
Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003 T h M 05-5

Some Results on the Computation of Minimal Siphons in Petri Nets

R. Cordone
Dipartimento di Tecnologie dell’hformazione

Universitii degli Studi di Milano
rcordone@,crema.unimi.it

ABSTRACT

The problem addressed in th e paper is that of computing minimal
siphons in standard Petri nets. In particular, some new theoretical
results are stated and proved which aim at reducing the original
problem to a set of smaller sub-problem. Based on that, a
conceptual algorithm is proposed which efficiently computes a set
of siphons containing the minimal siphons of a net. An
experimental prototypical version of the proposed search
algorithm has been developed and a campaign on a large set of
random test instances has been carried out to evaluate the
effectiveness and efficiency of the proposed method.

1 INTRODUCTION

Siphons and traps are well-known structures in Petri
nets [12, 131, related to basic behavioral properties of a
Petri net, like reachability, reversibility and liveness [4,7].
Such properties are extremely useful for the
characterization of correct system behavior of large classes
of systems, such as FMS, batch processes, communication
systems, and any discrete production system in general.

In short, a siphon is a set of places whose input
transitions are also output transitions, and symmetrically, a
trap is a set of places whose output transitions are also input
transitions. It can be easily proved that a siphon remains
empty of tokens once it becomes empty. A trap, on the
other hand, is a set of places which remains indefinitely
marked once a token enters in it.

Actually, due to the symmetric definitions, an
algorithm used to find siphons can be used also to find
traps. But in spite of the simplicity of their definition, the
computation of siphons and traps is far from trivial a
problem. In the literature, many algorithms have been
proposed these are based on inequalities [121, logic
equations [9, 111, algebraic approaches [lo], linear
equations with slack variables [8], structural properties
[2,3,6]. The authors have explored an approach based on a
binary ‘programming formulation of the problem, with
linear constraints and objective function [5] . A general-
purpose MIP solver is employed to find the siphon of
minimum cardinality in the net. Then, new constraints are
iteratively added to the formulation in order to find all
minimal siphons in the net, without generating any non-
minimal siphon. Another interesting approach is
documented in [7], where a constructive algorithm is
proposed based on a depth-first search of different
combinations of places. The algorithm builds a branching
tree in which the single paths from the root to each leaf

L. Ferrarini, Senior Member, IEEE, and L. Piroddi
Dipartimento di Elettronica e Informazione

Politecnico di Milano
ferrarin@elet.polimi.it, piroddi@,elet.polimi.it

correspond to the subsequent addition of places to a subset
which is candidate to be a siphon.

In the present work, an innovative algorithm based on a
completely different branching approach is proposed. In
particular, the algorithm starts with the search for a generic‘
siphon, in order to fmd a minimal siphon contained in it.
Then, based on a theoretical foundation suitably developed,
the original problem is decomposed in a set of smaller sub-
problems, which are definitely easier to solve. Each sub-
problem in turn requires finding a minimal siphon in a
“smaller” net, i.e. in the original net where some trivial
constraints are imposed on the solutions, such as including
or removing some specific places. These constraints can be
easily handled by the basic procedure, which can be
therefore applied at any iteration.

The structure of the paper is now briefly described. In
Section 2, basic definitions on Petri nets and minimal
siphons are concisely recalled. In Section 3, the main
theoretical results obtained in the characterization of
siphons in general and of minimal siphons in particular are
illustrated. A conceptual algorithm for finding minimal
siphons is presented in Section 4. The algorithm directly
exploits the theoretical foundations previously developed,
as shown in an illustrative example discussed in Section 5.
The very first results obtained with a prototype computation
program launched on randomly generated Petri nets are
shown in Section 6. Finally, some conclusions are drawn in
Section 7.

2 BACKGROUND ON PETRI NETS AND SIPHONS

A Generalities on PNs
The definition of a Petri net is here briefly recalled.

More details on Petri nets can be found in [12,131. A Petri
net (PN) is a bipartite graph, where nodes are classified
either as places or transitions, and directed arcs connect
places to transitions and transitions to places. Places are
endowed with integer variables called tokens, while arcs are
labeled with integer numbers called weights. More
formally, a PN structure (or unmarked PN) can be defined
as a triplet (P, T, F), where P is a set of n places and Tis a
set of m transitions. F represents theflux relation, i.e. the
relation between places and transitions. F is a sub-set of
PxT v E&’, which means that places can be connected only
to transitions, and that transitions can be connected only to
places. The flux relation can be given in the form of
matrices, namely the input (I), output (0) and incidence

0-7803-7924-1/03/$17.00 02003 IEEE 3754

(C= 0-0 matrices. The generic element ikj of the Imx,
matrix represents the weight (0 or 1 for standard PNs) of the
arc from place pk to transition 9. Conversely, the generic
element O~ of matrix Om,, represents the weight of the arc
fiom transition $ to place Pk. A marking M P + N defines
the distribution of tokens in places. MO: P + N is the initial
marking. A transition $ E T is said to be enabled in a
marking M if A42 4, where 4 is the j-th column of input
matrix I. An enabled transition may $re, yielding the
marking M* = M + Oj - 4 = M + q, where Oj, 4 and are
thej-th columns of the 0, I and C matrices, respectively.

B Siphons
Let S be a set of places in a PN. Then, the pre-set of S,

*S = {$E T I ob+O, withpg S}, is the set of input transitions
for the places in S, while the post-set of S, S. = {$E TI ib+O,
with pkE S}, is the set of output transitions for the places in
S.

A siphon is a set S of places such that .S c Se, while
conversely, a trap is a set S of places such that S. c .S. The
number of siphons of a PN is not known a priori, but
experience shows that it grows exponentially with n and m
[3]. Luckily, a significant formal analysis does not require
the computation of all the siphons in a PN [7,12, 131. One
only needs to compute the minimal siphons [12]. A siphon
is said to be a minimal siphon if it does not contain any
other siphon.

3 SOME THEORETICAL RESULTS ON SIF'HONS
AND MINIMAL SIPHONS

In the following, some definitions and theoretical
results are introduced which can be exploited in the siphon
search problem. The first important observation is that if we
are interested in the siphons of a Petri net contained in a

specified set of places p, all the places not in ? (and the
arcs connected with them) can be discarded fiom the net,
thus greatly simplifying the problem.

Definition 1 - Let G = (P, T, F) be a Petri net and
c P. The reduction function red is defined as follows:

6=red(G,F) , where the reduced net G = (P , T, F) is
defined by:

i. T = { t E T I (. t u t .) n F # 0 } ,

ii. &p, t) = F(P, t), F(t,p) = ~ (t , p) , ~ p . P, VtE ?. ,,

U - -

-

Lemma 1 - Let G'= (P, T, F) be a Petri net and F c P.

coincides with the The set of siphons of G contained in

set of siphons of the reduced net 5 = red(G, F). ,,
ProoJ: Consider a set of places S' E p in G and let 5,

be the corresponding set of places in 2. Now, OS' = 03 and

-
S'. = Fe, since all the transitions connected to places in P

are preserved by the red operator in net G, as well as the
corresponding arcs. Then the thesis follows. ,,

The siphon search problem can then be tackled by
suitable net reduction, exploiting the fact that it is much
easier to recognize a siphon in a sub-net with a certain
structure, than to spot the same siphon in the original un-
reduced net. The following two lemmas identify obvious
siphons. A first trivial result concerns places with empty
pre-set: clearly, these constitute minimal siphons and can be
immediately eliminated fiom further search.

Lemma 2 - Let G = (P, T, F) be a Petri net and let
c P be such that e?; = 0. Then, the minimal siphons of G

are the minimal siphons of the reduced net C=red(G,
P-p), plus the individual places in p. ,,

is clearly a siphon. It is also a
minimal siphon since it is a siphon with cardinality 1. AU
other minimal siphons of G, if any, do not contain any place
belonging to P, and by Lemma 1 can be directly searched in

the reduced net 5. ,,

ProoJ: Each place in

Another obvious siphon case is when the post-set of the
set of places of a net coincides with the whole set of net
transitions.

Lemma 3 -Let G = (P, T, I;? be a Petri net such that
Po = T. Then, P is a siphon. ,,

Proof: *P E T = Po.

Places in the post-set of transitions with empty pre-set
cannot belong, to a siphon and can be eliminated fiom
fiuther search. On the other hand, if there are no transitions
with empty pre-set in a Petri net, all the transitions are in
the post-set of some place, i.e. the condition T = Pe holds
and by Lemma 3 the set P is itself a siphon. A smaller
siphon can then be found by repeated elimination of places
with the characteristics defined in the following Lemma 4.

Lemma 4 - Let G = (P, T, F) be a Petri net and let
= %. Then, G has

-
T E T be such that e?= 0. Define also

the same siphons of the reduced net 5 = red(G, P-p).
Proof: Places connected to a source transition, i.e.

places which have an input transition with empty pre-set,
cannot belong to any siphon of G, since no places in P can
have that transition in their post-set. By Lemma 1, these
places can be eliminated fiom G without losing any
siphons. ,,

Given a siphon of a Petri net, it remains to ascertain if
it is minimal and, in the negative case, to find a minimal

3755

siphon contained in it. The following lemma, derived fiom
the concept of “own transition” [l] and fiom an equivalent
result originally reported in [6], gives a sufficient condition
for eliminating inessential places from a given siphon, thus
reducing its size.

Lemma 5- Let G = (P, T, F) be a Petri net and SE P
a siphon of G. If 3 &S such that Vr+, either (et n s) 3)

G} or to n S = 0, then S-@} is also a siphon of G.
Proof. Place j is such that every transition in its post-

set either has at least another place of S in its pre-set or is a
sink transition with respect to the places in S. This implies
that every transition in S. is also in (S-G})., except sink
transitions. Also, *(S-G}) c OS, and clearly cannot contain
sinktransitions. Therefore, o(S-6)) E (S-G})..

Actually, in [6] this property is used to construct
minimal siphons by subsequent addition of places, whereas
in the present work, it is employed to reduce non minimal
siphons.

It is important to notice that a’siphon that has no
eliminable places according to Lemma 5 is not necessarily
minimal. For example, the union of two minimal siphons
cannot be further reduced in this way. The concept of
“alternating circuit” [l] could be used to verify the
minimality of a siphon S. However, in the negative case, we
still need to find a minimal siphon contained in S.
Therefore, a different approach is adopted, which directly
applies the definition of “ a l i t y to check exhaustively
for smaller siphons according to the following Lemma 6.

Lemma 6 - Let G = (P , T, F) be aPetri net and S E P
a siphon of G. S is a minimal siphon for G iff all the

reduced nets &, = red(G, S-@}), Vpe S, do not contain
siphons.

Proof. By Lemma 1 all siphons of G contained in S are

also siphons of = red(G, S). These siphons are S itself,
plus all the strictly smaller siphons contained in the reduced

nets gp = red(G, S-b}), Vp. S.

When a minimal siphon S is found, the search for
further minimal siphons can exclude all the siphons which
contain S. For this purpose, the following decomposition of
the siphon search problem in the analysis of suitable sub-
nets, can be adopted. In this way the number of nets to be
searched is increased, but the individual net size is
decreased: in other words, a complicated problem is
transformed in several simpler sub-problems.

Lemma 7 - Let G = (P, T, F) be a Petri net and

= (PI, p2, ..., pn} c P. The set of siphons of G not

containing F is equal to ;I X i , where X i is the set of siphons
Fl

-
of the reduced net Gi = red(G, Fei}), i = 1, ...¶ n,
containing bl, p2, ..., pi-l} .

Proof: The set of siphons of G not containing F can be
divided as U X i , where X i is the set of siphons of G,

containing (PI, p2, ..., pi-1} and not pi. By Lemma 1, the
generic X i can be computed as the set of siphons of the

reduced net Gi = red(G, P-bi}) , containing (P l y p2, ...,

n

i = 1

-
pi-1).

4 AN ALGORITHM FOR FINDING MINIMAL
SIPHONS

In view of the lemmas introduced in the preceding
section, a recursive search algorithm can be devised to find
all minimal siphons in a Petri net. This algorithm is based
on suitable net reduction techniques and problem decompo-
sition to explore the solution space. The general idea can be
summarized in the following steps:

Step 1)
Step 2)

Step 3)

Find a generic siphon.
Find a minimal siphon contained in the generic
siphon.
Apply Lemma 7 to decompose the problem,
and for each sub-problem (corresponding to a
specific sub-net and some place constraints)
apply the same procedure fiom Step 1.

Denoting by n and a the numbers of places and arcs,
respectively, it can be shown that the search for a generic
siphon (Step 1) can be carried out in linear time with
respect to a, even if place constraints are imposed. The
search for a minimal siphon (Step 2) within a given siphon
has a complexity of order O(na). Finally, the number of
overall recursive calls (Step 3) turns out to be O(2”) in the
worst case, since each call returns a different siphon, and
there are at most O(2”) siphons in a net. Therefore, the
worst-case complexity of the algorithm is O(an2”). The
average complexity is much lower, since the number of
recursive calls tends to be equal to the number of minimal
siphons.

The algorithm requires two secondary functions, for the
computation of a generic siphon, subject to place
constraints, and for the computation of a minimal siphon
contained in a given siphon, again subject to place
constraints.

Let G = (P, T, F) be a Petri net. The following function

FindSiphon(G, p) can be used to find siphons in G that

contain a specific set of places P. More precisely, it outputs
an empty set if G has no such siphons, or a generic (not
necessarily minimal) siphon if G contains any.

-

3756

Algorithm 1 - S = FidSiphon(G, p)
Step 1)

Step 2)

Step 3.1)
Step 3.2) GOTO Step 1

IF 3 PEP* such that 3 tE op, te Po, THEN
S=0 ,END

IF 3 P E P-P such that 3 t€ op, t g Po, THEN
GOTO Step 3, ELSE S = P, END
G = red(G, P-@})

If a place-elimination in p compatible with Lemma 4 is
effected (Step 1 of algorithm l), there are no possible

siphons that contain p. Therefore the algorithm ends with
empty outcome. When all other place eliminations
compatible with Lemma 4 (Steps 2-3) have been performed,
there is no place left in the remaining net with a transition
in its pre-set which is not in the post-set of at least one
place. Therefore, Lemma 3 applies, and the set of remaining
places constitutes a siphon for the reduced net. By Lemma
4, this siphon is also a siphon for the original Petri net.

Let G = (P, T, F) be a Pelxi net, $ c P a siphon of G

and c 5 a specific set of places. The following function

FindMnSiphon(G, 2, p) computes one minimal siphon S in

G, such that G S c 5, i.e. such that it is contained in 2 and
L -

contains P, if any exists. The function outputs S if G has no
smaller siphons satisfying the stated conditions.

Algorithm 2 - S = FindMinSiphon(G, 2, F)
Step 1)

Step 2.1)
Step 2.2)

Step 3)

Step 4)

Step 5)
Step 6.1)
Step 6.2)

Step 6.3)

Step 6.4)

The

IF 3 PE (P-3) n 2 such that (et n $ 2 @} or

to n S = 0, ~ t ~ p . , THEN GOTO Step 2,
ELSE GOTO Step 3

S = 5-@}
GOTO Step 1

IF 2 c P, THEN G = red(G, 5
Pn, = P-P

IF Prim= 0, THEN S = 5, END
Gp =red(G, P - @ l) , p ~ p n m
Pnm = pnw-b})

-

-

S, = FindSiphon(G,, F)

GOTO Step 5 ,, IF sp # 0, THEN S = s,, GOTO Step 3, ELSE

following function FinaWIMinSiphons(G, F),
which implements the algorithm introduced informally at
the beginning of the section, finds all minimal siphons in G

that contain a specific set of places P, if any exists. The

function outputs an empty set if G has no such siphons.

Algorithm 3 - C = FindAllMinSiphons(G, p)
Step 1)

Step 2)

Step 3.1)
Step 3.2)
Step 3.3)
Step 3.4)

Step 4)

Step 5)

Step 6.1)
Step 6.2)

Step 7)
Step 8)
Step 9.1)

Step 9.2)
Step 9.3)
Step 9.4)
Step 9.5)

C = 0

IF 2 = 0 AND 3 p e P such that ~p = 0, THEN
GOTO Step 3, ELSE GOTO Step 4
S = b I
C.=CU{S}
G = red(G, P -@})
GOTO Step 2

S = FindSiphon(G, i;>
IF $= 0, THEN END

S = FindMnSiphon(G, 5, F)
C = C u {SI

Y

-
Prim= s-p, Po,= 0,
IF Pn,= 0, THEN END

Cp = FindA1lMinSiphons(Gp, h o l d)

Gp = red(G, P-@)),PEPnm

C=ZLJC*
pmw= pnew- (PI, Po,= po ld U @I
GOTO Step 8

By applying FindAIlMinSiphons(G, 0) one obtains all
minimal siphons in G.

5 AN ILLUSTRATIVE EXAMPLE

To clarify the behavior of the proposed algorithm, let
us consider the simple Petri net G in Fig. 1, which has the
two minimal siphons SI = @1,p2,p3} and SZ = (P I , P ~ , P ~) .

Figure 1. Petri net example

To compute the minimal siphons in the net the search
algorithm is launched with no place constraints, C
= FindAlIMinSiphons(G, 0), resulting in the following
steps:

Step 1) C = 0
Step 2)

Step 4)

3 pi€ P such that *pi = 0

S = FindSiphon(G, 0)
-

3757

There does not exist any place pi such that 3 t , ~ .pi,
i',e P*, therefore no place is eliminable according to Lemma

4, and S = (pl, p2, p3, p4} is a siphon by Lemma 3.
-

PN
size

Step 6.1) S = FindMnSiphon(G, $,a)
Place p2 can be eliminated by Lemma 5, resulting in

siphon S = (ply p3, p4}. No siphon contained in S is found,
then S is minimal.

number Total CPU time (s)
of min. proposed I MIP I constructive

The set of siphons containing S is eliminated from the
solution space by the problem decomposition according to
Lemma 7.

10
15
20

Tbe first case to examine concerns the reduced net
withoutpl and with no place constraints.

10.98 0.07 0.28 1.79
60.04 0.39 5.45 601.70

302.44 6.84 303.47

Step 9.1)
Step 9.2)

Gpl = red(G, P-(pl})
2& = Fina!411MinSiphons(Gp1, 0)

The algorithm is recursively applied on Gpl but
immediately ends at Step 5 with no found siphons.

The second case to examine concerns the search for
siphons containingpl in the reduced net withoutp,.

Step 9.1)
Step 9.2)

Gp3 = red(G, P-(p3})
Zp3 = FindAIIMinSiphon~(G~3, @I})

Again, the algorithm stops at Step 5 having not found
any siphons.

step 9-41 prim= (p4}, Po,= @l,P3)

The third and last case concerns the search for siphons
containing p1 and p 3 in the reduced net without p4.

Step 9.1) Gp4 = red(G,.P-(p,})
Step 9.2) = Fin&IIMinSiphons(Gfl, (pl,p3})

At Step 4 the entire set of places (pl, p2, p3} of Gfl is
found to be a siphon. At Step 6.1 the siphon is checked to
be minimal (place p 2 cannot be eliminated, and the other are
constrained)

The set Pnew is empty and the algorithm ends.

6 SIMULATION RESULTS
An experimental campaign with a C implementation of

the basic algorithm described above has been performed on
a test set of 180 randomly generated instances of PNs. The
instances have different sizes and topological structure,
since these are the most influential factors in determining
the number of siphons and the effort required to find them.
For the sake of simplicity, four size classes only have been
considered, with n = m = 5, 10,15, 20, where n is the
number of places and m the number of transitions. Each size
class is further divided into 9 sub-classes, whose
connectivity has been determined by setting the density of
input (di) and output (do) arcs to 0.25, 0.50, 0.75 in all
possible combinations. Each sub-class consists of five
instances.

Random PNs exhibit a sharp increase in the number of
minimal siphons with respect to size, in contrast to PNs
originated by real system modeling. While the latter
normally presents a limited number of siphons, the former
have already some hundreds with n = m = 2 0 . This makes
random instances particularly hard to cope with.

The CPU time required to enumerate all the minimal
siphons, averaged over the PN instances, is given in Table
1 , together with the average number of minimal siphons for
each class size. Table 1 also presents a comparison between
competing approaches: the proposed algorithm, the MIP
approach described in [5] and a constructive method
applying the definition of siphon. The first two algorithms
are both implemented in C and the second one also employs
a commercial MIP solver. The constructive method has
been implemented with a MATLAB routine.

Clearly, as the number of recursive calls is bounded
fiom below by the number of minimal siphons, the
computational time strictly depends on the latter, and
increases strongly with the size of the net. For n = m = 20, it
is still of a few seconds on a AMD Athlon 4 1.24 GHz, but
for n = m = 25 the complete minimal siphon computation
takes several minutes on some instances.

I siphons I algorithm I approach I algorithm
51 2.531 0.051 0.031 . 0.02

~ ~~ ~ ~ ~

Another important parameter is the ratio of the CPU
time to the number of siphons T = TcpJIXI; which can be
interpreted as the computational time required to find a
single siphon. It can be shown that T increases with the PN
size and the output density. This is consistent with the

3758

theoretical complexity of the minimal siphon computation
procedure (O(na)) and with the fact that the algorithm
focuses on the arcs going out of transitions. In any case, ‘c is
extremely low with the proposed approach (some
hundredths of second for the size classes explored).

7 CONCLUSIONS

In the paper, the problem of the computation of
minimal siphons in a standard Petri net is addressed. First,
some new theoretical results have been specifically
developed. Then, a conceptual algorithm is devised, and a
very first prototypical program has been generated which
conforms to it. The algorithm is based on a strategy which
divides the original problem into several but smaller sub-
problems, that are definitely easier to solve. The sub-
problems, in fact, coincide with the general problem of
finding a generic siphon in a given net, with additional
constraints including or excluding given places.

Future work will include the development of a full
software package for the analysis of large-size PNs. A
computational comparison with other siphon generating
algorithms among the many different ones available in the
literature will be also considered.

ACKNOWLEDGEMENTS.

The authors would like to thank student A. Benign0 for
her helpful experimental work.

REFERENCES
Barkaoui, K., and B. Lemaire, “An Efficient Graph
Theoretical Characterization of Minimal Deadlocks
and Traps in Petri Nets”, Proceedings of the 10th
Intemational Conference on Application and Theory
ofpetri Nets, Bonn, Germany, pp. 1-21, 1989.
Barkaoui, K., and M. Minoux, “A Polynomial-Time
Graph Algorithm to Decide Liveness of Some Basic
Classes of Bounded Petri Nets”, Application and
Theory ofpetri Nets, pp. 62-75, 1992.
Boer, E.R., and T. Murata, “Generating basis siphons
and traps of Petri nets using the sign incidence
matrix”, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, Vol. 41, n. 4,

Chu, F., and X.-L. Xie, “Deadlock Analysis of Petri
Nets Using Siphons and Mathematical Programming”,
IEEE Transactions On Robotics And Automation, Vol.
13, n. 6, pp. 793-804, 1997.
Cordone, R, L. Ferrarini and L. Piroddi, “Characteri-
zation of Minimal and Basis Siphons with Predicate
Logic and Binary Programming”, IEEE Int. Conf. On
Computer Aided Control System Design, Glasgow,

Der Jeng, M., and M.Y. Peng, “Generating minimal
siphons and traps for Petri nets”, IEEE International
Conference on Systems, Man and Cybernetics, Vol. 4,

pp. 266-271, 1994.

Scotland, pp. 193-198,2002.

3759

pp. 2996-2999,1996.
Der Jeng, M., and M.Y. Peng, “Petri nets liveness
analysis by minimal siphons”, Proceedings of 6th
International Conference on Emerging Technologies
and Factory Automation, ETFA ‘97, pp. 315-320,
1997.
Ezpeleta, J., and J.M. Couvreur, “A new technique for
finding a generating family of siphons, traps and st-
components. Application to colored Petri nets”, Proc.
of 12th Conference on Applications and Theory of
Petri Nets, pp. 126-147, 1991.
Kinuyama, M., and T. Murata, “Generating siphons
and traps by Petri net representation of logic
equations”, Proceedings of 2th Conference of the Net
Theory SIG-IECE, pp. 93-100,1986.
Lautenbach, K., “Linear algebraic calculation of
deadlocks and traps”, in Concurrency and Nets -
Advances in Petri Nets, Voss, Genrich and Rozenberg,
Eds., New York Springer-Verlag, pp. 3 15-336, 1987.
Minoux, M., and K. Barkaoui, “Deadlocks and traps in
Petri nets as Horn-satisfiability solutions and some
related polynomially solvable problems”, Discrete
AppIied Mathematics, Vol. 29, pp. 195-210, 1990.
Murata, T., “Petri nets: properties, analysis and
application”, Proceedings of the IEEE, Vol. 77, n. 4,

Reisig, W., Petri Nets: an Introduction, Springer
Verlag, 1982.

pp. 541-580,1989.

