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 Abstract

Standard micropipelines use simple two-phase control
circuits. The latches employed on AMULET1 are level-
sensitive, so two- to four-phase converters are required in
each latch controller. To avoid this overhead an investiga-
tion has been carried out into four-phase micropipeline
control circuits; this has thrown up several design issues
relating to cost, performance and safety, and forms a use-
ful illustration of asynchronous design techniques.

1: Introduction

The AMULET1 asynchronous implementation of the
ARM microprocessor [1,2] employs two-phase control
circuits as advocated by Sutherland in his seminal paper
on micropipelines [3]. The two-phase communication pro-
tocol is illustrated in Fig. 1. Data is set up by the sender,
which then issues a transition on the request line to signal
its validity. When the receiver has accepted the data, it
issues a transition on the acknowledge line. Rising and
falling transitions alternate and carry the same meaning, so
the signal level has no significance.

However, many internal functions require level-sensi-
tive (four-phase) control, so the design has several
instances of two- to four-phase signalling converters. Per-
haps the most prominent case in point is in FIFO structures
where standard transparent latches are used in preference to
Sutherland’s ‘capture-pass’ latches on the grounds of area
efficiency [4]. The control logic for each stage then com-
prises a Muller C-element for two-phase synchronisation
and an exclusive-OR and ‘toggle’ [3] for two- to four-phase
conversion as shown in Fig. 2; the conversion circuit dom-
inates the logic cost of the control.

An obvious way to avoid the conversion circuit cost is
to implement the micropipeline handshake with four-phase
signalling. This introduces redundant ‘return to zero’
events on the handshake lines, as shown in Fig. 1, which
cause sequencing problems to which there are several solu-

tions as presented in the remainder of this paper.
The design process used, and described in some detail in

this paper, is based on Signal Transition Graphs (STGs) [5]
which represent the sequencing of circuit transitions in a
formal, but intuitively understandable, way.

The resulting circuits offer a range of performance and
cost options depending on the requirements of the applica-
tion, and these will be employed in future designs to
improve their speed and cost relative to AMULET1.

Fig. 1.  The two-phase handshake protocol

Fig. 2.  A two-phase latch control circuit

Fig. 3.  The four-phase handshake protocol
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2: Two- and Four-Phase Handshakes

The control logic for a micropipeline register must
support the handshake protocol on both its input and its
output ports. It is therefore defined in terms of input and
output requests (Rin, Rout) and acknowledges (Ain, Aout),
and its internal latching function.

In the standard two-phase protocol an event (rising or
falling edge) onRin signals the availability of input data
and the register issues an event onAin to indicate to the
source of the data that it has been captured and may be
removed (see Fig. 1). The latch also issues an event onRout
to indicate that its output data is now valid and will be held
stable until an event onAout signals that it has been
accepted by the next stage in the pipeline.

When four-phase signalling is used there is a choice to
be made as to which edge (rising or falling) of each hand-
shake signal is active and takes the place of the event
described above; the other edge is inactive and is part of the
recovery phase during which the circuit prepares for the
next cycle. In this paper we will choose rising edges to be
active in every case, as shown in Fig. 1.

Previous work in this area [6,7] included four-phase
latch controller designs which employed edge-triggered
data registers. Transparent latches require roughly half the
number of transistors used in edge-triggered registers and
therefore allow more compact datapaths to be constructed.

3: Four-phase Latch Control

In addition to the handshake signals, the latch circuit
also has an internal control signal (Lt) which causes the
data latches to be open (transparent) when low and closed
when high.

The specification of the latch control circuit is illustrated
in STG form in Fig. 4. The dashed arrows indicate order-
ings which must be maintained by the environment; the
solid arrows represent orderings which the circuit must
itself ensure. These STG fragments reflect the handshake
sequence on the input and output sides of the circuit,
together with some behavioural properties:Rout+ indi-
cates the availability of output data and must therefore fol-
low Rin+; when input data is available (signalled byRin+)
the latches may close (Lt+) and then the input may be
acknowledged (Ain+); when the output data has been
acknowledged (Aout+) the latches may open again (Lt-);
the latch must alternate between open and closed.

The design problem is to merge these STG fragments
into a single dependency diagram where all the partial
orderings required by the specification are preserved
(either directly, or indirectly through other transitions), and
then to check that the resulting unified STG has the proper-
ties which are required to give a reliable implementation.
The principle such property is that of persistency, which

means that a signal transition must depend on all the tran-
sitions that depend on its inverse transition. This ensures
that once a signal has switched it cannot switch back until
the first transition has been stable long enough to allow all
dependent transitions to occur.

4: Simple 4-Phase Latch Controller

The simplest merged STG is shown in Fig. 5. The state
graph may be derived from the STG and an implementa-
tion from the state graph, but in this case it may be seen by

Fig. 4.  Specification of 4-phase control circuit

Fig. 5.  STG of simple 4-phase control circuit

Fig. 6.  Simple 4-phase latch control circuit
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inspection that the circuit in Fig. 6 is an implementation of
this STG.

Whilst this circuit operates correctly, it has some unde-
sirable properties. Most notable of these is that when sev-
eral such latches are formed into a FIFO, at most alternate
stages can be occupied at any time. This is becauseAout
must be low (and therefore the next latch empty) beforeLt
can go high (and this latch become full).

Certain engineering assumptions are built into Fig. 6. It
is expected that there will be several bits of latched data, so
Lt must have reasonable drive buffering. The path fromRin
to Ain reflects the need for the latch to close before input
data may be removed, and the buffer delay is built into this
path. The buffer delay is not, however, built into the path
from Rin to Rout, since there is no need for the latch to
close beforeRout is signalled so long as the data has prop-
agated through the latches. Therefore the C-gate delay
must be no shorter than the latch data-in to data-out delay
for the correct operation of this circuit. This assumption is,
in fact, also built into the specification in Fig. 4.

5: Semi-Decoupled 4-Phase Latch Controller

To increase the decoupling between the input and output
sides of the latch, and in particular to allow a FIFO to fill
all its stages, the STG must be revised to allow the latch to
close before the output handshake has completed. A suita-
bly modified STG is shown in Fig. 7.

Note here that in order to achieve the desired decou-
pling, an internal variable (A) has been introduced to record
when the input side is ready to proceed. Now the latch can
close before the adjacent latch on the output side is empty,
sinceLt+  is concurrent withAout-.

To simplify the derivation of a state graph for this STG
it may be observed thatLt andAin follow directly fromA
with internal dependencies only;Lt andAin may therefore
be omitted from the state graph.

The STG can be transformed into the state graph in Fig.
8 (without the dashed transitions and the ‘1111’ state
between them; these will be referred to later) by applying
the underlying Petri net rules [8] to construct the reachabil-
ity tree. The state graph has a unique state at each node, so
the logic equations for the output variables may be derived
from it directly:

A+ = 0101 + 0100 =Rin.Rout
A- = 1011 =Rin.Rout.Aout
Rout+ = 1000 + 1100 =A.Aout
Rout- = 0011 + 0111 =A.Aout

Since the states 0010 and 0110 are not reachable it is pos-
sible to simplify the last equation further:

Rout- = A.

These equations may then be used to construct an
implementation based on R-S flip-flops or, equivalently,
asymmetric Muller C-gates. The C-gate implementation is
illustrated in Fig. 9.

The notation used in this figure for asymmetric C-gates
indicates that an input controls both edges of the output
when it is connected to the main body of the gate; it con-
trols only the rising edge when connected to the extension
marked ‘+’, and it controls only the falling edge when con-
nected to the extension marked ‘-’. This notation is illus-

Fig. 7.  Semi-decoupled 4-phase STG

Fig. 8.  Semi-decoupled state graph
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trated in Fig. 10 which shows a possible transistor-level
implementation of an asymmetric C-gate.

6: Fully decoupled 4-phase latch controller

The circuit in Fig. 9 can be used to construct a four-
phase micropipeline FIFO with good performance, and
every stage can be filled if the output process stalls. How-
ever the recovery cycles on the two sides of the stage are
still linked; Ain cannot return to zero untilAout has gone
high. In a simple FIFO this does not present a problem, but
if the pipeline incorporates processing logic there may be a
performance loss due to this partial coupling.

Full decoupling may be achieved by introducing
another state variable as shown in Fig. 11. Here, as soon as
the new data has been latched (Lt+) the handshake on the
input side can complete and return to zero.

This STG is highly concurrent and the state diagram is
correspondingly complex. To simplify it slightly we omit
Lt since it always followsA directly via an internal path.
The resulting state diagram is shown in Fig. 12.

The equations for the outputs and state variables gener-
ated by the circuit are:

A+ = B.Rout.Rin
A- = B.Rout.Aout
B+ = Ain
B- = A.Ain
Ain+ = A.B
Ain- = Rin.B
Rout+ = A.Aout
Rout- = A

These equations may be implemented as the control cir-
cuit shown in Fig. 13.

7: Fully decoupled controller with long hold

In certain applications it is useful for the latch to hold
data untilAout goes low, rather than releasing it whenAout

Fig. 9.  Semi-decoupled control circuit
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goes high as does the circuit in Fig. 13. If, for example, the
latch is holding the read address for a register bank, then
Rout may be used to enable the address decoder.Aout+
indicates that the data has been read from the register bank
andAout- indicates that the decoder has been disabled.

An STG for a fully decoupled latch controller which
holds the output data untilAout- is shown in Fig. 14 and the
corresponding circuit is shown in Fig. 15.

8: Engineering optimisations

The STGs in Figs. 7, 11 and 14 were designed to pro-
duce speed-independent circuits, and therefore have the
property of persistency: when a signal makes a transition it
cannot subsequently make the inverse transition until all
immediate successor transitions have occurred.

The circuit in Fig. 9 is very similar to that designed ear-
lier by Paul Day using an intuitive approach [9]. The only
difference is that the circuit in Fig. 9 causesA+ to wait for
Rout. This is necessary for speed-independent operation,
but is not necessary for correct operation of the circuit
under realistic conditions since the path fromA- to Rout- is
internal to the control circuit and represents a single C-gate

Fig. 10.  Asymmetric C-gate notation

Fig. 11.  Fully decoupled 4-phase STG
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delay, whereas the path fromA- to Lt- to Ain- to Rin+
includes the buffer path to drive the latches. The removal
of this dependency corresponds to removing the arc from
Rout- toA+ in Fig. 7, whereupon the STG no longer has the
persistency property. In principle this then allows the
dashed transitions in Fig. 8 which lead to duplicated states,
but in practice this will never happen since theRout- tran-
sition will happen first and state 0111 will never be reached.

The non-persistency property of Day’s original circuit
was first exposed by Alex Yakovlev at Newcastle Univer-

Fig. 12.  Fully decoupled state graph

Fig. 13.  Fully decoupled control circuit
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sity using the FORCAGE tool [10].
A similar argument may be made for the removal of the

connection fromRout to A+ (but not toA-) in Fig. 11. The
resulting circuit will operate safely under normal condi-
tions and will be slightly faster than the original.

9: VLSI implementations

All of the proposed latch control circuits (apart from the
simple case) have subsequently been optimised for driving
a 32-bit, single-phase latch control line with a total load of
1pF. Corresponding layout for these control circuits has
been generated using a 1µm, double layer metal CMOS
standard cell library containing standard gates plus the
required asymmetric Muller C-gates. Figure 11 shows the

Fig. 14.  Fully decoupled long hold STG

Fig. 15.  Long hold control circuit

Rin+

Ain+

Rin-

Ain-

Rout+

Aout+

Rout-

Aout-Lt-

Lt+

A+

A-

B+

B-

Rin

Aout

Ain

Rout

data in

data out

C latch
Lt

-

A
C

-
C +

B
+

-



VLSI layout for the three different latch control circuits.
To analyse the relative performance of the various latch

control circuits SPICE analysis [11] has been performed on
extracted layout for worst case conditions (Vdd=4.6V,
slow-slow process corner, at 100˚C). Table 1 shows the
simulation results for the three latch types.

The table also shows the minimum cycle time for each
type of latch. The cycle time was measured by constructing
a 3-stage pipeline for each latch circuit type and hard-wir-
ing the input request to the input acknowledge and the out-
put request to the output acknowledge. These figures
therefore represent the minimum cycle times achievable
with these circuits.

The minimum cycle time for the semi-decoupled latch

Fig. 16.  Standard cell layout of latch control
circuits

Parameter

Latch Control Circuit

Semi-
Decoupled

Fully
Decoupled

Long Hold

Rin ↑ to Rout↑ 4.1nS 3.8nS 1.4nS

Rin ↑ to Ain ↑ 4.1nS 5.0nS 6.1nS

Rin ↓ to Ain ↓ 4.2nS 2.0nS 2.0nS

Aout ↑ to Ain ↓ 4.7nS n/a n/a

Aout ↑ to Rout ↓ 4.3nS 4.8nS 2.3nS

Aout ↓ to Rout ↑ 2.4nS 2.4nS 6.3nS

Min. Cycle Time 14.1nS 15.5nS 16.2nS

Processing Pipe
Cycle Time

54.7nS 39.7nS 42.3nS

Table 1: SPICE Analysis Results

Top: Semi-Decoupled

Middle: Fully Decoupled

Bottom: Long Hold

controller can be further reduced to 12.3nS by removing
two inversion stages from the circuit (resulting in both
input and output acknowledge interfaces being inverted).
This may be compared with the minimum cycle time for a
two-phase control circuit using similar latches of 16.8nS,
reported earlier [9].

The minimum cycle time measurements above repre-
sent a pipeline with no data processing functions between
latch stages. The inclusion of processing logic between
stages can be simulated using the same technique as above
but with dynamic processing elements inserted either side
of the second latch stage (see Fig. 17). Pipeline simulations
have been carried out modelling a dynamic processing ele-
ment with an evaluate (Rin rising toRout rising) delay of
20.3nS and a precharge (Rin falling to Rout falling) delay
of 5.4nS. The bottom row of Table 1 shows the resulting
cycle time measurements for each of the latch types. Here
we now see how the differing decoupling techniques have
affected the resulting cycle times with the fully decoupled
latch control showing a clear performance advantage over
the semi-decoupled latch controller.

When the semi-decoupled controller is used, the cycle
time of the latch includes both the processing delay on the
input side and that on the output side. This may be seen by
considering three copies of Fig. 7 joined together to form
the STG of the 3-stage pipeline, as shown in Fig. 18. (Note
how the internal ‘environmental’ constraints are replaced
by existing constraints when the STGs are joined.) The
processing and recovery delays occur on arcs marked ‘P’
and ‘R’ respectively in this figure, and the heavier arcs

Fig. 17.  Pipeline structure used for cycle time
measurements

processing logic

processing logic

stage 1 latch

stage 2 latch

stage 3 latch

Rin

Rin

Rin

Ain

Ain

Ain

RoutAout

RoutAout

RoutAout



highlight a cycle which includes two ‘P’ arcs. The recovery
time is concurrent with the processing time on the other
side of the latch, so the cycle time is increased by the sum
of the two processing delays, which is approximately 40nS
in this case.

The fully-decoupled controller allows the processing
delays on either side to run concurrently since the long
cycle shown in Fig. 18 is broken, so the recovery delay is
now visible, and the cycle time is increased by the sum of
the processing delay and the recovery delay, which is
approximately 25nS.

The times chosen here are representative of dynamic
processing logic. Static logic has no recovery time, so the
advantage of the fully-decoupled controller will be greater.

Although the 4-phase circuits look complex, they all use
fewer transistors than the 2-phase circuit shown in Fig. 2
since the 2-phase ‘toggle’ is a complex component [4].

As a point of reference, a synchronous pipeline with
these processing delays could cycle in around 30nS
(processing plus recovery plus latch delay) but would
require edge-triggered latches. To operate with level-sensi-
tive latches a synchronous pipeline would be restricted to
50% occupancy and a cycle time around 50nS (two
processing and two latch delays).

10: Conclusions

Four-phase control circuits offer higher performance
and lower cost than two-phase circuits for micropipelines
which use conventional level-sensitive data latches.

Four different designs of four-phase circuit have been
presented with different cost and performance properties.
The design process has been described for each of these cir-
cuits and some optimisations presented which simplify the
circuits whilst not seriously compromising their safe oper-
ation under normal conditions. These circuits have been
checked out by conventional simulation, but they have not
yet been implemented in silicon. The fully persistent vari-
ants have also been produced from their STGs using FOR-
CAGE [10] to confirm their correctness.

In FIFO applications it is expected that the semi-decou-
pled control circuit will give the best performance at the
lowest cost; only when the pipeline includes processing
logic between successive stages will the fully decoupled
circuit offer an advantage. Where the circuit requires the
data to be held throughout the cycle the long hold variant
of the fully decoupled latch may have advantages.

The simple controller shown in Fig. 6 is not functionally
equivalent to the other three, since it only allows a 50%
pipeline occupancy. Likewise, earlier designs [6,7] are not
strictly comparable since they depend on the use of edge-
triggered latches, although despite employing a circuit
which appears similar to the semi-decoupled controller
presented here, they are, in fact, fully decoupled.

An equivalent synchronous processing pipeline could
operate 25% faster, but would require more expensive
edge-triggered latches to do so. With level-sensitive latches
it, too, would be restricted to 50% occupancy and would
deliver a 25% lower throughput than the fully-decoupled
controller circuit.

The design methodology was based on Signal Transi-
tion Graphs which are a formal (but intuitive) way of rep-
resenting transition orderings. From the STG a state graph
may be generated, and from that an implementation
expressed in asymmetric C-gates (or, equivalently, R-S
flip-flops). This approach gives a framework within which
engineering optimisations are possible. The complexity of
the state graphs produced in the course of this work sug-
gests that this methodology is approaching its limit of use-
fulness with the examples presented here, at least without
computer assistance. Tools such as FORCAGE extend the
potential scope of similar approaches to more complex cir-
cuits at the cost of losing some of the engineering ‘feel’ of
the manual approach.

These circuits will be incorporated into the next version
of the AMULET asynchronous implementation of the
ARM microprocessor, and are expected to make a signifi-
cant contribution to its performance and power-efficiency.

Fig. 18.  STG of a 3-stage semi-decoupled pipeline, showing critical cycle
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