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ABSTRACT 

The problem addressed in th e paper is that of computing minimal 
siphons in standard Petri nets. In particular, some new theoretical 
results are stated and proved which aim at reducing the original 
problem to a set of smaller sub-problem. Based on that, a 
conceptual algorithm is proposed which efficiently computes a set 
of siphons containing the minimal siphons of a net. An 
experimental prototypical version of the proposed search 
algorithm has been developed and a campaign on a large set of 
random test instances has been carried out to evaluate the 
effectiveness and efficiency of the proposed method. 

1 INTRODUCTION 

Siphons and traps are well-known structures in Petri 
nets [12, 131, related to basic behavioral properties of a 
Petri net, like reachability, reversibility and liveness [4,7]. 
Such properties are extremely useful for the 
characterization of correct system behavior of large classes 
of systems, such as FMS, batch processes, communication 
systems, and any discrete production system in general. 

In short, a siphon is a set of places whose input 
transitions are also output transitions, and symmetrically, a 
trap is a set of places whose output transitions are also input 
transitions. It can be easily proved that a siphon remains 
empty of tokens once it becomes empty. A trap, on the 
other hand, is a set of places which remains indefinitely 
marked once a token enters in it. 

Actually, due to the symmetric definitions, an 
algorithm used to find siphons can be used also to find 
traps. But in spite of the simplicity of their definition, the 
computation of siphons and traps is far from trivial a 
problem. In the literature, many algorithms have been 
proposed these are based on inequalities [ 121, logic 
equations [9, 111, algebraic approaches [lo], linear 
equations with slack variables [8], structural properties 
[2,3,6]. The authors have explored an approach based on a 
binary ‘programming formulation of the problem, with 
linear constraints and objective function [5 ] .  A general- 
purpose MIP solver is employed to find the siphon of 
minimum cardinality in the net. Then, new constraints are 
iteratively added to the formulation in order to find all 
minimal siphons in the net, without generating any non- 
minimal siphon. Another interesting approach is 
documented in [7], where a constructive algorithm is 
proposed based on a depth-first search of different 
combinations of places. The algorithm builds a branching 
tree in which the single paths from the root to each leaf 
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correspond to the subsequent addition of places to a subset 
which is candidate to be a siphon. 

In the present work, an innovative algorithm based on a 
completely different branching approach is proposed. In 
particular, the algorithm starts with the search for a generic‘ 
siphon, in order to fmd a minimal siphon contained in it. 
Then, based on a theoretical foundation suitably developed, 
the original problem is decomposed in a set of smaller sub- 
problems, which are definitely easier to solve. Each sub- 
problem in turn requires finding a minimal siphon in a 
“smaller” net, i.e. in the original net where some trivial 
constraints are imposed on the solutions, such as including 
or removing some specific places. These constraints can be 
easily handled by the basic procedure, which can be 
therefore applied at any iteration. 

The structure of the paper is now briefly described. In 
Section 2, basic definitions on Petri nets and minimal 
siphons are concisely recalled. In Section 3, the main 
theoretical results obtained in the characterization of 
siphons in general and of minimal siphons in particular are 
illustrated. A conceptual algorithm for finding minimal 
siphons is presented in Section 4. The algorithm directly 
exploits the theoretical foundations previously developed, 
as shown in an illustrative example discussed in Section 5. 
The very first results obtained with a prototype computation 
program launched on randomly generated Petri nets are 
shown in Section 6. Finally, some conclusions are drawn in 
Section 7. 

2 BACKGROUND ON PETRI NETS AND SIPHONS 

A Generalities on PNs 
The definition of a Petri net is here briefly recalled. 

More details on Petri nets can be found in [ 12,131. A Petri 
net (PN) is a bipartite graph, where nodes are classified 
either as places or transitions, and directed arcs connect 
places to transitions and transitions to places. Places are 
endowed with integer variables called tokens, while arcs are 
labeled with integer numbers called weights. More 
formally, a PN structure (or unmarked PN) can be defined 
as a triplet (P, T, F), where P is a set of n places and Tis a 
set of m transitions. F represents theflux relation, i.e. the 
relation between places and transitions. F is a sub-set of 
PxT v E&’, which means that places can be connected only 
to transitions, and that transitions can be connected only to 
places. The flux relation can be given in the form of 
matrices, namely the input (I), output (0) and incidence 
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(C= 0-0 matrices. The generic element ikj of the Imx, 
matrix represents the weight (0 or 1 for standard PNs) of the 
arc from place pk to transition 9. Conversely, the generic 
element O~ of matrix Om,, represents the weight of the arc 
fiom transition $ to place Pk. A marking M P + N defines 
the distribution of tokens in places. MO: P + N is the initial 
marking. A transition $ E T  is said to be enabled in a 
marking M if A42 4, where 4 is the j-th column of input 
matrix I. An enabled transition may $re, yielding the 
marking M* = M +  Oj - 4 = M +  q, where Oj, 4 and are 
thej-th columns of the 0, I and C matrices, respectively. 

B Siphons 
Let S be a set of places in a PN. Then, the pre-set of S, 

*S = {$E T I ob+O, withpg S}, is the set of input transitions 
for the places in S, while the post-set of S, S. = {$E TI ib+O, 
with pkE S}, is the set of output transitions for the places in 
S. 

A siphon is a set S of places such that .S c Se, while 
conversely, a trap is a set S of places such that S. c .S. The 
number of siphons of a PN is not known a priori, but 
experience shows that it grows exponentially with n and m 
[3]. Luckily, a significant formal analysis does not require 
the computation of all the siphons in a PN [7,12, 131. One 
only needs to compute the minimal siphons [12]. A siphon 
is said to be a minimal siphon if it does not contain any 
other siphon. 

3 SOME THEORETICAL RESULTS ON SIF'HONS 
AND MINIMAL SIPHONS 

In the following, some definitions and theoretical 
results are introduced which can be exploited in the siphon 
search problem. The first important observation is that if we 
are interested in the siphons of a Petri net contained in a 

specified set of places p, all the places not in ? (and the 
arcs connected with them) can be discarded fiom the net, 
thus greatly simplifying the problem. 

Definition 1 - Let G = (P, T, F) be a Petri net and 
c P. The reduction function red is defined as follows: 

6=red(G,F) ,  where the reduced net G = ( P ,  T, F) is 
defined by: 

i. T =  { t E T I ( . t u t . ) n F # 0 } ,  

ii. &p, t )  = F(P, t), F(t,p) = ~ ( t , p )  , ~ p .  P, VtE ?. ,, 

U - -  

- 

Lemma 1 - Let G'= (P, T, F) be a Petri net and F c P. 

coincides with the The set of siphons of G contained in 

set of siphons of the reduced net 5 = red(G, F). ,, 
ProoJ: Consider a set of places S' E p in G and let 5, 

be the corresponding set of places in 2. Now, OS' = 03 and 

- 
S'. = Fe, since all the transitions connected to places in P 

are preserved by the red operator in net G, as well as the 
corresponding arcs. Then the thesis follows. ,, 

The siphon search problem can then be tackled by 
suitable net reduction, exploiting the fact that it is much 
easier to recognize a siphon in a sub-net with a certain 
structure, than to spot the same siphon in the original un- 
reduced net. The following two lemmas identify obvious 
siphons. A first trivial result concerns places with empty 
pre-set: clearly, these constitute minimal siphons and can be 
immediately eliminated fiom further search. 

Lemma 2 - Let G = (P, T, F) be a Petri net and let 
c P be such that e?; = 0. Then, the minimal siphons of G 

are the minimal siphons of the reduced net C=red(G, 
P-p), plus the individual places in p. ,, 

is clearly a siphon. It is also a 
minimal siphon since it is a siphon with cardinality 1. AU 
other minimal siphons of G, if any, do not contain any place 
belonging to P, and by Lemma 1 can be directly searched in 

the reduced net 5. ,, 

ProoJ: Each place in 

Another obvious siphon case is when the post-set of the 
set of places of a net coincides with the whole set of net 
transitions. 

Lemma 3 -Let G = (P, T, I;? be a Petri net such that 
Po = T. Then, P is a siphon. ,, 

Proof: *P E T = Po. 

Places in the post-set of transitions with empty pre-set 
cannot belong, to a siphon and can be eliminated fiom 
fiuther search. On the other hand, if there are no transitions 
with empty pre-set in a Petri net, all the transitions are in 
the post-set of some place, i.e. the condition T = Pe holds 
and by Lemma 3 the set P is itself a siphon. A smaller 
siphon can then be found by repeated elimination of places 
with the characteristics defined in the following Lemma 4. 

Lemma 4 - Let G = (P, T, F) be a Petri net and let 
= %. Then, G has 

- 
T E T be such that e?= 0. Define also 

the same siphons of the reduced net 5 = red(G, P-p). 
Proof: Places connected to a source transition, i.e. 

places which have an input transition with empty pre-set, 
cannot belong to any siphon of G, since no places in P can 
have that transition in their post-set. By Lemma 1, these 
places can be eliminated fiom G without losing any 
siphons. ,, 

Given a siphon of a Petri net, it remains to ascertain if 
it is minimal and, in the negative case, to find a minimal 
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siphon contained in it. The following lemma, derived fiom 
the concept of “own transition” [l] and fiom an equivalent 
result originally reported in [6],  gives a sufficient condition 
for eliminating inessential places from a given siphon, thus 
reducing its size. 

Lemma 5- Let G = (P, T, F) be a Petri net and SE P 
a siphon of G. If 3 &S such that Vr+, either (et n s) 3) 

G} or to n S = 0, then S-@} is also a siphon of G. 
Proof. Place j is such that every transition in its post- 

set either has at least another place of S in its pre-set or is a 
sink transition with respect to the places in S. This implies 
that every transition in S. is also in (S-G})., except sink 
transitions. Also, *(S-G}) c OS, and clearly cannot contain 
sinktransitions. Therefore, o(S-6 ) )  E (S-G}).. 

Actually, in [6] this property is used to construct 
minimal siphons by subsequent addition of places, whereas 
in the present work, it is employed to reduce non minimal 
siphons. 

It is important to notice that a’siphon that has no 
eliminable places according to Lemma 5 is not necessarily 
minimal. For example, the union of two minimal siphons 
cannot be further reduced in this way. The concept of 
“alternating circuit” [l] could be used to verify the 
minimality of a siphon S. However, in the negative case, we 
still need to find a minimal siphon contained in S. 
Therefore, a different approach is adopted, which directly 
applies the definition of “ a l i t y  to check exhaustively 
for smaller siphons according to the following Lemma 6.  

Lemma 6 -  Let G = ( P ,  T, F) be aPetri net and S E P 
a siphon of G. S is a minimal siphon for G iff all the 

reduced nets &, = red(G, S-@}), Vpe S, do not contain 
siphons. 

Proof. By Lemma 1 all siphons of G contained in S are 

also siphons of = red(G, S). These siphons are S itself, 
plus all the strictly smaller siphons contained in the reduced 

nets gp = red(G, S-b}), Vp. S. 

When a minimal siphon S is found, the search for 
further minimal siphons can exclude all the siphons which 
contain S. For this purpose, the following decomposition of 
the siphon search problem in the analysis of suitable sub- 
nets, can be adopted. In this way the number of nets to be 
searched is increased, but the individual net size is 
decreased: in other words, a complicated problem is 
transformed in several simpler sub-problems. 

Lemma 7 - Let G = (P, T, F) be a Petri net and 

= (PI, p2, ..., pn}  c P. The set of siphons of G not 

containing F is equal to ;I X i ,  where X i  is the set of siphons 
Fl 

- 
of the reduced net Gi = red(G, Fei}), i = 1, ...¶ n, 
containing bl, p2, ..., pi-l} .  

Proof: The set of siphons of G not containing F can be 
divided as U X i ,  where X i  is the set of siphons of G, 

containing (PI, p2, ..., pi-1} and not pi.  By Lemma 1, the 
generic X i  can be computed as the set of siphons of the 

reduced net Gi = red(G, P-bi}) ,  containing ( P l y  p2,  ..., 

n 

i = 1  

- 
pi-1). 

4 AN ALGORITHM FOR FINDING MINIMAL 
SIPHONS 

In view of the lemmas introduced in the preceding 
section, a recursive search algorithm can be devised to find 
all minimal siphons in a Petri net. This algorithm is based 
on suitable net reduction techniques and problem decompo- 
sition to explore the solution space. The general idea can be 
summarized in the following steps: 

Step 1) 
Step 2) 

Step 3) 

Find a generic siphon. 
Find a minimal siphon contained in the generic 
siphon. 
Apply Lemma 7 to decompose the problem, 
and for each sub-problem (corresponding to a 
specific sub-net and some place constraints) 
apply the same procedure fiom Step 1. 

Denoting by n and a the numbers of places and arcs, 
respectively, it can be shown that the search for a generic 
siphon (Step 1) can be carried out in linear time with 
respect to a, even if place constraints are imposed. The 
search for a minimal siphon (Step 2) within a given siphon 
has a complexity of order O(na). Finally, the number of 
overall recursive calls (Step 3) turns out to be O(2”) in the 
worst case, since each call returns a different siphon, and 
there are at most O(2”) siphons in a net. Therefore, the 
worst-case complexity of the algorithm is O(an2”). The 
average complexity is much lower, since the number of 
recursive calls tends to be equal to the number of minimal 
siphons. 

The algorithm requires two secondary functions, for the 
computation of a generic siphon, subject to place 
constraints, and for the computation of a minimal siphon 
contained in a given siphon, again subject to place 
constraints. 

Let G = (P, T, F) be a Petri net. The following function 

FindSiphon(G, p) can be used to find siphons in G that 

contain a specific set of places P. More precisely, it outputs 
an empty set if G has no such siphons, or a generic (not 
necessarily minimal) siphon if G contains any. 

- 
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Algorithm 1 - S = FidSiphon(G, p) 
Step 1) 

Step 2) 

Step 3.1) 
Step 3.2) GOTO Step 1 

IF 3 PEP* such that 3 tE op, te Po, THEN 
S=0 ,END 

IF 3 P E  P-P such that 3 t€ op, t g  Po, THEN 
GOTO Step 3, ELSE S = P, END 
G = red(G, P-@}) 

If a place-elimination in p compatible with Lemma 4 is 
effected (Step 1 of algorithm l), there are no possible 

siphons that contain p. Therefore the algorithm ends with 
empty outcome. When all other place eliminations 
compatible with Lemma 4 (Steps 2-3) have been performed, 
there is no place left in the remaining net with a transition 
in its pre-set which is not in the post-set of at least one 
place. Therefore, Lemma 3 applies, and the set of remaining 
places constitutes a siphon for the reduced net. By Lemma 
4, this siphon is also a siphon for the original Petri net. 

Let G = (P, T, F) be a Pelxi net, $ c P a siphon of G 

and c 5 a specific set of places. The following function 

FindMnSiphon(G, 2, p) computes one minimal siphon S in 

G, such that G S c 5, i.e. such that it is contained in 2 and 
L - 

contains P, if any exists. The function outputs S if G has no 
smaller siphons satisfying the stated conditions. 

Algorithm 2 - S = FindMinSiphon(G, 2, F) 
Step 1) 

Step 2.1) 
Step 2.2) 

Step 3) 

Step 4) 

Step 5) 
Step 6.1) 
Step 6.2) 

Step 6.3) 

Step 6.4) 

The 

IF 3 PE (P-3) n 2 such that (et  n $ 2  @} or 

to n S = 0, ~ t ~ p . ,  THEN GOTO Step 2, 
ELSE GOTO Step 3 

S = 5-@} 
GOTO Step 1 

IF 2 c P, THEN G = red(G, 5 
Pn, = P-P 

IF Prim= 0, THEN S =  5, END 
Gp =red(G, P - @ l ) , p ~ p n m  
Pnm = pnw-b}) 

- 

- 

S, = FindSiphon(G,, F) 

GOTO Step 5 ,, IF sp # 0, THEN S = s,, GOTO Step 3, ELSE 

following function FinaWIMinSiphons(G, F), 
which implements the algorithm introduced informally at 
the beginning of the section, finds all minimal siphons in G 

that contain a specific set of places P, if any exists. The 

function outputs an empty set if G has no such siphons. 

Algorithm 3 - C = FindAllMinSiphons(G, p) 
Step 1) 

Step 2) 

Step 3.1) 
Step 3.2) 
Step 3.3) 
Step 3.4) 

Step 4) 

Step 5) 

Step 6.1) 
Step 6.2) 

Step 7) 
Step 8) 
Step 9.1) 

Step 9.2) 
Step 9.3) 
Step 9.4) 
Step 9.5) 

C = 0  

IF 2 = 0 AND 3 p e P  such that ~p = 0, THEN 
GOTO Step 3, ELSE GOTO Step 4 
S = b I  
C.=CU{S} 
G = red(G, P -@})  
GOTO Step 2 

S = FindSiphon(G, i;> 
IF $= 0, THEN END 

S = FindMnSiphon(G, 5, F) 
C = C u  {SI 

Y 

- 
Prim= s-p, Po,= 0, 
IF Pn,= 0, THEN END 

Cp = FindA1lMinSiphons(Gp, h o l d )  

Gp = red(G, P-@)),PEPnm 

C=ZLJC* 
pmw= pnew- (PI, Po,= po ld  U @I 
GOTO Step 8 

By applying FindAIlMinSiphons(G, 0) one obtains all 
minimal siphons in G. 

5 AN ILLUSTRATIVE EXAMPLE 

To clarify the behavior of the proposed algorithm, let 
us consider the simple Petri net G in Fig. 1, which has the 
two minimal siphons SI = @1,p2,p3} and SZ = ( P I , P ~ , P ~ ) .  

Figure 1. Petri net example 

To compute the minimal siphons in the net the search 
algorithm is launched with no place constraints, C 
= FindAlIMinSiphons(G, 0), resulting in the following 
steps: 

Step 1) C = 0  
Step 2) 

Step 4) 

3 pi€ P such that *pi = 0 

S = FindSiphon(G, 0) 
- 
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There does not exist any place pi such that 3 t , ~  .pi, 
i',e P*, therefore no place is eliminable according to Lemma 

4, and S = (pl, p2, p3, p4} is a siphon by Lemma 3. 
- 

PN 
size 

Step 6.1) S = FindMnSiphon(G, $,a) 
Place p2 can be eliminated by Lemma 5, resulting in 

siphon S = (ply p3, p4}. No siphon contained in S is found, 
then S is minimal. 

number Total CPU time (s) 
of min. proposed I MIP I constructive 

The set of siphons containing S is eliminated from the 
solution space by the problem decomposition according to 
Lemma 7. 

10 
15 
20 

Tbe first case to examine concerns the reduced net 
withoutpl and with no place constraints. 

10.98 0.07 0.28 1.79 
60.04 0.39 5.45 601.70 

302.44 6.84 303.47 

Step 9.1) 
Step 9.2) 

Gpl = red(G, P-(pl}) 
2& = Fina!411MinSiphons(Gp1, 0 )  

The algorithm is recursively applied on Gpl but 
immediately ends at Step 5 with no found siphons. 

The second case to examine concerns the search for 
siphons containingpl in the reduced net withoutp,. 

Step 9.1) 
Step 9.2) 

Gp3 = red(G, P-(p3}) 
Zp3 = FindAIIMinSiphon~(G~3, @I}) 

Again, the algorithm stops at Step 5 having not found 
any siphons. 

step 9-41 prim= (p4}, Po,= @l,P3) 

The third and last case concerns the search for siphons 
containing p1 and p 3  in the reduced net without p4. 

Step 9.1) Gp4 = red(G,.P-(p,}) 
Step 9.2) = Fin&IIMinSiphons(Gfl, (pl,p3}) 

At Step 4 the entire set of places (pl, p2, p3} of Gfl is 
found to be a siphon. At Step 6.1 the siphon is checked to 
be minimal (place p 2  cannot be eliminated, and the other are 
constrained) 

The set Pnew is empty and the algorithm ends. 

6 SIMULATION RESULTS 
An experimental campaign with a C implementation of 

the basic algorithm described above has been performed on 
a test set of 180 randomly generated instances of PNs. The 
instances have different sizes and topological structure, 
since these are the most influential factors in determining 
the number of siphons and the effort required to find them. 
For the sake of simplicity, four size classes only have been 
considered, with n = m = 5,  10,15, 20, where n is the 
number of places and m the number of transitions. Each size 
class is further divided into 9 sub-classes, whose 
connectivity has been determined by setting the density of 
input (di) and output (do) arcs to 0.25, 0.50, 0.75 in all 
possible combinations. Each sub-class consists of five 
instances. 

Random PNs exhibit a sharp increase in the number of 
minimal siphons with respect to size, in contrast to PNs 
originated by real system modeling. While the latter 
normally presents a limited number of siphons, the former 
have already some hundreds with n = m = 2 0 .  This makes 
random instances particularly hard to cope with. 

The CPU time required to enumerate all the minimal 
siphons, averaged over the PN instances, is given in Table 
1 , together with the average number of minimal siphons for 
each class size. Table 1 also presents a comparison between 
competing approaches: the proposed algorithm, the MIP 
approach described in [5] and a constructive method 
applying the definition of siphon. The first two algorithms 
are both implemented in C and the second one also employs 
a commercial MIP solver. The constructive method has 
been implemented with a MATLAB routine. 

Clearly, as the number of recursive calls is bounded 
fiom below by the number of minimal siphons, the 
computational time strictly depends on the latter, and 
increases strongly with the size of the net. For n = m = 20, it 
is still of a few seconds on a AMD Athlon 4 1.24 GHz, but 
for n = m = 25 the complete minimal siphon computation 
takes several minutes on some instances. 

I siphons I algorithm I approach I algorithm 
51 2.531 0.051 0.031 . 0.02 

~ ~~ ~ ~ ~ 

Another important parameter is the ratio of the CPU 
time to the number of siphons T =  TcpJIXI; which can be 
interpreted as the computational time required to find a 
single siphon. It can be shown that T increases with the PN 
size and the output density. This is consistent with the 
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theoretical complexity of the minimal siphon computation 
procedure (O(na)) and with the fact that the algorithm 
focuses on the arcs going out of transitions. In any case, ‘c is 
extremely low with the proposed approach (some 
hundredths of second for the size classes explored). 

7 CONCLUSIONS 

In the paper, the problem of the computation of 
minimal siphons in a standard Petri net is addressed. First, 
some new theoretical results have been specifically 
developed. Then, a conceptual algorithm is devised, and a 
very first prototypical program has been generated which 
conforms to it. The algorithm is based on a strategy which 
divides the original problem into several but smaller sub- 
problems, that are definitely easier to solve. The sub- 
problems, in fact, coincide with the general problem of 
finding a generic siphon in a given net, with additional 
constraints including or excluding given places. 

Future work will include the development of a full 
software package for the analysis of large-size PNs. A 
computational comparison with other siphon generating 
algorithms among the many different ones available in the 
literature will be also considered. 
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