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ABSTRACT:

A characterisation of minimal deadlocks in strongly connected free
choice Petri nets is derived. An algorithm that constructs minimal
deadlocks is given. A close relationship between minimal deadlocks
and strongly connected deadlocks is then obtained.

1 Introduction

Deadlocks and traps [4] are very useful structures for the analysis of Petri nets,

in particular the so-called minimal ones. In [1} K. Barkaoui and B. Lemaire

give a nice characterisation of minimal deadlocks in terms of graph theoretical
properties, using the notion of alternating circuit. The purpose of this note is to

show that this characterisation reduces to a simpler one for the particular case

of free choice nets; then this simplified characterisation is used to obtain two

results: the first is an algorithm that constructs minimal deadlocks in (strongly

connected) free choice nets; the second is the existence of a close relationship

between minimal and strongly connected deadlocks in the same subclass.

This last result has an important consequence: minimal deadlocks in free choice
nets enjoy some properties if and only if the strongly connected deadlocks enjoy
them (one of these properties, as will be shown at the end of the note, is that
of being a trap). As strongly connected deadlocks are easier to handle, this
reduces the complexity of dedicing these properties. We will also show that this
relationship allows to characterise liveness of bounded free choice nets in terms
of strongly connected deadlocks. The note is organised as follows. Basic defini-
tions are given in section 1. Section 2 contains the simplified characterisation.
The results derived from it appear in section 3.
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2 Definitions and basic results

Definition 2.1 Basic definitions
A place/transition net (or P/T net) is a triple N = (S, T, F') where
—~ S is the set of places,
— T is the set of transitions (SN T = 0),
- FC(SxT)U(T x S) is the flow relation.

The elements of S U T are called nodes. The Pre-set®z of x € SUT is
given by °z = {y € SUT | (y,z) € F}. The Post-set z* of z € SUT is
given by z* = {y € SUT | (z,y) € F}. The Pre-set or Post-set of a set of
nodes is the union of the Pre—sets or Post—sets of its elements. A function
M:S — N is called a marking. A marked P/T net, < N, My >, is a P/T
net, N, with an initial marking M,. A transition ¢t € T is enabled at M iff
Vp € *t: M(p) > 0. If t € T is enabled at a marking M then ¢t may occur
yielding a new marking M’ given by M'(p) = M(p) — F(p,t) + F(¢,p) for
all p € S (where F is the characteristic function of F). M[t)M’ denotes
the fact that M’ is reached from M by the occurrence of ¢.

A sequence of transitions, ¢ = t1%5...1,, is a transition sequence of (N, My)
iff there exists a sequence Myt M1t M, .. .1, M, such that

Vi,l<i<n: M;_1[t;}M;.

The marking M, is said to be reachable from M by the occurrence of o.
The set of markings reachable from M, is denoted by R(V, Mp). m2.1

Definition 2.2 Net subclasses

A net N =(S,T, F) is called an S-graph iff each transition has exactly one
input place and one output place, ie. V¢ € T:|*| =1 = |t*|. IV is called
a T-graph iff each place has exactly one input transition and one output
transition, i.e. Vs € S:|°s| = 1 = |s®|. N is called free choice iff forallp € S
such that |p®| > 1, we have *(p*) = {p}. 2.2

Definition 2.3 Subnets
N' = (5T, ') is & subnetof N = (S, . F) S € 8§ T € T and
Fr=Fn{(§xT)Yu(T'xS8)). N'is a partial subnet of N iff 5/ C S,
I'CTand FFC FN({(SxTHYU(T' x §)). N'isan S-component (T-
component) of N iff N' is a strongly connected S—graph (T'-graph) and
T'=°8'NnS" (S=°"T"UT"). N'is generated by a set X' C SNT iff
S = X'NnSHuX'nTHuX'nT)*
T’ = (X0 D)X n S X LS.
=23



Definition 2.4 Behavioural properties
A marked net (N, Mp) is said to be bounded iff
Vp € S 3k € NVM € R(N, My): M(p) < k.

A net N is structurally bounded iff it is bounded for any initial marking M.
A transition ¢ € T is live in (N, Mp) iff

VM € R(N, M,) 3M' € R(N, M): M' enables t.

The marked net (N, Mp) is live iff all t € T are live. N is structurally live
iff there is some initial marking M, such that (N, M) is live. 24

Definition 2.5 Graph theoretical concepts

A pathofanet N = (S, T, F')is an alternating sequence 7 = (ZofoTycee fryy)
of elements of X = SUT and F such that

VZ,GSE S T‘—l:f,'= (.1:,',3{.]_1)6 F,

A path is elementary iff all z; are distinet, except possibly z4 and z.. A
circuitis a path such that zo = z_. A circuit is elementary iff it is elementary
as a path. Let N' be a partial subnet of N. An elementary path 7 =
(zofo... fa-122) is 2 handle of N’ if r NN’ = {z0, 2.} (note that if zo = =z,
then {2, zn} = {z0}). m2.5

Definition 2.6 Deadlocks and traps

Let N = (S,T,F) be anet. D C S is a deadlockiff D # 0 and *D C D*.
O C Sisatrap iff © #0 and ©° C*0. A deadlock D is minimal iff there
exists no deadlock D’ such that D' C D (proper inclusion). A deadlock D is
strongly connected iff the subnet generated by DU*D is strongly connected.

m2.6

An immediate consequence of the definition of deadlock and trap is the following
property:
Proposition 2.7

Let 5,8, be two deadlocks (traps) of N. Then S,US, i3 also a deadlock (a
trap) of N. ' m 2.7

We will make use later of the relationship between minimal and strongly con-
nected deadlocks that is stated below, which holds for any net. It is assumed
that a net composed by one place and no transitions is strongly connected.:
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Proposition 2.8 [8]
Minimal deadlocks are sirongly connected. m 2.8

The next definition introduces the concept of alternating circuit, upon which
Barkaoui and Lemaire base their characterisation of minimality. Although it is
necessary to enclose it in order to understand the statement of the subsequent
theorem, the concept will be no longer required for the characterisation in free
choice nets.

Definition 2.9 [1]

Let N = (S,T, F) be a net. A circuit I' of N (not necessarily elementary)
is an alternating circuit iff for all arcs in I' of the form (p, 1), the equality
*t = {p} holds. w29

3 Characterisation of minimal deadlocks in free
choice nets

The characterisation of minimal deadlocks in general Petri nets given by Barkaoui
and Lemaire is as follows.

Theorem 3.1 [1]

Let N = (S,T,F) be a net, D C S a deadlock of N and Np the subnet of N
generated by DU*D. D is minimal iff there exists a circuit T' in Np (not
necessarily elementary) that passes through all the places of D such that for
every transition t € I’ etther:

|*tND|=1 or
[*tND| > 2 and the places of (*¢ N D) belong to an alternating circuit.
m3.1

Now we address the following question: Is there a simpler characterisation for
the subclass of free choice nets? The answer is positive, and the reason lies
essentially in the following well known lemma.

Lemma 3.2 [6,3]

Let N = (S, T, F) be a free choice net and D C S ¢ minimal deadlock of N .
Then for everyt € °D, |'tN D] =1. m3.2

That is, at most one input place of a transition belongs to a given minimal
deadlock. It is then clear that the second case of theorem 1 cannot occur in free
choice nets. This is what the two following corollaries say, in different forms.

4



Corollary 3.3

Let N = (S,T,F) be a free choice net, D C S a deadlock of N and Np the
subnet of N generated by D U*D. D is minimal iff there ezists a circuit T
in Np (not necessarily elementary) that passes through all the places of D
such that for every transition t € I we have |t N D} = 1.

Proof: Obvious by applying theorem 3.1 and lemma 3.2. = 3.3

Corollary 3.4

Let N = (S,T,F) be a free choice net, D C S o deadlock of N and Np the
subnet of N generated by DU°D. D is minimal iff D is strongly connected
and for every transition t € Np we have [*t N D| = 1.

Proof: (=): If D is minimal, it is strongly connected by proposition 2.8. Every
transition ¢ € Np satisfies |4 N D| = 1 by lemma 3.2.

(<=): Since D is strongly connected, Np is strongly connected. It is
then obvious that Np contains a circuit I' (possibly non-elementary)
that passes through all the places of D. As every transition of Np has
one input place in D, the same happens to the transitions of I. E3.4

This last corollary is the characterisation we were looking for. The next section
explores its utility.

4 Consequences

We derive from the characterisation given in section 3 a chain of three results.
The first is an algorithm that constructs minimal deadlocks in strongly con-
nected free choice nets. This algorithm is then used to show that, in free choice
nets, strongly connected deadlocks are the union of minimal deadlocks. Finally,
this second result allows us to show that liveness of bounded free choice nets
can be characterised in terms of strongly connected deadlocks. The algorithm
closely resembles the one given in [2] to construct T-components. We will for-
malize it in an analogous way.



Algorithm 4.1 (To construct a minimal deadlock containing a given place)

Input: A strongly connected free choice net N = (S, T, F) with a distin-
guished place . This place P is called the seed of the algorithm.
Output: A minimal deadlock of N containing .

We construct inductivelyanet N = (5 C §,7 C T, F C F) such that S will
turn out to be a minimal deadlock of N. In the following the dot notation
® for Pre— and Post-sets will always refer to the net N.

Step 1: §:={p}, T :=0,F :=0 and N := (3, T, F).

Step 2: Repeat the following exhaustively: If thereis p € S and ¢ € ®p such
that (t,p) ¢ F then choose a handle H = (zpfozy .. . Tt St
of N with z,,_1 =t and z,, = p (note that m > 1 and the equality
can occur). Then put:

i

S U{ places of H }

:= T U{ transitions of H }
Fu{arcsof H }

(B L. F)

2| | N 4l
Ii

m4l

Let us now collect five simple properties of the construction. The first three
hold at every stage of the algorithm.

1) N is a partial subnet of N.

2) N is strongly connected in terms of F.

At the very beginning, N is trivially strongly connected and adding handles to
it does not destroy the strong connectedness.

3) Every transition in T has exactly one incoming F arc.

It has at least one because N is strongly connected and N cannot contain
isolated transitions. It has at most one, because this is trivially true at the very
beginning and the addition of the particular handles considered in the algorithm
does not destroy this property: the new transitions added by the handle have
at most one incoming arc because handles are by definition elementary paths.
And, as the last node of the handles added to N is always a place, no transition
already present in N can find properly increased its number of incoming arcs
by the presence of the new handles.



4) Attheendof the algorithm (which clearly terminates, due to the finiteness
of N), if p € S then all the incoming arcs of p in F are also in F (and
therefore, *p C 7).

The reason is that there always exists, at each stage of the algorithm, at least
one handle satisfying the requirements; this follows easily from the strong con-
nectedness of V.

5) At the end of the algorithm N is a subnet of N (and, of course, N is
generated by SUT).

Assume the contrary. Then there exists an F—arc f between two nodes of N
which is not an F-arc. Two possibilities have to be considered: f leads from a
transition to a place or from a place to a transition. The first is easily discarded
because it contradicts property 4. Consider the second: if f leads from a place
p to a transition ¢, as N is strongly connected it has to be the case that [p®] > 1
and |*| > 1 (recall that the dot notation always refers to V). This is excluded
by the free choice property.

Now we are ready to show, using corollary 3.4, that S is a minimal deadlock of
N, proving thus the correctness of algorithm 4.1.

Theorem 4.2

Let N = (S,T, F) be a strongly connected free choice net, p € S a place of
N and N = (8,7, F) a net constructed using algorithm 4.1 with P as seed.
Then P is a minimal deadlock of N.

Proof: We show first that S is a deadlock of N. As T C 5* by construction, and
T = *S (property 4), it follows that *S € 5°. Moreover, S is a strongly
connected deadlock because N is the subnet generated by SUT = S U
*S (property 5); N is strongly connected (property 2). Finally, every
transition ¢ € T satisfies |*¢ N P| = 1 (property 3). Applying corollary
3.4, P is a minimal deadlock of N. m4.2

One interesting remark about algorithm 4.1 is that, when (IV, My) is a live and
bounded free choice net, the net N given by the algorithm is an S—component
of N. This is so because of Hack’s theorem, which states that, in this class of
nets, the set of subnets generated by the minimal deadlocks coincides with the
set of S—components. Let us now study the relationship between minimal and
strongly connected deadlocks. Before obtaining the result announced above, it
is convenient to introduce a small lemma.



Lemma 4.3

Let N = (5,T,F) be a net, S’ C S and Ng the subnet generated by S'U°S'.
Then D' C §' is a deadlock of N iff it is a deadlock of Ng.

Proof: From D' C §' it follows that *D’ C *S’. Label this relation as (1).

(=): Assume D' is a deadlock of N. Then *I’ C D'*. By (1), *D’' C
D" n*S’ and therefore *DN°S’ C *D' C D'* N *S’. This means that D’
is a deadlock of Ng.

(«): Assume D' is a deadlock of Ng. Then*D'n*S’ € D*n*S’. Using
(1),*D' =*D'n*S" C D" Nn*S’". This implies *D’ € D', which means
that D’ is a deadlock of N, m4.3

Corollary 4.4

Let N = (5,T,F) be a free choice net and D C S a sirongly connected
deadlock of N. Then D = | D;, where the D; are mintmal deadlocks of N.

Proof: Let Np = (D,Tp, Fp) be the subnet of N generated by DU®D. Np is
strongly connected by definition and is obviously also free choice. Using
algorithm 4.1, given p € D it is possible to construct a minimal deadlock
D, of Np containing p. Therefore the claim is true for Np. It remains
to prove that D, is also a minimal deadlock of N. Using lemma 4.3
with D = S’ we obtain that D, is a deadlock of N. Assume D, is not
minimal in N. Then it contains a minimal deadlock of NV, D'. But, again
by lemma 4.3, D' is a deadlock of Np, and as D’ C D, this contradicts
the hypothesis that D, was a minimal deadlock of Np. Therefore D, is
a minimal deadlock of N. w44

Figure 1 illustrates this result. Consider the net on the left which is not free
choice. D = {p1,ps,pa} is a strongly connected deadlock. Nevertheless D
cannot be covered by minimal deadlocks, because the only minimal deadlock
is {p1,p2}. Now add a transition 5 and a place p; to make the net free choice
(see the net on the right). D’ = {py,ps,ps, ps} is again a strongly connected
deadlock, but now D’ can be covered by the minimal deadlocks {pi,p2,ps} and

{p1, 02, p3}-

It is true for any net that the union of minimal deadlocks yields a set of strongly

connected deadlocks (this follows easily from propositions 2.7 and 2.8). The

previous corollary shows that, in the case of free choice nets, a sort of converse

of that property holds: every strongly connected deadlock can be decomposed

into minimal deadlocks. This fact has a nice consequence, namely that liveness
of bounded free choice nets can be characterised in terms of strongly connected

deadlocks. The proof of this claim makes use of two important results proven

in [6].



Figure 1: Hlustration of corollary 4.4

Theorem 4.5 [6]

Let (N, M) be a marked free choice net. (N, M) is live iff every minimal
deadlock of N contains a marked trap (a trap containing at least one marked
place). m 4.5

Theorem 4.6 [6,3]

Let (N, My) be a live and bounded free choice net and D € S a minimal
deadlock of N. Then D is also a trap. m 4.6

Theorem 4.7

Let (N, M) = (S, T, F, My) be a bounded free choice net. (N, M) 1s live off
every strongly connected deadlock D of N is a marked trap.

Proof: (=): By proposition 2.7, if minimal deadlocks are marked traps, their

unions are marked traps as well. But by corollary 4.4 the set of these
unions contains the set of strongly connected deadlocks.

9.




(<=): Suppose that every strongly connected deadlock D of NV is a
marked trap. As minimal deadlocks are strongly connected (proposi-
tion 2.8), the condition of theorem 4.5 holds and (N, Mp) is live.

4.7

An important remark about theorem 4.7: this new characterisation can be
checked in polynomial time [5]. This appears not to be possible for general
free choice nets, because the non-liveness problem for free choice nets is NP
complete [7].
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