TTL integrated circuits [13]. The de-
lays are integrated in DIL packages and the designer of

sequentials networks need not worry about these delays.

One package is available with 2 CUSA, another with 1
CUSA, with 3 and 3 or 6 and 7 primary and secondary in-
puts, respectively. These packages allow realization of most

g A)

DAVID: ASYNCHRONOUS CIRCUITS DEi‘INED BY GRAPHS
wxy 00 O 11 10 z,z‘,_

61

11

11

oo

0o

SN

Fig. 4. Flow table of machine M.

of the practical systems without fan-in problems. If nec-
essary, extensions may be done with gates (taking care of
added delays on primary inputs).

3) Within some constraints on the inputs, the delay A is
not useful. This is particularly interesting for medium- or
large-scale integration,

If each input variable x and its complement x” is avail-
able from the output of a flip-flop made with 2 NAND gates,
the delay is not useful. As shown in Fig. 6, the falling level
(in turn x and x’) is always delayed by 1 unit (1 unit =
delay of 1 gate) from the rising level (in turn x” and x) i.e.,
5(1,0) = 1 unit for every transition. With 8(1,0) = P, = Py
= S, = 1 unit, the technological conditions give Ao = Ao
"= Ao = —1 unit, so A, = A; = 0 is a solution. The same result
may be obtained with CUSA carried out with 2 NOR gates
or 2 NAND gates if the input variables are available from
flip-flops made with 2 NOR gates or 2 NAND gates, Te-
spectively. : !

4) This has been used for an MSI manufacture in MOS
technology [12]. The chip contains 15 inputs (each of them
associated with a flip-flop made with NOR gates), 30 CUSA
(made with 2 NOR gates, without delay), and 10 outputs.
Between the input circuits at the top of the chip and the
output gates at the bottom, the CUSA covers a vertical
strip. Three masks are independent of the network and the
fourth specifies the connections corresponding to the de-
sired network. These connections are horizontal metalli-
zations on three fieds corresponding to primary inputs,
secondary inputs, and outputs realization, respectively.

B. Simplification Method

There are 2 types of simplification. The first type con-
sists of eliminating certain connections and eventually

some CUSA utilizing source states. The second type of

simplification consists of gathering some states ‘to be
., represented, under certain conditions, by only one
i CUSA. ! i

Suppression of Connections and Cells: Let us consider
the machine M; (Fig. 4) and assume that the input state
isx; = 1, % = 0,1e,x1xy = 1. The system is certainly in
state d, because this state is alone in its column, no matter
what the sequence must have been before. So it is possible
to replace all the secondary inputs of the CUSA D by a
permanent level 1. Let us call d a “source state” because
yg takes the value 1 as soon as the corresponding input
state is reached, independently of what happened before.
State « is also a source state. Suppressing all secondary
inputs of CUSA A and D in Fig. 5 leads to Fig. 7. '

]
)
<

l-ﬂ"“"-/II

L
al

F E

)i

Fig.5. Canonical wiring of machine M;.

E-. =

% Xy

’
%3

Fewvards
Cusa x

inputs ® A ;

’ primary
*
Ke (oternaal)

Fig.6. Input variable available from flip-flop.

We see, now, in Fig. 7, that the network is disconnected
and that cells D, E, F are unuseful for realizing outputs z;
and z5. These CUSA may therefore be cancelled.

Remark: States which are alone in their column are
source states of the first kind. Other source states have the
same property that every secondary inputs may be re-
placed by a permanent 1 level. This property, based upon
the new notion of hypovalence, is not discussed here be-
cause it is not used for synthesis from graphs. The reader
is referred to [9] or [10] for further information.

State Gathering: Let us see under what conditions two
or more states can be represented by only one CUSA. As-
sume the machine M| is in the state b (see Fig. 7) and the
outputs are z; = zp = 1. If x; takes the value 1, we pass from
state b to state ¢ and the outputs are always z; = z2 = L.
Input x{ may come back to 0, b is reached again, and so on.
So changing x; keeps the system in states {b L} without
changing the outputs and we can represent the double
state be by only one CUSA BC on which neither x; nor x1.
are wired. The new state bc is insensitive to the input
variable x;. We get the simplified network of Fig. 8. "}

The following has been shown in [9]: ' :

Gathering conditions: One can get an equivalent
cellular realization by representing two states a and b by
only one CUSA if the following four conditions are ful-..
filled: ' i

1) They produce compatible outputs.

9) Their successor states are compatible. _

3) They are only differentiated by one input x;. é

4) Let x7 = 1 in state a. No transition from any other
state except that of state b towards state a can be achieved
by x¥ (and vice-versa). - i Ve

Two double states can be gathered into a quadruple -
state if they satisfy the gathering conditions, and so mq

&

Il__i

730 i ST & IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1977

j'\ Zy
e = -
i A =] B = C K—®_A
b e |
=l ix x5l 1% *gh 1
AR e
4FF 4 F4dpD
- : = o
%l 1% % Lz 'xJ %3

Fig. 7. Suppression of secondary inputs of A and D (source states).
Machine M.

. .
* z
:. A BC |~ Z
i s
=gl Ixz 5

Fig. 8. Simplified network for machine M.

Remark: The gathering conditions 1) and 2) correspond
to the classical state merging conditions to keep a Moore
machine form. The conditions 3) and 4) are needed for
CUSA networks.

III. SYNTHESIS FROM GRAPHS

This synthesis is easily applied to automata that can also
be described by flow tables, but it is especially well adapted
to industrial automata. The term “industrial automata”
perhaps does not constitute an accurate class, but within
this context it applies to systems which have many inputs,
many outputs, and which are very incompletely specified
(many input combinations being physically impossible).
Starting from specifications, such a system is easier to
define by a graph than by a large and almost empty flow
table. The nodes of this graph usually correspond to mul-
tiple states already gathered. The most important sim-
plifications for these systems result from state gather-
ing. : :

A. Example of Synthesis from a Primitive Flow Graph

The analysis of the following example will help us to
understand the more general case of synthesis from a
nonprimitive graph. Let us consider again the machine M,
of Fig. 4. It can be represented by the primitive flow graph
of Fig. 9(a) with the notation given in Section II-A. Next
to each state, the outputs which have the value 1 in that
state are marked.

From this primitive flow graph of Fig. 9(a) we can get the
canonical wiring by applying the following rules (which will
be later generalized to a nonprimitive graph).

Rules of Wiring from a Graph: A CUSA is associated

Fig. 9. (a) Primitive flow graph of machine M;. (b) Gathering of

states.

with each node a. They are wired: 1) as primary inputs; the
incoming variables and the complement of the outgoing
variables concerning state a; 2) as secondary inputs; the
outputs of the predecessor CUSA. Each output is realized
by an OR gate. _

As an example let us consider the primitive flow graph
of Fig. 9(a) and the corresponding network of Fig. 5. The
cell F is associated with the state f. The incoming variable
of f (near the branche entering f) is x;. The outgoing
variables of f are x; and x,. As a result, the primary inputs

of F are x7 and xo. Branch e —= f is associated with the . - |

connection output of E-> the secondary input of F.

Some simplifications are possible on the primitive graph.

Let us first consider the gathering of states b and ¢ of Fig.
9(a). They can be replaced by the state bc of Fig. 9(b) since
they produce the same output and the input x4, to which
be is insensitive, is neither an incoming nor an outgoing
variable of state be. Indeed, incoming and outgoing vari-

ables are wired on a CUSA (not complemented or com- -

plemented), while an insensitive variable is not wired. The .
input variable x; which can change from 0 to 1 or from 1
to 0 in state be is noted near a loop. We have now two
transitions from be by the outgoing variable x5. These two
transitions towards a and d cannot be simultaneous and -
depend on the value of x; which must be 0 and 1, respec-
tively. They are denoted (x;) and (x1), respectively, for the
two transitions considered. The variable (x;) conditioning
the transition be — a is not considered to be an outgoing
variable of be because it is not necessary to have x; = 1 to
leave be, but it is considered as an incoming variable of a,
because it is necessary to have x; = 1 to reach the state a
(a generalization is given in Section ITI-B). States e and f
can also be gathered. From the graph arrived at in Fig. 9(b)
we can get a network of 4 CUSA by applying the preceding
rules of wiring.

Let us now see if some states of Fig. 9(b) are source
states. To be stable, the incoming variables of state a must
be 1 and its outgoing variables must be 0,i.e., x1x5 = 1. Let
us call M, = xix, the characteristic monomial of a. We -
then get, in the same way, M. = 12, Mg = 21X, and Mf
= x,. Let us assume that M, = xix5 = 1, then My, = My =
Mes=0.Soif x3x5 = 1 the machine is certainly in state a.
It is a source state. We find that d is also a source state.
Using this property, we get the graph of Fig. 10 with the
following conventions: a source state is surrounded by a
square; each branch reaching a source state is deleted; to

DAVID: ASYNCHRONOUS CIRCUITS DEFINED BY GRAPHS

Ry o0 o

Hyx

Simplified graph of machine M;.

o0 ¢ W 10

1t 10

00 0t 4 10[00 D4+ A 10

EX R

® 3
s ©

—__Fe;

(a)

Fig. 11. Example of notation on

stgdte by row. (b} Corresponding part of the flow graph: one state by
node.

determine which are the primary inputs to be wired, we
note the characteristic monomials of the source states.

The part {[d,ef] of the graph is no longer useful because
the corresponding CUSA are not used to produce any
output, and they do not lead to any useful cells. Applying
the wiring rules to the subgraph {a,bc} of Fig. 10, we get the
simplified network of Fig. 8. ;

B. Description of a Nonprimitive Graph

The proposed graph is thus formed as follows: near each
node one notes for the corresponding state, the 1 output
variables and the undetermined input variables; near each
branch the input variable whose rise makes the corre-
sponding transition is marked, and, eventually, input
variables whose values enable the transition. These con-
siderations are illustrated in Fig. 11 in relation to state a.
When the system is in state b, the passage from 0 to 1 of x4
(the variable which provokes the transition) leads to state
a if x5 = 1 (this variable which conditions the transition
can be monomial). In state a, x3 can change without the
change of state.

Notation: Let us define some set of variables (see Fig.
11, for example):

Z, is a set of unitary outputs in state a. Z, = {z5,23}.

011

Za={z:,2.}
la={x;,%}
Oa= {x2,%}]
Dg= {x3}
Dg= (=}

(b)
a graph. (a) Part of a flow table: one

I, is a set of incoming input variables of statea. I, =
{x5,x4} is the union of variables initiating the arrival to state
afx x4}, and of the variables conditioning the arrival to
state ajx3}.

0, is a set of outgoing input variables of state a. O, =
{x5,x4). These are the variables initiating departure from
state a. !

D, is a set of undetermined input variables in state a.

- Dy = {x3}. These are the variables which may be sometimes
0 and sometimes 1 in the same state a. :

DY is a set of invariant input variables in state ¢. D =

fz1). :
One can also define some sets with complemented
variables noted, for example, I, = {xo,x 4}, and other sets
insensitive to the sign of the variables, for example, I; =
{ra,x4.

If a variable x; of O, appears on several branches exiting
from a, we call O a set of monomials conditioning the
transitions by a variation of x;. In the example of Fig.
11:

03 = [xa.x3 |
DY is a set of variables which do not belong to Iz U 07 U

D,. For example (see Fig. 11), x1 has the value 0 during
every transitions towards a, in state ¢, during every tran-

732 ' IEEE. TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1977

sitions from a. State a is insensitive to the variables be-
longing to D, \U DY".

Let us now examine an example of establishing a non-
primitive graph from specifications.

Example:

1) Specifications (see Fig. 12).

Let the wagon W be on contact P. As soon as the button
M is pressed, the wagon goes to the right. If M is pressed
long enough for the wagon to leave contact P, it goes to
point @ and immediately comes back to P. When again
reaching P, W stops, if M is not pressed, or starts a new
cycle if M is pressed. This system has 3 input variables; M
(starting pushbutton), P and @ (presence of W at the left
and at the right contacts, respectively); and two output
variables: R and L (move to the right and move to the left,
respectively).

2) Establishing of the initial graph (Fig. 13).

At the start, let the system be in state a: no output is
activated. As soon as M takes on the value of 1, the system
" passes into state b; in this state, output R is activated and
the wagon goes to the right. Two input changes are then
possible: either M is released, the branch denoted M’ shows
that the system then comes back to state a, or the contact
P is left before releasing of M and the automaton reaches
state ¢ through the branch noted P’ (see Section III-F
about the simultaneous changing of M’ and P’). In this
state, R is always activated and M can be released or
pushed again without a change of state. Then W reaches
the contact Q. For the state reached, d, the activated
output is now L; M is always undetermined-and, going
towards the left, the wagon will leave contact §. @ can take
on the value 0 without a change of state and is indicated
as an undetermined variable for this state, d. When W
reaches the contact P there are two possibilities: either M
= 0 or M = 1. The two corresponding iransitions towards
a and b are marked P(M’) and P(M), respectively.

C. Functional Graph: Wiring
This is the most important part of the design. The initial

graph is not unique, since a nonprimitive flow table is not
unique, and it can contain some states gathered regardless
‘of the gathering conditions of Section II-B. We shall now
examine the correct construction methods working from
agraph.

For a good understanding of the properties below, let us
comment on Fig. 14.

Fig. 14(a): This corresponds to an ordinary transition,
as every transition in a primitive flow graph. The input
variable xy, the outgoing variable of state a is wired as x;
on A, the incoming variable of state b is wired as x; on
B.

Fig. 14(b): The input variable x», undetermined in states
a and b, is not wired on the corresponding cells.

Fig. 14(c): x2 is undetermined in state a, thus not wired
on A. The transition ¢ — b is conditioned by x,. This
means that the changirng of x4 leads to state b, but only if
x9 = 1. Thus x5 is wired on the CUSA B, and B can only be

- — b
A @ . i - .’I A M
¢ SR

Fig. 12. Control of a wagon (machine Ms).

e

Fig. 13. Initial graph of machine Ms.

reached if x1x4 = 1. From state ¢, a change of x; when x5
= () leads to another state, ¢ in our example,

- Definition: A graph is said to be deterministic if for
any input sequence, from any initial state, the automaton
cannot exist simultaneously in two states..

Theorem 1: A graph is determjmstlc if and only if for any
state a:
a) A variable belonging to D, does not appear in O,

d.e.,

D.NO.=¢.

b) For the same outgoing variable, the monomial con-
ditions are mutually exclusive, i.e.,

Vxt €0, VmjmpeOF, jxk:

The proof is quite obvious because condition a) ex-
presses that the automaton cannot exist simultaneously
in state a and in one of its successor states, and condition
b) expresses the fact that the automaton cannot go si-
multaneously into two successors of state a.

Definition: A graph is said to be functional if, by
applying the rules of wiring (Section III-A) to that graph,
one can obtain an automaton which is exactly in one state,
for any specified input sequence from any initial state.

Theorem 2: A graph is functional if:

a) It is deterministic (the two conditions of theorem 1
will be referred as (1-a) and (1-b)).

b) For any state a, a variable belongmg to D, does not

appearinl), ie.,
D,NI;=¢.
One can prove this theorem by showing that the gath-

ering conditions (Section II-B) are satisfied for the states
gathered in state a, if this state a satisfies the conditions

_ a) and b). Condition (1) is automatically fulfilled because

only one output state can be associated with a node of the
graph. Condition (2) expresses determinism; condition (a)
insures this determinism. Condition (3), when applied to
successive gathering, implies that a variable belonging to
I, always appears with the same sign and a variable be-
longing to O, always appears with the same sign but op-
posite to the first one, Le.,

m; Xm-kEO.

: DAVID: ASYNCHRONOUS CIRCUITS DEFINED BY GRAPHS

Q) xteLUO,=xY¢l, U0,

If condition ¢)—very useful for the designer to avoid
faults—is not satisfied for state g, some input variable
must have the values 0 and 1, so it is an undetermined
variable, and condition b), or condition (1-a) is not satis-
fied. Condition (4) is fulfilled if condition b) is satisfied.

Let us remark that condition a) about determinism is
concerned with a correct description, independently of the
synthesis, while condition b) is needed by the proposed
$ synthesis method.

Obtaining a Functional Graph from an Initiel Graph:
If the graph is not deterministic, it may be necessary to
return to the original specifications in order to describe an
initial deterministic graph (in effect, one cannot guess at
the real functioning).

If the graph is deterministic (this is the usual case if the
designer has not made any mistakes), condition b) may not
be satisfied. It is then necessary to “divide” (see below) into
~ two the states which do not comply with this condition.
¢ Returning to the specifications is not useful here, but does

allow one, in some eases, to avoid nonexistant transitions.
Let us see, in an example, how to divide a state.

Application to the machine Ms: One can check that the
graph of Fig. 13 is deterministic but not functionalk: indeed
8 € I'; N Dy. This state, d, is divided into two states d;
and d», as shown in Fig. 15.

The passage from one to the other of these two new
states is accomplished by variation of @’ (it is clear from
specifications that a branch d; — d, denoted as @, cannot
exist). Associated with states d; and d5 are the same out-

. puts variables as with d (i.e., {L}} and the same undeter-
mined variables exept § (i.e., [M}). A transition from ¢ to
d would be replaced by two transitions towards d; and ds
in the general case, but here it can be a transition towards
dy, in order to satisfy condition c). In the general case each
transition from d would be replaced by two transitions

Fig. 14. Parts of graphs and associated wirings.

- A :B-
TT1 Ir
X X
4 A 18
TT T
x; Xy
m 38 F

x] Xy

%

from d, and ds if they are compatible with the function- 3
ality conditions. But in our example, it is clear from the
specifications that the transitions noted as P(M’) and
P(M) can only be achieved from do.

The graph of Fig. 15 is functional and one can directly
make the wiring from this graph, but one can also obtain
a simpler network.

Let us remark that a number of sufficient divisions al- |
ways leads to a functional graph. Indeed, the limit is the]
primitive graph which is always functional. z

D. Gathering of States: Irreducible Graph

When a functional graph is obtained, one can eventually .
reduce it by gathering 2 or more states. The only condition
is that the new graph be functional. Let a group of states
be neighbors if for any pair of states of this group there
exists at least one chain leading from one to the other and
passing only through the states of this group.

In practice, the gathering conditions for 2 or more
neighbor states on a graph are as follows:

a)

they produce the same output,
b)

none of the incoming or outgoing variables of the -3
new multiple state may change inside this state,
the outgoing conditions, which may eventually be |
added, leave a graph still functional.

The graph of Fig. 15 is said to be an irreducible graph
because no further gathering is possible.
Let us study as an example the gathering of states b and

¢ of machine M; (refer again to Fig. 9). The last 3 condi-
tions are satisfied:

c)

condition a):
condition b);

Zy =17, = {zy,29} = Z

e M Dpe=fxad Nixl=¢

O3 N Dpe = lxad N ixid = ¢

Dy, includes the undetermined variables

734 . : . IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 19?7

Fig.15. Functional graph for machine M.

for b, those for ¢, and the input vanahle
: leading from b to ¢.
condition ¢);’
on branches be — a and be — d, states
a and d always satisfy the functionality
conditions.

In general, one can also gather some states which are not
neighbor states. One must then account for an invariant
variable; if it has opposite signs in two states ¢ and b, it is
then undetermined for the new state, ab. '

~ E. Source States: Simplified Graph

This is a generalization of what has been presented in
the example of Section II-A.

Definition: A characteristic monomial of a state u is the
monomial which characterizes the set of input states for
which state u is stable. Let us denote it by M,,.

Consequently, M, consists of all the input variables
which do not belong to D, i.e., the incoming variables with
their sign, the outgoing variables with the opposite sign,
and the invariant variables with their sign. Equivalent-
ly,

M,= I o
. x;+EIuU0u UDu.
For example, one has for the state a of Fig. 11:
= {x5%4), and DC=ix3

- Thus M,1 = x} - x5 - x4 is a monomial which characterizes

Oa. = {x 2’14},

 the 2 columns where state a is stable.

Property: State u is a source state of the first kind if and
only if its characteristic monomial has a null product with
the characteristic monomials of each of the other states of
the automaton. This condition expresses the fact that state
u is the only stable state for the set of input states, char-
acterized by M. If the set of all machine states except u
is denoted by ©Q,, one can write:

u is a source state of the first kind = M,{ 2 MU) =

ve y
Simplified Characteristic Monomial: For a source state
u, the wiring of all the variables of M,, as primary inputs
ensures that the cell U will only assume the value 1 when
the input state will correspond to state u. M,, contains the
variables of I, and O, which are indispensable, as well as

after addition of conditions (x7) and (x1) -

the variables of D? which are not necessarily useful. In-
deed, if there exists a simplified characteristic monomial
M., the literals of which are a subset of the literals of My,
such that

M, zMu)=

the input variables which appear in M, are sufficient to

_ensure that the cell U, associated with the state u, will not

take on the value 1 when the system is in another state.

Study of the Source States: In order to find the
source states, let us form the characteristic monomial of
each state. To do so, let us create a table stating the value
of each input for each state. For the graph of Fig. 15, the
table given in Fig. 16 is constructed as follows:

First, one states (in heavy type) on the table the infor-
mation which is immediately obvious on the graph. For
state ¢, for example, one can notice P’ and @’ which cor-
respond to I, U O, and a dash for the variable M which is
undetermined in this state. Let us note that establishing
this table is a verification of the functionality conditions
1-a) and b) because any variable x; for one state must be
either x;, or x;, or undetermined, but not two or three of
these simultaneously. :

Then, we fill in the remaining spaces corresponding to
invariant inputs. For example, @ appears as @’ for state
¢. Since the value has not changed between b and ¢, one has
alsoQ’ in state b. One can thus follow a chain (or return to
the specifications).

Let us determine, with the help of t;hls table, if some
states are source states. State ¢ is not a source state because -
its characteristic monomial is not disjoint from that of
da.

Mc Mdz = PrQr PJQ? PrQ; = 0.

On the other hand, a is a source state and M, = M'P. In-

deed, M’ distinguishes a from b and P dlstmgwshes a from
¢, d1, and dy. State b is also a source state with M, = MP.
Therefore, all the branches which arrive at a and b can be
neglected (Fig. 17). State a does not intervene for the re-
alization of the output variables, and besides, it leads to
no “useful” state. One can suppress it.

From the graph of Fig. 17 (except state a) we can im-
mediately deduce the wiring of Fig. 18 by applying the
wiring rules of Section III-A.

The reader can verify that d; is also a source state but
this does not give a more interesting solution.

Let us note that the functionality conditions are local
for each state; that is, to say, that a global consideration
of the graph is not useful. This property allows the treat--
ment of large automata. Examples discussed here are
simple because it is not educational to present a more
complex example. However, we can cite, among success-
fully realized networks, the sequential control of a pilot
distillation column in the Laboratoire d’Automatique at
Grenoble. This sequential system has 16 inputs, 17 out-
puts, 33 states (33 CUSA), corresponding to about 10 000
total states. It has been realized with 50 integrated circuits

DAVID: ASYNCHRONOUS CIRCUITS DEFINED BY GRAPHS

M P Q
a [M[P| @
b [M[Pla
c _—. P Qf 3
4 | =lelal
h]=|PQ

Fig. 16. Characteristic mon'o_mj:zﬁs for machine M 2.

DIL (CUSA plus a small combmanonal part for inputs and
outputs)

" F. Mult;p!e-fnput Change

We have assumed that multiple input change does not
occur. However, let us comment on the possihility of a
double-input change and consider two cases.

1) The input variables may change at random. If the
change of two input variables appears within a range of 30
ns (with the TTL integrated CUSA) it may have an error.
However, if two variables have a mean time between
change of 1 s (reasonable for an industrial automaton),
their change in the critical range can appear less than once
every year. This possibility may generally be neglected
compared to other sources of failure.

2) Two-input variables x; and xo may change sunulta-
neously because they are not independent. Then the sys-
tem can reach a state which is compatible with x1xs = 1
(the graph may eventually be modified). In the example
1 (the graph may eventually be modified). In the example
of Fig. 13, a simultaneous change of P’ and M”,-when the
system is in state b, leads to state'¢c which is compatlhle
with P’M’ (Whlle a is not).’

IV. CONCLUSIONS

As mentioned in the Introduction, the synthesis method
described in the paper is straightforward and systematic;
the networks are realized with a sxngle type of ce]l and
testing is not at all difficult.

The necessary material to carry out a network, estimated
in the number of TTL packages to be interconnected, is
approximatively the same as with any other method.
However, the time necessary for completing the synthesis,
whether by hand or dlgltally programmed is very much
reduced.

This method, when taught at both the technicians’ and
engineers’ level, has met with an enthusiastic response
from the students. - 0

Several realizations of CUSA have been made via con-
ventional electronics, via medium-scale integration with
MOs technology (30 CUSA, with the last metallization
mask determining the interconnections), and via inte-
grated circuits with TTL technology. Using the latter, a
number of rather important multi-input systems involving
hundreds of states and composed of partially independent
subsystems have been realized. One such pilot unit controls
a distillation column at the Laboratoue d’Automathue at
Grenohle

735

Fig. 18. Network for machine M».

APPENDD(

This Appendix shows an example which is more complex
than the examples of the text, but not among the most
complicated which have been already realized. It is an 8-
input, 4-output, 36-total states, asynchronous system.

Specifications: Let a system have 8 input variables de-
fined as follows: x, yx2, x3, U1, Us, U3 are position contacts,
as shown in Fig. 19. The input variable M is a starting
impulse.. The input variable S defines the ¢ycle to be
completed. Starting from point 4, if M = 1, the system
realizes either the cycle ABCDA if S = 1,or AEFGABCDA
if S = 0..S ¢can only be changed in the rest initial state. If
M =1 at'the end of the cycle, a new cycle beging. M can
only be released during the last part DA of the trajectory.
The 4 outputs H,L,D,R, ccrrespond to the different
motions, as'shown in Fig. 19.

Synthesis; The description of the corresp0ndu1g se-
quential system leads to the functional graph of Fig. 20.
The table of characteristic monomials is glven in Fig. 21.
The states 1,4,7,10 are source states, and we get the net-
work of Flg‘ 22. i

" Comments: This example needs 9 D.LL. 1nteg’rated
circuits (4 SF.C 608, 2 SF.C 607, and 3 other L.C. with in-

‘verters and NAND gates for inputs and outputs).

A c‘}assmal realization with NAND gates has ledustoa
use of 10 D.LL. integrated circuit.

“This' ex-a.mple is' quite significant concerning: 1) the
amount of ‘material, which is almost the same in the two
céses; 2) the time of demgn which is much shorter with the
propnsec} synthems (in a ratio from five to ten, from our
own. experlence) Once the functional graph is complete,

the synthesls is qulte direct..

"*-a..'
Sl

ACKNOWLEDGMENI‘

The author wishes to thank Prof. R. Perret for initiating
this study, Dr. J. C. Laurent for his contribution, Prof. E.
McCIus}:ey and Prof. M. Rabins for thelr help in writing
the final manuscnpt.)

.‘_r.

736 h 1EEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1877 !

¢ B dx, = B 4y i
- M
| I.—._-I_E '
F 1 E 4xy F : 4 D '
a3 : : ﬁ'i
Ei aD - 4 A T e i
Uy Y u, . Uy ™ frA
Szl |, short cycle - 5=0, long cycle

Fig. 19. Cyecles to be done.

]
X My ¥yowp W Uyt M-S
P x| a] a fU| @] S IM] =] Mur
2| = [xg| % Uyl a] wfM |8
s e[== [l " [
e s LD O B ER
51 | % *3 'u; SE R s
6l =~ | — [éAg W) | w|w /s
7ia [a g =ug| 9] n]—|M=xu
8las = | =% || %" |-
ol [| m[ug[~]w]~=]= ,
Fig. 20. Functional graph. Fig. 21, Table of characteristic monomials.
X‘Jg,_"
: = 0 =iz *Fcem
* e]
A s
S TR
XE L !
2y i ()_:us.r.cm 4 SF.Ceon e oF.ceos td sF. ceor
b 'y B & 5
a |
H‘B‘_" *Jh;. 2l fuy 4y H’.]HL“
.- i X4y ms'
u g . : Wiy 00 L
s . : e N e H
Uy & X oMs =
J:'[; 0 Sid b
Ay Ve secs 12 5.C608 ;
.MJ-E:-- r l" 5
e . }_D i
E R A ok

im]
U

Fig. 22. Network with integrated CUSA (secondary inputs are com-
plemented).

738

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1977 !

N, E‘. c B 4y
.M
| L le
F : | . _deg 3 413. o)
': .. - M
D A e
lG —h h A &Y -A‘x‘
Uy Y Y, Uy - Uz uy
S=1 , short eycle $=0, long cycle
Fig. 19. Cyecles to be done.

XM Ky N Uy Uy ™M 5
1ix [4] s [Ul w]w]m] -
I 'Jl;i s Uyl al wiM s
3 X; .*z =1 — - u; ™ s
blxgi=]s|w| G{u|n]|*
E_»-':q xf; x5 ;-— M 5
6l == lu|w|w]w]s
TI% | A [Xy | —|Up| R)w|—
8 X:_] i v ug uy W —
K| x| % Uy =] B |=]| =
o] = [=[x U] w|bim|s

D = srosm
e

1
ol

M=K HS

Fig. 21. ’_I‘able of characteristic monomials.

4

0 ~Hvzsecson /
LSl

42 5F.Ce08

7
JE

SF.C&OT

10

AU Ms

vz sr.ceon

14

L
fs

xj Uy

X

Fig. 22. Network with integrated CUSA (secondary inputs are com-

plemented)

-

3
f

B e s

REFERENCES

[1] D. A. Huffman, “The synthesis of sequential switching circuits,” J.
Franklin Inst., vol 257, no. 3, pp. 161-190; no. 4, pp. 275-303, Mar.,
Apr. 1954,

[2] D. Ferrari and A. Grasselli, “A cellular structure for sequential
networks,” presented at the 8th Annual Symposium on Switching
and Autemata Theory (Austin, TX, Oct. 18-20, 1967).

[3] T.F. Arnold, C.-J. Tan, and M. M. Newborn, “Iteratively realized
sequential circuits,” IEEE Trans. Comput., vol, C-19, pp. 5468,
dan. 1970.

[4] J. A. Brzozowski and 8. Singh, “Definite asynchronous sequential
circuits,” IEEE Trans. Comput., vol. C-17, pp. 18-32, Jan. 1968.

[5] P, R. Low and G. A. Maley, “Flow table logic,” Proc. IRE, vol. 49,
pp. 221-228, Jan. 1961.

[6] J. Florine and M. Dehagen, “Registres, compteurs et sélecteurs
électroniques sans bascules bistables,” Automnatisme, vol. X1I, no.
11, Nov. 1967.

[7] A.A.Tal “Design of static synchronous sequential machines on the
basis of standard cells,” Automation and Remote Control, pp.
2089-2107, Dec. 1966.

8] R. Perret and R. David, “Synthesis of sequential circuits using basic
cell elements,” in 9th J.A.C.C. (Ann Arbor, MI, June 26-28, 1968),
pp. 582-596.

[9] R. David, “Réalisation de systémes séquentiels asynchrones par
interconnexion simple de cellules séquentielles identiques,” Ph.D.
dissertation, Grenoble, 1969.

[10] ——, “Synthase de réseaux séquentiels cellulaires,” Automatisme,
vol. XV, no. 3, pp- 89-97, Mar. 1970.

[11} J.C. Laurent, “Synthése cellulaire des automates asynchrones dé-
finis par leurs graphes et intégration 4 grande échelle en technologie
M.0.S.,” Ph.D. dissertation, Grenoble, 1972.

On Totally Self-Checking Checkers for Separable Codes

MOHAMMAD JAVAD ASHJAEE AND SUDHAKAR M. REDDY, MEMBER, IEEE

Abstract—Design of totally self-checking (TSC) checkers for
separable codes is studied. Assuming a specific checker design, a
sufficient condition on separable codes is derived such that the
assumed checker is TSC. It is shown that the proposed checker is
applicable to certain Berger codes and resid des. A class of
codes equivalent to Berger codes is derived for which the proposed
checker is TSC.

Index Terms— Berger codes, residue codes, separable codes,
totally self-checking checkers, unidirectional faults.

I. INTRODUCTION

' CIEVERAL researchers have studied the prob-
lem of designing totally self-checking (TSC) circuits
[1]-[18]. In [8], [4}, and [7], TSC checkers for m-out-of-n

Manuscript received Qctober 1, 1975; revised August 2, 1976. This
research was supported by NSF Grant ENG72-04042 A02. 3

The authors are with the Division of Information Engineering, Uni-
versity of Iowa, Iowa City, [A 52242, .

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 8, AUGUST 1977 E 7l

[12] J. C. Laurent and R. David, “Synthése cellulaire de systémes s
quentiels complexes définis par leur graphe primitif,” Reuvt
Francaise d’Automatique d’Informatique et de Recherche Opéi
ationnelle, no. J1, pp. 19-34, 1972.

[13] SESCOSEM Catalogue, “Logic TTL integrated circuits,” (Editior
Radio, 9 Tue Jacob, 75006 Paris, France), pp. 573-580, 1975.

René David was born in Saint-Nazaire
France, on August 8, 1939. He received the en.
gineering degree in 1962 at the Ecole Nationale
Supérieure d'Arts et Métiers. In 1963 an acci-
dent stopped his work and left him paraplegic.
In 1965 he received the Automatic Control En-
gineering degree at the University of Grenoble
and in 1969 he received the Doctorat d’Etat es
Sciences Physiques degree at the same univer-
sity, under the direction of Prof. R. Perret.

- Working with the Laboratoire d’Automati-
que at the Institut National Polytechnique de Grenoble since 1964, he
is now Chargé de Recherche at the Centre National de la Recherche
Scientifique. His interest les mainly in synthesis and test of switching
circuits, and also in computer structure and traffic simulation.

Dr. David is a member of Association Francaise pour la Cybernétigue
Economique et Technique (AFCET).

codes were given. A TSC single-error correcting, and
double-error detecting circuit for certain Hamming codes
was given earlier [8], [11]. In this paper, we study the
problem of designing TSC checkers for separable (or sys-
tematic) codes [3], [16], and [19]. This problem was studied
earlier (see [15] and [186]), but, as we will show, the results
derived therein are applicable only to a special class of -
separable codes. ‘ S
We will specifically, propose TSC checkers for Berger ©
codes [3], [17] and some residue codes [18], [19]. The results
presented will give the insight necessary to design TSC
checkers for all residue codes and for many other separable
codes.! The motivation for the choice of Berger codes
comes from the fact that many large-scale integration

1 For example, for all check sum codes [9], [28].

