1IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

1133

Direct Implementation of Asynchronous Control
Units

LEE A. HOLLAAR, SENIOR MEMBER, IEEE

Abstract—The “one-hot” row assignment for asynchronous cir- .

cuits, in which every row in a flow table has exactly one of the feedback
variables that equals the value 1, provides a straightforward method
for circuit synthesis. Once a flow table has been constructed, the state
equations can be directly written, without requiring any procedure to
ensure a race-free assignment. Furthermore, it can implement any
arbitrary fundamental mode asynchronous circuit, not depending on
a specific signaling protocol for its correct operation. An alternate view
of one-hot asynchronous circuifs is given, with a simple sef-reset
flip-flop for each state. Although this may seem excessive compared
to implementations with encoded state variables, for many circuits their
one-hot implementation is comparable in cost to other asynchronous
implementations.

However, unless particular care is taken regarding the relative delays
of the circuit components, the one-hot state assignment does not
properly function when two states form a scale-of-two loop (where a
state has another state as both its predecessor and successor). The
reasons for this failure are discussed, along with implementations which
solve the problem. The operation of the circuit will be detailed both
under standard fundamental mode assumptions and when the inputs
cause a transition before the circuit stabilizes. In most cases, the re-
strictions of the fundamental mode can be substantially relaxed. Fi-
nally, a number of expanded capabilities are presented, including a
FORK/JOIN construct to allow two or more asynchronous activities
to proceed simultaneously, and a subroutine capability, allowing the
sharing of common sequences of states.

Index Terms— Asynchronous control, direct mapping algorithms,
nonfundamental mode operation, “one-hot™ state assignment, parallel
operations, sequencer logical design, signaling pretocols.

INTRODUCTION

SYNCHRONOUS circuits offer substantial benefits in
the design of digital control units or sequencers, par-
ticularly when many of the actions of the control unit are based
on externally generated signals that are not guaranteed to be
correlated to an available clock signal. Such signals are com-
mon in interfaces between central processors and their pe-
ripheral devices, particularly when connected to a bus designed
for a wide variety of peripheral types and speeds. Often no
special provisions for unsynchronized external inputs are made
in the design of a clocked control circuit, which raises the
possibility of incorrect circuit operation due to the circuit’s
flip-flops entering their metastable [1] state.

Special circuitry must be used to prevent metastable oper-
ation, or to rapidly force the flip-flops out of their metastable
state. Since metastable behavior stems from violating the
constraints of a digital circuit, such special circuitry generally

Manuscript received September 17, 1981; revised January 12, 1982 and
April 6, 1982.

The author is with the Department of Computer Science, University of
Utah, Salt Lake City, UT 84112.

requires analog techniques. One circuit for synchronizing an -
input to the control unit’s clock, suggested by Fletcher [2],
requires a D-type flip-flop and six additional gates, with two
of the inverters being used as analog amplifiers.

Additionally, extra states must be added for the clocked
control unit to idle while waiting for an external signal to occur.
Each must be separated by only one state variable from the
state entered when their external signal occurs to prevent in-
correct transitions [2]. This further complicates the “simple”
clocked implementation of a control unit with a number of
external signals.

Alternatively, asynchronous design techniques can be used
to implement the control unit. There is, obviously, no need for
special circuitry to synchronize an external signal to an arbi-
trary clock. Nor are special idle loop states required, since the
asynchronous control unit simply waits in a state until the
desired external signal occurs, then immediately proceeds to
the next state.

Modular Implementation Methods: Two methods have
been employed for the implementation of asynchronous control
units. The first is the use of specially designed modules which
implement specific control activities (such as initiating an

-action or flow of control) [3]-[5]. However, this approach

requires the use of specific signaling protocols between the
control portion and the rest of the system (generally a variant
of the four-cycle handshake) [6]. Although this system-wide
view of the machine is important in producing a workable
asynchronous machine implementation, the use of a specific
protocol throughout may be difficult to achieve if the circuit
being designed must interface with other devices with existing,
but different, protocols, such as the channel or bus of a com-
puter or a memory system.

For example, the Q-bus protocol used by the Digital
Equipment Corporation on a number of their low-end pro-
cessors [7] uses an asynchronous protocol which departs from
the request/acknowledge of the four-cycle or two-cycle
handshakes. Because it assumes upper bounds on the propa-
gation delays on the bus and nominal times to perform certain
simple actions, in some cases actions are taken without an
acknowledgment of the previous action. While this provides
a reliable, asynchronous method of transferring data, it does
not directly match the protocols required by most modular
techniques, and would be difficult for them to implement.

Conventional Implementation Methods: The second
method is to design the control unit using the “conventional”
methods detailed in a number of texts [8]-[10]. No specific
protocol is required, although certain restrictions, such as the
fundamental mode requirement that only one external input

0018-9340/82/1200-1133%00.75 © 1982 IEEE

1134

can change at a time, and that the circuit must be stable when
a change occurs [9], [11], can simplify the design process.
Request/acknowledge protocols, such as the four-cycle
handshake, can be easily implemented by regarding the request
signals as the inputs to the control and the acknowledge signals
as outputs, occurring when the circuit has performed a specific
act or has stabilized.

Unfortunately, the application of conventional asynchronous
design techniques to control units can become very difficult.
Most techniques are oriented toward recognizers, which are
characterized by a limited number of inputs and outputs
(typically one or twoinputsand a single output indicating that
a particular pattern has been recognized) and a complex set
of transitions between states. The most useful application of
asynchronous circuits, however, are in sequencers with many
inputs, most of which are not of interest at a given instant, and
many outputs, with each state generally having a unique
combination of the outputs. Many inputs can make flow tables
unmanageable, since a column must be included for each
combination of the inputs, and unique outputs for most states
means that conventional state minimization techniques will
be of little value.

A major task when using conventional asynchronous design
techniques is to determine a state variable assignment with no
critical races or undesirable output hazards. This is time-
consuming for sequencers with many states, and does not
guarantee the lowest cost implementation even when the as-
signment with the least number of state variables is found.
Furthermore, any change in the specification of the control
unit, particularly one which adds a state or changes a transition
term, may necessitate a new state assignment [12] and the
consequent total redesign of the circuit.

THE “ONE-HOT” STATE ASSIGNMENT

An asynchronous circuit can be implemented directly from
its state diagram, without the intermediate steps of flow table
construction or determining a safe state variable assignment.
This direct mapping implementation technique is based on the
use of a “one-hot” code, where there is a state variable for each
row in the flow table and only one state variable is a 1 whenever
the circuit is stable. This technique was first discussed by
Huffman [11] as the “one-relay-per-row” realization of an
asynchronous sequential circuit. In addition to its eage of im-
plementation, it had the benefit of only one relay being acti-
vated when the circuit was stable, reducing power consump-
tion.

Since two state variables must change value during any state
transition (the one associated with the current state changes
from 1 to 0, while the next state’s changes from 0 to 1), care
must be taken to ensure that a critical race does not occur. This
is done by making every transition a cycle by ensuring that the
next state’s variable is set first, then the current state’s is reset
(causing a transition sequence in the form 10-1 1-01). Asan
example, consider the circuit (described by Unger [8] on page
98), whose flow table and state diagram are shown in Fig. 1.
It has two inputs, x| and x5, no outputs, and five states.

The expressions for the state variables are given by Unger
as

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

X X,

00 oOf 1 10
LD 2|3
e s] -
4 IO 1

wn + (43| (3%]
1

Fig. I. Flow table and state diagram for Unger’s example machine.

Y} = X1 %25 + x1%2y3 T Y1¥a)s
Yy =X1x201 +y2ys

Y3 = xix2y1 + Xixoya + yayiva
Ys = X1 Xop3 + x1X2¥s T YaPs
Vs = x1X2y4 + ys¥1Va

Each equation is of the form ¥; = T; + yiH;. T; is the
transition term, consisting of the Boolean sum of all state
transitions (current value of the state variables and inputs),
or unstable total states, leading to state 7. For example, the
unstable total state in the lower left corner of the flow table in
Fig. 1, which leads to state 1, has the value X;X,ys. The re-
mainder of each equation, y;H;, is the hold term, which kecps
state variable i true until another state is entered. H is the sum
of the state variables for states whose predecessor is I; so, for
the circuit of Fig. 1, the hold function for Y7 is y1y203, since
state 1 can be followed by either state 2 or state 3.

An Alternate View

The one-hot asynchronous machine implementation can
alternatively be viewed as having a simple set-reset flip-flop
for each state, which is set during a transition into the state,
and which in turn resets its predecessor state flip-flop. To see
that these are equivalent, consider the simple state diagram
segment and its one-hot implementation given in Fig. 2. The
segment consists of three states (J, K, and L) with transition
inputs R, S, and T. Unlike the previous example, these inputs
are shown in an unencoded form, rather than listing all com-
binations of the circuit inputs, since only particular input
combinations are of interest at any one time. By examination
of the state transitions, it is clear that, for example, the equa-
tion for state variable X is JS + KL, and this is implemented
in Fig. 2 by gates 5-7, and 12.

The circuit of Fig. 2 can be easily transformed from the
AND-OR form into its equivalent set-reset flip-flop form.
Gates 6 and 7 actually form a flip-flop set by a 1 from gate 5
and reset by a 0 from gate 12. Because this particular flip-flop
does not directly produce a complemented output, inverter 8
is necessary. This flip-flop and inverter can be replaced by the
more conventional cross-connected NAND set-reset flip-flop,
yielding the circuit of Fig. 3. The AND gate implementing the
transition term is replaced by a NAND gate to provide the
correct set polarity for the flip-flop.

In the following discussion, the cross-connected NAND

HOLLAAR: ASYNCHRONOUS CONTROL UNITS

Fig. 3.

A simplified version of Fig. 2’s circuit.

symbol represents a set-reset flip-flop, and the transition term
NAND represents the combinational logic necessary to set the
flip-flop during a transition. These illustrate the topologies
required by this direct mapping technique, although logic el-
ements other than simple NAND gates could be used to im-
plement them. In particular, it may be convenient to use a
PLA-type array to generate the transition terms, particularly
if the transition terms are more complex than a single input
variable or to aid VLSI implementation by using a regular
array. In this case, the transition NAND gate represents the
portion of the PLA which generates the appropriate flip-flop
set signal.

NONSCALE-OF-Tw0 Loop CIRCUIT OPERATION

The transitions in a diagram can be divided into two classes.
If a state has another state as both its immediate predecessor
and successor, the transitions between the two states form a
scale-of-two loop; all other transitions, regardless of whether
they are part of any loop, are in the other class. In the state
diagram of Fig. 1, transitions between states 1 and 3 form a
scale-of-two loop, as do those between states 4 and 5. The
transitions from state 1 to 2 or state 3 to 4 are not scale-df-two
transitions. Scale-of-two loops are less frequent in sequencers
than in recognizers, generally occurring when transferring data
from one place to another using an interlocked technique.
Because they are more common and operate in a more
straightforward manner, nonscale-of-two loops will be dis-
cussed first.

Normal Circuit Operation

Fig. 4 shows a slightly more complex state diagram segment
than the one in Fig. 3, with state 4 having two possible suc-
cessors (state B if the transition caused by ¥ is taken and state
C for the one caused by X). The fundamental mode restriction
ensures that ¥ and X cannot both become true when in state

1135

A or during the transition to one of its successors. (The effects
of violating this restriction will be discussed later.)

The same mapping as illustrated in Fig. 3 is used to produce
the circuit in Fig. 4, with one flip-flop per state and a NAND
gate representing the generation of the transition term. in Fig.
4, however, state A’s flip-flop enables two NAND gates, 4 and
7, since there are two possible transitions from state 4. Flip-
flop A also has two reset signals, since it has two possible
successors, each of which must be capable of resetting it to
complete the transition. Because state E has two predecessors,
its flip-flop has two set inputs and produces the reset for two
other flip-flops, B and D.

The performance of the circuit can be readily determined.
Looking at the transition from state J to K in Fig. 3, itis clear
that it requires six gate delays from the time that transition
term S becomes true until no further changes in gate outputs
occur and the circuit is stable. The path is from gate 4 to gate
5, then through gates 6, 3, 2, then back through gate 4. How-
ever, the result of the state transition, the true flip-flop output
from the next state K, is valid after only two gate delays, and
both flip-flops have reached their final values after only five
gate delays. There is no requirement that the gate delays be
uniform; in fact, the circuit will behave correctly as a funda-
mental mode circuit with arbitrary delays assumed for each
gate.

Nonfundamental Mode Operation

In the previous discussion, it was assumed that the asyn-
chronous circuit inputs followed the requirements for funda-
mental mode operation: only one input can change at a time,
and no change can occur unless the circuit is stable [8]-[10].
However, it may be impossible to ensure that these input re-
quirements are met. While the one-hot implementation is not
specifically designed for nonfundamental mede operation, it
does permit substantially less stringent requirements than
fundamental mode for correct circuit operation.

A variety of techniques have been proposed for designing
asynchronous circuits whose inputs do not meet the require-
ments of fundamental mode. These generally require placing
a number of constraints on the delays with the circuits [13],
[14], or, if the delays are unbounded, using a special input
protocol which places a spacer code between consecutive inputs
[15], something which might not be possible for a given system.
It appears that as long as gate deélays remain reasonably uni-
form, the direct implementation technique does not need to use
either of these approaches to correctly handle inputs which
violate fundamental mode.

It is convenient to divide the inputs into three classes for any
particular state. The first class consists of inputs which do not
cause a transition from the particular state. Because the
transition NAND gates to which these inputs are connected are
not enabled, changes in their values can have no effect, and do
not need to follow the requirements of fundamental mode.

Sole Transitions from a State: The second class of inputs
are those which can cause a transition from a particular state,
but that state has only one possible successor. As was men-
tioned above, the true flip-flop output for a state is valid two
gate delays after the transition term into that state becomes

1136

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

Fig. 4. State diagram segment with alternative successors and its implementation.

true. This true flip-flop output is also used to enable the tran-
sition NAND gate to the next state.

Assume that the circuit of Fig. 3 is in state J, transition term
S occurs, and T is already true or becomes true shortly after
S, but before the circuit can stabilize. Two gate delays after
S occurs, K will become true and enable gate 7, which, since
T is already true, will generate a set signal for flip-flop L after
one more gate delay. Flip-flop L will be set two gate delays
after K becomes true, and flip-flop J will be completely reset
three gate delays after K. Therefore, if the transition input
from a state is already true when a state is entered, the next
state will be entered after two gate delays and will overlap the
time the original state is valid by three gate delays. This overlap
1s the same as for normal, fundamental mode operation.

Incorrect operation will only occur if a flip-flop is reset be-
fore it is able to successfully reset its predecessor, which will
not occur if the gate delays are reasonably uniform. This
failure can be prevented by disabling a transition until both
its predecessor state is active and all predecessors to that state
are inactive. For example, in Fig. 3, gate 7 would not only have
state K as an input, but also the complement of state J.

A problem can occur if a transition input becomes false after
its transition starts but before the next state is entered. For
example, if the circuit in Fig. 3 is in state J and transition term
S occurs, the circuit will start the transition to state K. If S
remains true until state K’s flip-flop is completely set, no dif-
ficulties will result, since flip-flop K will reset flip-flop J. The
setting of flip-flop K occurs three gate delays after S becomes
true and starts the transition; this is the minimal input pulse
width required after a transition is enabled to ensure correct
operation. The action of the circuit when the input pulse width
is less than this depends on the switching characteristics of the
gates, with the possibility of the state flip-flop entering a
metastable [1] state due to a “runt” set pulse. This problem
is eliminated, of course, if a demand /response protocol, such
as the four-cycle handshake is employed, where an input
cannot be removed until it is acknowledged.

Alternative Successors to a State: The final class of non-
fundamental mode input is those which cause a transition from
a particular state which has more than one successor. Improper
operation can result if two inputs which can cause transitions
occur almost simultaneously. For example, consider inputs ¥/
and X in Fig. 4. If both inputs occur at approximately the
same time, flip-flops B and C will both be set, causing incorrect

operation. Therefore, a more stringent requirement must be
placed on inputs in this final class: when one occurs, the other
must remain false until its transition NAND gate is disabled.
This occurs after five gate delays, approximately the time for
the circuit to become stable. This requirement can be reduced
to one gate delay by a simple modification of the circuit: in Fig.
4, the output of gate 4 becomes an additional input to get 7 and
the output of gate 7 an input to gate 4. This causes the first
transition term to disable the transition NAND of the
second.

If even this substantially reduced requirement cannot be
met, a mutual exclusion circuit similar to the one described by
Seitz [16] must be employed. This is a nondigital device which
has an output for each input, and at most one output is active
at any given time, indicating the input which became active
first. The amount of time required to produce the output de-
pends on how closely two inputs co-occur, with about a gate
delay required if there is no co-occurrence and a much longer,
undefined time if two inputs are simultaneous. The outputs of
this mutual exclusion circuit then replace the previous inputs
to the control unit.

Summary of Nonfundamental Mode Operation: In sum-
mary, as long as gate delays remain uniform the direct im-
plementation technique operates well with inputs which violate
the fundamental mode restrictions. If the input does not cause
a transition from the current state, no restrictions are imposed.
Inputs which can cause state transitions must have a pulse
width of at least three gate delays and must be separated from
other inputs which can cause a transition from a state by at
least five gate delays. A minor modification to the circuit
changes this separation to a single gate delay at the expense
of an increase in the minimum pulse width. Alternatively, a
mutual exclusion element can be included to remove the sep-
aration requirement altogether, at the expense of a delay in
recognizing an input change.

SCALE-0F-Two LooP OPERATION

Unfortunately, the implementation discussed above cannot
be used for transitions involved in a scale-of-two loop. Consider
the state diagram segment in Fig. 5, and its expected imple-
mentation. Transitions B and C form a scale-of-two loop.
Assume that the circuit is in state M, and B becomes true,
causing the set input to flip-flop IV to become active. However,
because the flip-flop for state M is still set, the reset input for

HOLLAAR: ASYNCHRONOUS CONTROL UNITS

Fig. 5. A scale-of-two loop and its expected implementation.
flip-flop IV is also active, keeping it in an unstable state where
both its true and complement outputs are 1. The circuit is
hopelessly deadlocked waiting for state M to be reset before
state IV can reset it.

Although the particular failure mode is dependent on the
implementation technique used, the problem with scale-of-two
loops is inherent in the standard one-hot state assignment. The
basic state transition sequence is 10-11-01 (showing only the
two state variables involved in the transition), the first tran-
sition (from 10 to 11) caused by an input change, and the
second (11 to 01) occurring because 11 is an unstable state
which leads automatically to 01. For a scale-of-two loop only,
both transitions 01-11-10 and 10-11-01 are possible. In this
case, the unstable state 11 leads both to 01 and 10. It is clear
that some mechanism is necessary to ensure that the transition
from state 11 be to the correct successor.

An obvious solution to the problem is to convert all scale-
of-two loops to scale-of-three loops, which, because three
distinct unstable states are involved, do not produce incorrect
behavior. Alternatively, special care can be taken to guide the
transition from the unstable 11 state to the correct successor
state, based on either the previous state or the input causing
the transition. To see why this problem exists in the standard
one-hot state assignment and why these solutions work, con-
sider the one-hot equations for the state diagram segment in
Fig. 5:

M=---A+CN+MN
N=BM+NMP
P = DN+ Perny

Looking at the equation for state V given above (B M +
N M P), there is a static 1-hazard [8]-[10], since there is no
term in the expression which holds it truc while M switched
from 1 to 0. To resolve this hazard without altering the equa-
tions, it is necessary that M becomes true before M becomes
false. For the implementation discussed above, the inverter
used to produce M from M must have negative delay, since,
for a state to be successfully entered (its state variable latched
by the flip-flop), it is necessary that the hold term of the state
equation be true at the time the transition term becomes false.
This is also true for IV in the equation for M. This requirement
for a negative-delay inverter can be solved instead by intro-
ducing additional delay in the M input to the transition term,
a standard technique for resolving a particular static hazard
when the approximate delays for all other gates are known.
This additional delay in the M input provides a memory of

1137

state M to guide the transition from the unstable state to the
correct final state.
Alternatively, the static 1-hazard can be removed by in-

" troducing redundant implicants into the expressions for M and

N, ensuring that the state equation remains true throughout
the transition regardless of the delays present. The redundant
implicants necessary are simply the consensus [9] of the hold

- term and transition term involved in the scale-of-two loop. For

state /V in the above equations, the consensus termis B NV P,
so the equation for NV becomes BM + NM P+ BN P. The
redundant implicant uses the input causing the transition to
drive the circuit from the unstable state to the proper stable
state. (In his discussion of the one-hot implementation, Unger
does not discuss these inherent static hazards and the tech-
niques necessary to eliminate them [8].)

Fig. 6 illustrates a properly functioning scale-of-two loop
implementation using a redundant implicant to eliminate the
static hazard. The expression for /N has been factored to give
B M+ N P(B + M), and a corresponding factoring was done
for M. Comparing this equation to the original equation for
N, the change necessary for proper scale-of-two operation is
to replace the reset line from the other state involved in the loop
with the OR of that reset line and the input which causes the
transition to the state. In this case, the reset term is removed
from the next state’s flip-flop by the additional gate (for ex-
ample, gate 12 for flip-flop V) whenever the input causing the
transition that state is active.

Scale-of-Two Nonfundamental Mode Operation

The operation of the circuit in Fig. 6 for nonfundamental
mode operation can be readily determined, The input condition
of interest is when one of the scale-of-two loop transition inputs
becomes true before the circuit has stabilized; it is the only case
which differs from the previous discussion for nonscale-of-two
segments. Like the nonscale-of-two case, an input can cause
a transition from a state two gate delays after that state is
entered, but five more gate delays are required for the circuit
to stabilize. However, while another transition starting during
this stabilization period did not cause incorrect behavior for

‘the nonscale-of-two case, it can produce an anomaly for

scale-of-two transitions.

Assume that, for the circuit in Fig. 6, the circuit is initially
in state M and both B and C become true simultaneously (or,
since C is not considered until state NV is entered, € is already
true when B becomes true). This will cause gate 5 to set flip-
flop N while gate 12 removes the N’s reset signal. State IV
becoming true along with transition term C being already true
will cause gate 2’s output to become a 1 and gate 11 will inhibit
the resetting of flip-flop M by flip-flop N. As long as both
transition terms B and C remain true, both flip-flops M and
N will remain set. When either transition term becomes false,
the circuit will enter the state which normally follows the
transition term which remains true. For example, if B were to
go false after both B and C were true, state M would be entered
and the flip-flop for state V would be reset.

This behavior is not unexpected, since, for example, state
N is entered two gate delays after B becomes true, and state
M is re-entered two gate delays later, However, it requires six

1138

] D
Fig. 6. A properly functioning scale-of-two loop implementation.
gate delays from the time B becomes true for state M’s flip-flop
to be completely reset, so state M is re-entered two gate delays
before it is completely exited. While this nonfundamental
mode behavior is well defined, and proper operation continues
when either of the two scale-of-two transition inputs are re-
moved, and it can produce incorrect operation if some action
must be performed in one of the states whenever the state is
entered, since the flip-flop for the state remains set.

CosT CONSIDERATIONS

It is simple to determine the cost of implementing a circuit
using the direct mapping technique. States require either two
or three gates each, depending on whether they are involved
in a scale-of-two loop, and one gate is necessary for each
transition. While the determination of the gate requirements
for the minimal implementation of an asynchronous circuit
is difficult, since it requires the complete design of the minimal
implementation, some approximations can be made. One gate
is required for each state variable (log, of the number of
states), and one gate is needed to decode each state. One gate
is also needed for each transition, and one gate for cach state
to hold the circuit in a stable condition, although there is the
possibility that the combinational circuit formed from these
latter gates can be simplified. Often, extra state variables, and
additional gates, may be necessary since no minimal assign-
ment will produce race-free operation and hazards must be
eliminated. Furthermore, the gates in a classical asynchronous
design generally are not simple functions like AND or NAND,
but have some inputs complemented and others uncomple-
mented, requiring additional inverters to synthesize the re-
quired gate.

For the simple five state recognizer of Fig. 1, without de-
coded states and with two scale-of-two loops, implemerftation
requires 15 gates using conventional techniques, assuming that
gates with arbitrarily complemented inputs are available. If
a decoded output from each state is desired, as would be the
case for most sequencers, this increase to 20 gates, and if only
gates without complemented inputs (such as NAND’s) are
available, three additional inverters are necessary. The direct
implementation requires 22 gates, of which 4 are necessary
because of the two scale-of-two loops, Even in this case, the cost
of the circuit implemented using the direct technique is com-
parable with a minimal conventional asynchronous design.

EXPANDED CAPABILITIES

A number of extensions to the basic direct mapping tech-
nique can be made to implement capabilities not normally
found in classically implemented asynchronous circuits. These

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

include a FORK /JOIN operation to allow concurrent activities
and a subroutine capability to allow states to be shared between
different portions of a machine.

Parallel Execution of Activities

Although most modular techniques for implementing
asynchronous circuits [3], [4] recognize the importance of -
allowing parallel execution of two or more sequences of states,
the methods normally presented for developing fundamental
mode€ asynchronous circuits are restricted to machines which
can be in a single state at a time [2], [8]-[10]. At first glance,
especially when viewed from the perspective of clocked ma-
chine design, this may not seem like a burdensome restriction,
but it can substantially complicate the design of an asyn-
chronous circuit and reduce its potential speed.

Conventional Implementation Methods: For example,
consider a portion of the state diagram for a machine where
two different activities, each having three states, can be exe-
cuted in parallel without affecting the behavior of the machine,
as illustrated in Fig. 7. Both activities are entered from state
A when input P occurs and terminate in state Z. The first ac-
tivity consists of states B, C, and D, while the second has states
E, F, and G. Nothing is known regarding the relative times
spent in each of these states. While it might seem attractive
to produce a single string of states from two activities by
combining the states pairwise (as would be done in a clocked
implementation), this can result in substantially reduced
performance.

For example, assume during one instance when the state
diagram segment is entered that states B and G each take 1
time unit to complete, states C and F, 10 time units, and states
D and E, 100 time units. Each activity then requires 111 time
units to complete, which is also the time required to execute
them both in parallel. However, if B and E are combined, it
would take 100 time units for the new state to complete, the
maximum time for any state in the combination. Similarly, it
would take 10 units for the combination of C and F, and 100
time units for D and G, so a total of 210 time units would be
required.

A solution is not to use a rigid pairwise combination of
states, but to generate composite states so that a new state is
entered whenever a state transition would have occurred in one
of the parallel activities. For example, for the machine in Fig.
7,after input P occurs, a transition will occur from state A4 to
a composite state with the combined outputs of states B and
E (referred to in the following discussion as B/E). If input R
occurs before input S, the next composite state will be C/E,
while if § occurs first, it will be B/F. It is clear that if the rel-
ative durations of the states are not known when the machine
is being designed, nine separate composite states will be
necessary to ensure maximum performance. In general, if
there are i separate activities, and activity j has S; states, S
X 8, ---8; composite states are required. For even a few si-
multaneous activities each with a small number of states,
this can become a very large number, possibly more than can
be conveniently handled using classical design techniques.

A more serious complication when using composite states
stems from the fundamental mode requirement that input
changes (and transitions) occur only when the circuit is stable.
While it may be possible to control the inputs to a machine

HOLLAAR: ASYNCHRONOQUS CONTROL UNITS

EE =]
] []

Fig. 7. A machine with two parallel activities.

without composite states to satisfy this requirement, it is vir-
tually impossible to ensure that the requirement is met for
composite states. By their very nature, the inputs which cause
transitions in the different activities are independent. For ex-
ample, in Fig. 7, inputs R and S have no correlation, since they
are presumably generated by independent sources, It is entirely
possible for input S to occur while a transition caused by input
R is in progress, violating the fundamental mode restriction
and causing incorrect circuit operation. Although additional
logic, such as arbiters, might be added to help resolve this
difficulty, this further complicates an already complex de-
sign.

FORK and JoIN Operations: It is convenient, when separate
activities are to be performed concurrently, to think of the
asynchronous control unit as dividing itself into a number of
asynchronous submachines, one for each activity, and then
recombining to form the original machine when the activities
arc all completed. This corresponds directly with the operators
FORK and JOIN, suggested as scheduling primitives for mul-
tiprogramming applications [17]. As mentioned previously,
this technique has been used in a number of modular imple-
mentation schemes.

It is possible to extend the direct implementation technique
to handle FORK and JOIN operations with negligible changes
to the design topology. Fig. 8§ illustrates one possible imple-
mentation of the FORK operation using the direct technique.
When the machine of Fig. 7 is in state 4 and input P occurs,
a FORK transition (indicated by the small circle which splits
the transition) to both states B and E should occur. This is
implemented by having the transition gate for input P set
flip-flops for both states B and E; state A is reset when both
B and F have been set, using gate 15. Gate 16 18 used to provide
an additional input to the transition gates for both R and S,
ensuring that transitions out of B and £ will not occur until 4
is completely reset. If the protocol specifications for the ma-
chine being implemented ensure that B and E will not be left
before 4 can be reset, gate 16 and the additional input to gates
7 and 12 can be removed. Furthermore, if the times necessary
to correctly set flip-flops B and D are approximately the same,

1139

S
Fig. 8. Implementation of the FORK operation.

gate 15 can be removed and the complement output either B
or F used to reset 4.

After the FORK operation has occurred, the activities pro-
ceed as if each were a separate machine implemented using
the direct techniques. Standard flow-of-control, allowing al-
ternative states, can be used to implement a complex activity,
It is even possible for an activity to perform another FORK,
splitting the control even further.

The counterpart to the FORK operation is the JOIN, which
combines the separate activities when they have all completed.
Fig. 9 illustrates how the JOIN of Fig. 7 can be implemented.
The flip-flop for state H is set only when in state D and input
X occurs and when in state G and Y occurs. Flip-flop H is then
used to reset both state D and G’s flip-flops. Note that it is not
a requirement that the activities joined by the operation be
started by the same FORK operation.

This corresponds to schemes for implementing asynchron-
ous, parallel activities as modeled using Petri nets [18]-[20].
Both use a token passing scheme to determine what states or
places are currently active and what inputs or transitions are
of interest, allowing the token to be split among a number of
separate paths to provide parallel execution. The deciders of
the Petri net correspond to the alternative successors of the
direct implementation, where one of a group of possible suc-
cessors or places are selected. The Petri net branch is similar
to the fork operation in the direct implementation, and joins
perform identical functions.

There are, however, substantial differences in the nature of
the state diagram, augmented with FORK and JOIN operations,
used by the direct implementation and a corresponding Petri
net implementation. The Petri net implementations are based
on using a particular signaling protocol, often the four-cycle
handshake, with the firing of a labeled transition not only re-
moving tokens from the input places and putting them in the
output places, but sending a request signal to a specified exe-
cution unit and waiting for a response signal before actually
placing the tokens. Decision between a number of events is
implemented by having the execution unit return an alternative
response if a particular condition occurs. The direct imple-
mentation method imposes no particular protocol, and,
therefore, requires the explicit specification of actions (states)
and events which cause actions to terminate and others to be
initiated (transition terms).

1140

W Xy
Fig.9. Implementation of the JOIN operation.

A second difference from the token passing mechanism of
Petri nets occurs when an input place is shared between two
transitions. In this case, only one of the transitions will fire,
since whichever one fires first will remove the token from the
shared place, which, since it is now empty, will prevent the
second transition from firing. This can be used to implement
mutual exclusion, but requires the use of an arbiter to decide
which transition will fire [16], [18]. No comparable facility
exists in the direct implementation technique, although a
particular protocol can be selected and an appropriate arbiter
circuit included to provide mutual exclusion on a shared re-
source.

Asynchronous Subroutines

Just as subroutines have proved useful in simplifying the
design of programs and reducing their storage requirements,
common chains of states can be consolidated into “hardware
subroutines” to simplify the design of asynchronous control
units and reduce their hardware requirements. Asynchronous
subroutines can be implemented using the direct technique
with FORK and JOIN operations.

Fig. 10 illustrates how a subroutine consisting of states X,
Y, and Z can be activated from two different points in an ex-
tended state diagram. States M and R are normal sequential
states, not part of parallel activities started by a FORK, so at
most one can occur at the start and during the duration of the
subroutine. If the machine is in state M and input B occurs,
a fork operation to state N and the start of the subroutine at
state X results. Processing proceeds in parallel in state N and
the subroutine X/Y/Z until both state V and input C, and state
Z and input L occur, 2 JOIN is performed, and state P is en-
tered. Although only a single state N is shown for the pro-
cessing done in parallel with the subroutine, it can, of course,
consist of as complex a sequence of states as Is necessary.

It may be desirable to activate the subroutine but take no
actions in parallel during its processing. This is illustrated by
the processing starting at state R, entering the subroutine and
state S when input F occurs. In this case, state S is simply used
as a flip-flop holding return address information, and generates
no control signals. It has no inputs indicated on its transition,
so the transition is performed immediately. When the sub-
routine X/¥/Z completes, the JOIN operation occurs and state
T is entered; note that since IV was never activated during the

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

Fig. 10. An asynchronous subroutine for direct implementation.

sequencing from state R, P cannot be activated at the JOIN
operation.

Synchronous Subcontrol

Often there are activities of a control unit which are more
suitable for clocked control rather than asynchronous imple-
mentations. For example, the stepping of a counter by a fixed
number when only a step-by-one capability exists, requiring
the sending of repeated control signals, is best done by a
clocked control unless the counter provides a done signal or
some other input can be used to moderate the asynchronous
control’s state transitions. A problem like this generally causes
a control designer to choose a clocked control, even if an
asynchronous implementation would offer other, and perhaps
greater, advantages.

The solution is not to abandon the asynchronous control, but
to force it when necessary into synchronous operation, re-
turning to asynchronous operation when rigid synchronous
operation is not required. This can be regarded as entering a
portion of the state diagram where transitions occur based on
a regular clock, rather than when an input occurs. The syn-
chronous subcontrol can be implemented as an asynchronous
circuit with the clock (and possibly its complement) as addi-
tional inputs, or by using any common method for clocked
circuit implementation, although the method presented by
Clare [21], using a D-type flip-flop per state, is probably most
compatible with the direct asynchronous implementation
technique, which also uses a flip-flop per state.

Exiting the synchronous portion of the-machine presents no
difficulties. The last state of the synchronous portion is simply
used to set (or cause a transition to) the following asynchronous
state. Entering the synchronous portion properly can be more
difficult. What is required is to set the flip-flop corresponding
to the first state of the synchronous portion from the asyn-
chronous state which precedes it, and use that flip-flop’s output
to reset the asynchronous state’s flip-flop. For proper operation,

HOLLAAR: ASYNCHRONQUS CONTROL UNITS

all data setup time and minimum pulse widths must be ob-
served for the clocked flip-flop selected. This requires the use
of some form of synchronizer between the clock and the input
which starts the synchronous portion, identical to that neces-
sary when nonsynchronized inputs are used with a clock mode
circuit. Depending on the elements used and the clock fre-
quency, it may not be possible to implement such a synchro-
nizer using strictly digital techniques. Fletcher [2] describes
such a synchronizer, using inverters operating in their linear
region as amplifiers, which he claims will remain metastable
for only one clock period.

SUMMARY

The substantial advantages of asynchronous control unit
design over clocked implementations, including a more natural,
faster operation and ease of debugging, are well known.
However, classical asynchronous design techniques are too
complicated for many control designs. A method based ona
direct mapping from a state diagram to a logic circuit, using
only basic transformation rules, makes the design of an asyn-
chronous implementation easier than the corresponding
clocked design if there are a number of asynchronous inputs
to the circuit. It can also be extended to handle FORK and JOIN
aperations and subroutines, to ease the design.

ACKNOWLEDGMENT

The author wishes to thank D. Muller and J. Robertson, of
the University of Illinois at Urbana-Champaign, for intro-
ducing him to asynchronous circuits in general, and the
speed-independent techniques used in Illiac-2 in particular.
Additional thanks go to G. Langdon and R. Haskin, both of
IBM’s San Jose Research Laboratory, for their many sug-
gestions and help during the preparation of this paper, and to
the referees, especially for their suggestions about solutions
to the scale-of-two problem.

REFERENCES

[1] T.J. Chaneyand C. E. Molnar, “Anemalous behavior of synchronizer
and arbiter circuits,” IEEE Trans. Comput., vol. C-22, pp. 421-422,
Apr. 1973,

[2] W. I Fletcher, An Engineering Approach to Digital Design. Englewood
Cliffs, NJ: Prentice-Hall, 1980.

[3] S. M. Omstein, M. J. Stucki, and W. A. Clark, “A functional description
of macromodules,” in Proc. AFIPS Spring Joint Comput. Conf., 1967,
pp. 337-355. 5

[4] B. J. Nordmann and B. H. McCormick, “Modular asynchronous de-
sign,” IEEE Trans. Comput., vol. C-26, pp. 196-207, Mar. 1977.

[5] PDPI6 Computer Designers Handbook, Digital Equipment Corp.,
Maynard, MA, 1971.

[6] C.L. Seitz, “System timing,” in Introduction to VLSI Systems, C. Mead
and L. Conway, Eds. Reading, MA: Addison-Wesley, 1980, pp.
218-262.

1141

[71 PDPII Bus Handbook, Digital Equipment Corp., Maynard, MA,
1979.

[8] S. H. Unger, dsynchronous Sequential Switching Circuits. New York:
Wiley-Interscience, 1969,

[9] E. J. McCluskey, Introduction to the Theory of Switching Circuits.

New York: McGraw-Hill, 19635,

F. J. Hill and G. R. Peterson, Introduction to Switching Theory and

Logical Design, 3rd ed. New York: Wiley, 1981.

D. A. Huffman, “The synthesis of sequential switching circuits,” in

Sequential Machines, Selected Papers, E. F. Moore, Ed. Reading MA:

Addison-Wesley, 1964, pp. 3-62. Reprinted from J. Franklin [nstitute,

vol. 257, no. 3, pp. 161-190, Mar. 1954, and no. 4, pp. 275-303, Apr.

1954.

[12] G.G. Langdon, Logic Design—A Review of Theory and Practice. New
York: Academic ACM Monograph, 1974.

[13] A.D. Friedman and P. R. Menon, “Synthesis of asynchronous sequential

circuits with multiple-input changes,” JEEE Trans. Comput., vol. C-17,

pp- 559-566, June 1968.

S. H. Unger, “Self-synchronizing circuits and nonfundamental mode

operation,” [EEE Trans. Comput., vol. C-26, pp. 278-281, Mar.

1977.

D. B. Armstrong, A. D. Friedman, and P. R. Menon, “Design of asyn-

chronous circuits assuming unbounded gate delays,” IEEE Trans.

Comput., vol. C-18, pp. 1110-1120, Dec. 1969.

C. L. Seitz, “Ideas about arbiters,” Lambda, pp. 10-14, Quarter

1980.

[10]

[11]

(14]

[15]

[16]

[17] M. E. Conway, “A multiprocessor system design,” in Proc. Ist AFIPS
Fall Joint Conf., Nov. 1963, pp. 139-146.

[18] S.S.Patil and J. B. Dennis, “The description and realization of digital
systems,” in Proc. IEEE COMPCON '72, 1972, pp. 223-226.

[19] T. Agerwala, “Putting Petri nets to work,” Computer, pp. 85-93, Dec.
1979.

[20] D. Misunas, “Petri nets and speed independent design,” Commun. Ass.
Comput. Mach., vol. 16, pp. 474-481, Aug. 1973.

[21] C. R. Clare, Designing Logic Systems Using State Machines. New

York: McGraw-Hill, 1973.

Lee Hollaar (5766-M'69-SM'79) received the
B.S. degree in electrical engineering from the IHi-
nois Institute of Technology, Chicago, in 1969,
and the Ph.D. degree in computer science from the
University of Illinois, Urbana-Champaign, in
1975.

He has been an Associate Professor of Comput-
er Science at the University of Utah, Salt Lake
City, since 1980. Prior to that he was a Graduate
Research Assistant, and then an Assistant Profes-
sor of Computer Science and Senior Research En-
gineer for the Computing Services Office at the University of Illinois at Ur-
bana-Champaign. He has been active in the development of hardware and
software systems to support very large full-text information retrieval systems
for over ten years, and is the principal inventor of a specialized processor
system for merging lists of entries from an index file. In addition, he is the
co-inventor of a new class of finite state automaton for the rapid searching
of text stored on a rotating memory system. His research interests include high
level VLSI design automation systems and broad-band communications
networks. In the past he was Program Chairman for the Fourth Workshop
on Computer Architecture for Non-Numeric Processing and serves on that
Workshop’s Steering Committee.

Dr. Hollaar is a member of the Association for Computing Machinery and
the American Institute of Aeronautics and Astronautics. He is also a Regis-
tered Professional Engineer (control systems) in California.

