
A Polynomial Time Flow for Implementing

Free-Choice Petri-Nets

Pavlos M. Mattheakis, Christos P. Sotiriou

FORTH-ICS, Crete, Greece and

University of Crete, Greece.

emails: pmat@csd.uoc.gr, sotiriou@csd.uoc.gr

Peter A. Beerel

Department of Electrical Engineering,

University of Southern California, USA.

email: pabeerel@usc.edu

Abstract—FSM and PTnet control models are pertinent in
both software and hardware applications as both specification
and implementation models. The state-based, monolithic FSM
model is directly implementable in software or hardware, but
cannot model concurrency without state explosion. Interacting
FSM models have so far lacked the formal rigor for expressing the
synchronising interactions between different FSMs. The event-
based, PTnet model is able to model both concurrency and
choice within the same model, however lacks a polynomial time
flow to implementation, as current methods of exposing the
event state space require a potentially exponential number of
states. In this work, we present a polynomial complexity flow
for transforming a Free-Choice PTnet into a new formalism for
Interacting FSMs, i.e Multiple, Synchronised FSMs (MSFSMs),
a compact Interacting FSMs model, potentially implementable
using any existing monolithic FSM implementation method. We
believe that such a flow can in the long term bridge the event and
state-based models. We present execution time and state space
results of exercising our flow on 25 large PTnet specifications,
describing asynchronous control circuits, and contrast our results
to the popular Petrify tool for PTnet state space exploration and
circuit implementation. Our results indicate a very significant
reduction in both state space size and execution time.

I. INTRODUCTION

The monolithic Finite State Machine (FSM) model is

the protagonist of contemporary formal control models. The

monolithic FSM model’s simplicity, its seemingly vast ex-

pressive power, combined with its implementability, include

some of the key reasons for its popularity in the fields

of hardware and software design. In the software field, the

FSM model is used by and within Computer Aided Software

Engineering (CASE) tools to represent a software application’s

control properties or dependencies, where inputs typically

represent stimuli and outputs actions. Several, well known

techniques exist, in the literature, for implementing an FSM

in software [1]. The straightforward approach for translating

an FSM into programming language code is to to represent

FSM states by state variables, and use two case statements

for determining the output and next state values, i.e. one for

current states and another for the inputs. In the hardware field,

the FSM model represents the atomic unit for specifying and

implementing sequential circuits. In the FSM circuit imple-

mentation literature, output signal timing, state changes and

input sampling are usually synchronised to a clock. However,

asynchronous FSM implementations have also been proposed,

which typically impose assumptions on input arrival, output

departure, and state changes. Similarly to software, a variety of

algorithms exist for optimising and implementing an FSM both

in the synchronous [2], [3], [4], as well as the asynchronous

paradigm [5], [6].

Despite being ubiquitously used, and rich in implementation

options, the monolithic FSM model is not scalable when a

single FSM is used for representing, or analysing a concurrent

system. The exponential state explosion manifested in such a

case can render the use of the, otherwise very powerful, for-

malism of the monolithic FSM as prohibitive. Several software

and hardware applications have been indeed affected by this

shortcoming, including formal verification and circuit design,

ultimately leading to research in higher-order control mod-

els. For example, model checking a concurrent specification

comprised of multiple FSMs, requires the computation of the

monolithic, composite (product) FSM [7], the size of which is

exponential with respect to the total number of original states.

Another example lies in the field of asynchronous circuit

synthesis [8], whereby the state space of the circuit’s input and

output signals is explored, for the purpose of logic synthesis,

as a monolithic FSM, the size of which is exponential with

respect to the number of circuit signals. This motivation for

higher-order control models has led to the exploration of

models such as Interacting FSMs [9] and Place Transition nets

(PTnets) [10].

Interacting FSMs or FSM networks are an evolution of

the single FSM. They essentially represent a compact, non-

exponential equivalent of a monolithic FSM, whereby multiple

FSMs interact with each other, through designated output and

input signals or transitions. As Interacting FSMs are an evo-

lutionary model, they straightforwardly inherit the properties

of monolithic FSMs, such as synchronous or asynchronous

timing. However, interacting FSMs lack, so far, the formal

rigor for expressing synchronisation, as well as the analysis

capabilities of PTnets. PTnets represent an graph-based, event-

oriented alternative control model, in contrast to the state-

oriented FSM models. PTnets exhibit certain specific benefits,

including the combination of concurrency and choice within

the same model, as well as, more importantly, static analysis

algorithms for verifying important control system properties,

such as deadlock-freedom and boundedness. The PTnet model,

being event-based, is typically considered asynchronous in

nature. However, with the introduction of assumptions similar

to those of synchronous FSMs, i.e. when input and output

events are fired with respect to a clock signal, the PTnet model

may also be used to specify or implement synchronous control

systems [11]. The sole,yet significant, drawback of PTnets is

that they do not currently possess a low-complexity path to

implementation, similar to that of state-based models.

Hence, whether under synchronous or asynchronous timing,

the monolithic FSM model possesses a low-complexity im-

plementation path, whereas PTnets do not. Their intermediate

counterpart, interacting FSMs, lack the formal expressiveness

to express synchronisation, this is why they are used the least.

A number of prior works [12], [8] and [11] have attempted

to transform PTnets into a monolithic or multiple FSMs

respectively, however they either suffer from state explosion or

cannot guarantee the implementability of any live and bounded

PTnet.

In this work, we introduce a polynomial complexity flow

capable of transforming any Free-Choice PTnet into a set of

Synchronised FSMs (MSFSMs), a compact interacting FSMs

model which we introduce in this paper, capable of exposing

state and expressing inter-FSM synchronisation, while being

potentially implementable with any existing monolithic FSM

implementation technique. We present state space and execu-

tion time results of our flow, on a set of 25 benchmarks, and

comparison to results from PTnet implementation tool Petrify.

Results indicate a significantly smaller state space footprint

for our flow, due to its polynomial complexity, as well as a

respective reduction in execution time, for exposing this state

space.

II. CONTROL MODELS

A. Monolithic and Interacting FSMs

Since the 1970’s there has been an extensive body of work

in FSM-based design [2][13]. Early work focused on state

minimisation, encoding and implementation of completely

specified FSMs. In the mid 1990’s, mature algorithms were

developed for incompletely specified FSMs [3].

Definition 2.1 (FSM): An FSM, M, is a five-tuple, M =

(I,O,S,δ,λ), where I is a finite, nonempty set of inputs, O is

a finite, nonempty set of outputs, S is a finite nonempty set of

states, δ : I×S → S is the next state function, and λ : I×S →O

(for a Mealy machine), or λ : S → O (for a Moore machine)

is the output function.

All practical FSMs, possess an initial state S0, assumed

during system initialisation. If, the next state and output

functions, δ and λ, are specified for all possible inputs,

then the FSM is completely specified, otherwise the FSM is

incompletely specified with next state and output Don’t Cares

(DCs) respectively. FSMs are typically visualised using State

Graphs, Flow Tables or Cube Tables [4]. FSM synthesis flows

today still operate at the grain of the monolithic FSM, thus

complex control systems are synthesised and implemented one

FSM at the time, with little notion, expression or exposure of

the inter-FSM interaction.

Other key fundamental single FSM operations are compo-

sition and decomposition. Composition is a rather intuitive

FSM operation [4], whereas decomposition is more complex,

and may be achieved using state partition theory [14], [13],

or by identifying repeated patterns within an FSM [15]. The

drawbacks of the monolithic FSM model include its inability

to model concurrency, and the fact that it is not scalable,

i.e. composing multiple FSMs into a single one is generally

intractable [16].

Interacting FSMs is a relatively informal model, which we

include for completeness.

Definition 2.2 (Interacting FSMs): A network of n Interact-

ing FSMs, M1, M2, . . ., Mn, is a set of n FSMs, where each

FSM may communicate, by exchanging inputs and outputs

with other FSMs, without any restriction.

B. The FCPTnet Model

PTnets are divided into classes, depending on structural in-

teractions between choice and concurrency. Below, we present

the fundamental PTnet definitions.

Definition 2.3 (Net): A net N is a triple (S,T,F) where S,

T are two finite disjoint sets, corresponding to the Places and

Transitions of the net respectively, and F is a flow relation on

S∪T , such that F ∩ (S×S) = F ∩ (T ×T) = /0.

Given a net N, the set •x = {y|(y,x) ∈ F} is the pre-set of

node x and the set x• = {y|(x,y) ∈ F} is its post-set. A triple

N′ = (S′,T ′,F ′) is a Net’s N = (S,T,F) subnet if S′, T ′ are

subsets of S, T respectively and F ′ consists of the subset of

(S′×T ′)∪ (T ′×S′) which is in F. A Net’s marking assigns to

every Place a non-negative integer. This number is the marking

of the specified Place. The visualization of a Net’s marking is

a number of tokens in each Place, equal to Place’s marking.

A marking M enables a Transition ti, if every Place in •t is

marked. If a Transition t is enabled in a marking M j, then

it fires reducing the marking of •t by 1 and increasing the

marking of t• by 1. The set of all markings reachable from M

is denoted as [M >.

Definition 2.4 (PTnet System, Reachable Markings): A

Place, Transition Net system is a pair (N, M0), where N is a

connected net with at least one Place and one Transition, and

M0 is a marking of N, called the initial marking. A marking

is called reachable in a system, if it is in [M0 >.

The fundamental difference between a net and a PTnet

system is that the former is merely a set of static relations,

whereas the latter is a dynamic system able to model con-

currency, conflict (choice) and complex interactions of the

two. A Signal Transition Graph (STG) is a FCPTnet, whereby

transitions of the net represent input or output signal transitions

(+/-) to Boolean values (0/1).

Definition 2.5 (STG): An STG is a tuple G = (P, T , F , MO,

In, Out, l) where (P, T , F , Mo) is a PTnet System, and In

and Out are disjoint sets of input and output signals. For Sig

:= In ∪ Out being the set of all signals, l : T → Sig × { +, −
} is the labeling function. Sig × { +, − } is the set of signal

edges or signal transitions.

We now review fundamental PTnet properties.

Definition 2.6 (Liveness and Deadlock Freedom): A

system is live if, for every reachable marking M and every

Transition t, there exists a marking M′ ∈ [M > enabling t.

If (N, M0) is a live system, then M0 is denoted as a live

marking of N. A system is deadlock free, if every reachable

marking enables at least one Transition, i.e. no dead marking

is reachable from the initial marking.

Definition 2.7 (Place Bound, Bounded Systems): A system

is bounded, if for every Place s, there exists a natural number b,

such that M(s)≤ b, for every reachable marking M. The Place

bound of s is max{M(s)|M ∈ [M0}. A system is b-bounded if

every Place is bounded by b.

Definition 2.8 (Well-formed nets): A net N is well-formed,

if there exists a marking M0 such that (N, M0) is a live and

bounded system.

An important predicate of a net, used by both analysis and

covering algorithms, is the characterisation of a set of Places

as a siphon.

Definition 2.9 (Siphons): A set R of Places of a net N is a

siphon, iff R 6= /0∧• R ⊆ R•.

Definition 2.10 (S-Component): A net N′ is an S-

Component of net N, generated by a nonempty set of nodes

X , where for each Place s of X , •s∪ s• ⊆ X , |•t| = 1 = |t•|,
for every Transition of N′, N′ is strongly connected and N′ is

a subnet of N.

Definition 2.11 (S-Cover): A set of S-Components, C, is an

S-Cover, if every Place of a net belongs to an S-Component

of C.

Definition 2.12 (Free-Choice PTnet System, Net [17]):

A net N = (S,T,F) is free-choice, if (s, t) ∈ F implies
•t × s• ⊆ F for every Place s and Transition t. A system (N,

M0) is free-choice if its underlying net is free-choice.

FCPTnets represent the most ubiquitous form of PTnets,

due to the following two Theorems.

Lemma 2.1 (S-Coverability [17]): Well-formed, connected

free-choice nets are covered by S-Components.

S-Coverability has been shown to be achievable in poly-

nomial time for Free-choice [18] and Extended Free-choice

(EFC) [19] Nets. A practical algorithm for the minimisation

of the obtained S-Cover is presented in [20]. The inverse of

the previous theorem, i.e. that an FCPTnet which is covered

by S-Components is well-formed, also holds.

Lemma 2.2 (Well-formedness of FCPTnet[21]): For a live

and bounded FCPTNet, N, it holds that:
• N is strongly connected,

• each Place belongs to a minimal siphon R,

• each N’s subnet (R, R• ∪• R, (R×R•)∪ (•R×R)) is an

S-Component,

• each S-Component is initially marked.

Higher-order PTnet classes, e.g. Asymmetric-Choice

(ACPTnets) and General (GPTnets) PTnets, exhibit confusion,

i.e. complex interactions between concurrency and choice. In

practice, algorithms which, for FCPTnets exhibit polynomial

complexity, such as S-Covering, have been shown to be

intractable for the ACPTnets, GPTnets classes.

III. THE MULTIPLE SYNCHRONISED FSMS MODEL

The multiple Synchronised FSM model is a compact repre-

sentation of a set of Interacting FSMs, which explicitly models

inter-FSM synchronisation, using a set of two basic synchro-

nisation primitives, Wait States and Transition Barriers.

A. Definitions

Definition 3.1 (MSFSM Set): An MSFSM set, MS, is a

five-tuple (I,O,S,∆,Λ), where I is a finite, nonempty set of

global inputs, O is a finite, nonempty set of global outputs,

S is a finite nonempty set of N FSMs, with state sets Si

and corresponding local output sets, λi : I × Si → Oi (if Si

is a Mealy machine), or λi : Si → Oi (if Si is a Moore

machine), ∆ is a set of next state functions, one per FSM

i, where ∆i : I × O1 × O2 × . . . × Si × . . . × ON → Si, and

Λ : I×O1×O2× . . .×ON → O is the global output generation

function.

The MSFSM set is a set of shared input support, interacting

FSMs, where each FSM changes state, or produces its local

outputs (in the usual Mealy or Moore fashion), based on both

the global inputs, I, and the state-dependent outputs of other

FSMs of the set. Local FSM outputs can then be combined,

combinationally, to generate global outputs. The simplest case

of a local output, Oi, is when it is directly dependent upon a

local state, i.e. Oi = Si, thus each FSM’s state change or local

output generation may directly depend to the state of other

FSMs. The initial state of the MSFSM set corresponds to the

set of initial states of its member machines.

An MSFSM set may be represented as a set of flow tables

(or state transition graphs), one per FSM in the set, and a set

of combinational logic equations. Each flow table, i, represents

the next state function, ∆i, and the local outputs, Oi of FSM i,

whereas the set of combinational logic equations generate the

global outputs, i.e. global output function Λ. An MSFSM set

corresponds to a potentially implementable specification, as

each FSM of the set is indeed implementable, using existing

monolithic FSM implementation techniques.

B. MSFSM Synchronisation Primitives

The fact that ∆i functions of FSMs, implicitly include the

current state of other FSMs in the set, allows for the inter-

FSM communication, and more importantly, synchronisation

to be exposed. We define two synchronisation primitives,

Wait States and Transition Barriers, which stem from the ∆i

functions interaction, and prove that these are sufficient when

only conjunctive (AND) synchronisation is allowed between

Synchronised FSMs.

Definition 3.2 (MSFSM Wait State): In an MSFSM set,

MS, a Wait State W is a state of a machine M, which belongs to

MS, where the next state function for state W , ∆i(W), depends

on a combinational function f of the global inputs I, and on

a product of local outputs of a set j of the FSMs of MS, i.e.

is of the form: ∆i(W) = f (I).∏ j∈N O j

The next state logic of a Wait state W of M, will be

activated, not only when the corresponding inputs function,

f (I) is activated, but also when a set of local FSM outputs,

O j, are activated as well. These, in turn, depend on local

states of their corresponding FSMs, i.e. a conjunction of

outputs. Thus, transitively, a Wait state W awaits for a set

s1

...

...

...

...

...

...

s2

w

...

w

...

...

FSM 3 Segment

t = f(I).(O1 = s1).(O2 = s2)

O1 = s1 O2 = s2

FSM 1 Segment FSM 2 Segment

Fig. 1: Wait State Example

of FSM states to be reached and potentially a set of global

inputs as well. This form of synchronisation is unidirectional

and represents conjunctive (AND) causality. A Wait State

synchronisation may be represented by a tuple (W , t, s1, s2,

. . ., sm), where W , t and s1 to sm correspond to state W ,

the relevant transition function, f (I), and the relevant FSM

states of MS generating O j respectively. Figure 1 illustrates a

simple wait state dependency, where transition t of a state w

of FSM 3, is activated by states s1 and s2, of FSMs 1 and 2

respectively.

Another synchronisation primitive can be defined by con-

sidering the special case of two, or more, mutually dependent

Wait States between two or more FSMs of MS. For the two

state case, a Transition Barrier (named after barrier synchro-

nisation) corresponds to two Wait States mutually dependent

upon each other, and is generalisable to any number of Wait

States.

Definition 3.3 (MSFSM Transition Barrier): In an

MSFSM set, MS, a Transition Barrier T , is a set of

Wait State transitions of different FSMs of MS, with identical

combinational function f (I), and an equivalent output

product in the respective ∆i’s, i.e. each transition of the

synchronisation barrier T and corresponding wait state local

output product, ∏ j∈N O j, includes all other wait states of T .

Thus, the transitions of a Barrier may only be activated

simultaneously, when all of the relevant Wait States, of the

respective FSMs are reached. As each Wait State represents

conjunctive (AND) causality, the barrier also represents the

same.

A Transition Barrier may be represented by an unordered

transition set, i.e. {t1, t2, . . ., tm}, where t1 to tm correspond

to the set of Wait State transitions of the barrier. Figure 2

illustrates the simplest form of a Transition Barrier, {t1, t2},

whereby transitions t1 and t2, which belong to FSMs 1 and

2 respectively, possess the same combinational function g and

are mutually dependent, as t1 is activated by O2, which in turn

is set by s2 and t2 by O1, which is set by s1. Thus, one awaits

for the other, and they may only be activated simultaneously.

IV. FREE CHOICE PTNET TO MSFSM SET

TRANSFORMATION

In this section, we introduce a polynomial complexity flow

for transforming a FCPTnet into an MSFSM set. This flow

bridges the PTnet and monolithic FSM models, tackles the

state explosion problem associated with existing FCPTnet

FSM 1 Segment

...

...

s1 O1 = s1

...
t1 = g.(O2 = s2)

...

...

...

FSM 2 Segment

s2 O2 = s2

t2 = g.(O1 = s1)

Fig. 2: Transition Barrier Example

implementation approaches, as well as guarantees existence

for any FCPTnet implementation.

Free-choice PTnets have been shown to be decomposable

not to the selfsame model, but to a set of S-Components (or

T-components). As illustrated in Section II-B, an FCPTnet is

decomposable into an S-Cover, where each S-Component is

an FSM-like graph, c.f. Definitions 2.10, 2.11, Theorems 2.1

and 2.2. In fact, S-Coverability is achievable in polynomial

time [19], and it has been shown that a non-exponential, prac-

tical algorithm may be used to derive a minimal S-Cover [20].

Hence, this path represents a very viable and practical path

for the PTnet to MSFSM transformation. Our contribution in

the transformation step lies in the conversion of S-Covers to

“proper” FSMs, and MSFSMs, whereby (i) input transition

relevant PTnet Places are eliminated, as they don’t represent

state in the FSM sense, and (ii) FSMs include all the necessary

interaction signals for the purposes of synchronisation, and

are thus behaviourally equivalent, to the original PTnet. The

latter is performed through extraction of the aforementioned

synchronisation primitives.

The polynomial time FCPTnet to MSFSM set transforma-

tion is comprised of the following five polynomial complexity

steps, and respective complexities.

1) FCPTnet S-Covering [17], [19], [20]: O(PT +P2)
2) S-Component to Non-Interactive FSM mapping: O(P2T 2)
3) FSM Collapsing: O(P2T 4)
4) Synchronisation Primitive Extraction: O(P3T 2)
5) Inter-MSFSM Synchronisation Integration: O(P2T)

In the following sections, these transformation steps are

presented in detail, with the aid of a FCPTnet specification

example borrowed from the field of asynchronous circuit de-

sign, ad f ast, an A/D converter controller [22]. In the relevant

diagrams, solid black and white transitions are used represent

output and input events respectively.

A. FCPTnet S-Covering

Extracting all possible S-Components of an FCPTnet is

known to be exponential in complexity. However, prior work

has shown that extracting a single S-Cover is achievable in

O(PT) time [19]. Further on, an extra step of O(P2) com-

plexity can be used to extract a minimal (not the minimum)

S-Cover, as shown in [20]. Hence, prior work has indeed

established that covering an FCPTnet with a minimal S-

Cover is achievable in polynomial time. It should be noted

that the total number of places included in the S-Cover will

typically be larger than that of the original FCPTnet. This

is because the S-Covering process distributes and replicates

transitions with multiple input or output places to different

S-Components. Hence, some of the input and output places

of such transitions are thus instantiated multiple times in the

derived S-Components.

Provided that the FCPTnet is well-formed, i.e. live and

bounded, c.f. 2.2, each S-Component includes an initially

marked place. This initially marked place corresponds to the

initial state of the subsequently derived FSM.

Lr’ Dr Zr

ZaDaLa’

La

Dr’ Zr’

Za’Lr Da’

La

Lr’

La’

Dr’

Da’

Lr Lr LrLr

La La La

Da’ Za’ Za’

Dr’ Zr’ Zr’

Da Da Za

Dr Dr Zr

Fig. 3: ad f ast - FCPTnet S-Covering

Figure 3 illustrates the S-Covering process, with the LHS

and RHS of Figure 3 illustrating the original FCPTnet spec-

ification, and a corresponding, minimal S-Cover of ad f ast

respectively (black transitions correspond to output, white to

input signals). It is evident that while the original net contains

a total of 15 Places and 12 Transitions, the S-Cover contains 24

Places and 24 Transitions, due to Place (state) and Transition

replication (e.g. transition Lr).

B. S-Component to Non-Interactive FSM mapping

A one-to-one and onto mapping (bijection relation) exists

between each S-Component of the FCPTnet and a Mealy FSM,

which can be implemented as a sequence of three steps.

In the first step, each S-Component transition is mapped

to a corresponding FSM transition, and accordingly each S-

Component place is mapped to a corresponding FSM state. In

the second step, the FSM’s input and output sets, I and O,

are extracted from the corresponding S-Component’s T set,

depending on whether T is labeled as an input or output.

Finally, in the third and last step, each FSM’s δ and λ

functions are constructed, based on the corresponding S-

Component’s flow relation F . The next state function, δ, at this

point assumes its monolithic FSM form, i.e. δ : I×S → S, as

no explicit inter-FSM interaction is yet expressed. In the final

step of the flow, Section IV-E, δ is promoted to ∆, i.e. includes

inter-FSM synchronisations.

Hence, for each couple of an S-Component’s flow relation

pairs, i.e. (p, t), (t ′, p′), whereby t = t ′, state transition (s, t f , s′)

is extracted, for s, s′, the respective states which correspond

to the places of F . Such a state transition is appropriately

added to the respective FSM’s δ or λ functions, depending

on whether t f is an input or output. The corresponding com-

plexities of the three steps are O(T +P), O(T) and O(P2T 2)
respectively. Figure 5 illustrates the mapping of the first S-

Component of ad f ast to an FSM.

The set of Non-Interactive FSMs, which stem from this

second step of the transformation flow, are implicitly synchro-

nised, as per the original FCPTnet semantics. This implicit

synchronisation is implied between states and transitions of the

Non-Interactive FSMs which stem from, and map to the same

original place or transition of the covered FCPTnet. Exposing

this implicit synchronisation is necessary, so as to produce an

Interactive FSMs model. The fourth step of the transformation

flow, extracts the synchronisation primitives for this particular

purpose.

C. FSM Collapsing

Each element (s, i, s′) of an FSM’s δ set is comprised

of two states s and s′ and an input transition i. Up to this

point, the PTNet to FSM transformation assumed that each

input corresponds to a single signal. However, FSM semantics

dictate that each transition corresponds to a Boolean Function

of input signals. For example, if fi = ini.in j then transition

(s, fi, s′) is activated when both ini and in j are activated,

independently of their activation order. Effectively, ini and in j

are concurrent in fi. This type of concurrency may also be

exploited for the outputs in the elements of the λ set.

i 1

FSM# 1

s

s

1

1’

...

...

i i2 n

...

...

...

...

...

...

...

Transition

Barrier

Transition

Barrier

FSM# FSM#2 n

s s

s s

2 n

2’ n’

i

s

s

k

k’

1.i2...in

tb

tb’

kFSM#

...

...

i1+ i2+ in+

p1 p2 pn

p1’ p2’ pn’

PTNet

Fig. 4: FSM Collapsing - Example

Thus, in the case where multiple FSMs exhibit concurrency

only between inputs or outputs, these may be collapsed into

a single FSM. An example is shown in Figure 4, where n

concurrent input events are distributed to n synchronised FSMs

which only exhibit concurrency at the aforementioned input

events.

The complexity for collapsing is O(P2T 4), as each FSM’s

transitions are compared to the transitions of all other FSMs,

so as to ascertain whether the latter, as well as their predeces-

sor and successor transitions respectively stem from the same

corresponding PTnet transitions (the number of FSMs is in

worst case |P| and the number of transitions in each FSM is

in worst case |T |).

D. Synchronisation Primitive Extraction

This fourth step of the transformation flow identifies the

complete set of implicit synchronisation primitives, i.e. Wait

States and Transition Barriers (c.f Section III-B), as expressed

by the S-Cover and S-Components of the FCPTnet. The latter

are extracted by analysing the S-Component’s flow relations.

This is achieved by transforming each flow-relation into the

form F ′ : S×T → S. Common transitions in T of different F ′’s,

i.e. shared between the S-Components, produce Wait States,

as they implicitly describe a state synchronisation dependence

for entering a state of the S-Component. Similarly, common

States in S, i.e. originating from the same PTnet place, pro-

duce Transition Barriers, as they implicitly describe states of

multiple S-Components which must be simultaneously entered

or left.

t
5

t
0

t1

t
2

t3

t
4

La/

/Lr

/Dr’

La/

/Lr

s

s

s

Da’/

/Dr

Da/

/Dr

Da/

/Zr’

Za’/

t

t

t

t

t

t

t

t

t

t

La/

/Lr

/Zr

Za/

/Zr

Za/
t

t

t

t

tt t

6

7

8

9

10

11

12

13

14

15

16

17

19

22

23

6

s

7

8

9

s10

11s

12
s

13s

s14

15
s

s16

s17

s
19

20
s

21s

22
s

s
23

t21

20

18

s18

/Dr’

s

s

s

s

s

s
0

1

2

3

4

5

/Lr’

Da’/

ε /Lr

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

εLa’/

La/

La

Lr’

La’

Dr’

Da’

Lr

Fig. 5: ad f ast - S-Component to FSM Conversion

Figure 5 illustrates the Non-Interacting FSMs of ad f ast.

Synchronisation primitive analysis of the original FCPTnet

derives 8 Transition Barriers, two of which, i.e. {t0, t6, t12, t18},

{t5, t11, t17, t23} synchronise all four FSMs, whereas the re-

maining six synchronise two FSMs each, i.e. {t7, t13}, {t8, t14}
synchronise FSM1, FSM2, {t3, t9}, {t4, t10} synchronise FSM0,

FSM1 and {t15, t21}, {t16, t22} synchronise FSM2, FSM3.

The complexity for extracting the synchronisation primitives

is O(P3T 2), as each place, transition pair of the original PTNet

is analysed with respect to the states and transitions sets of the

|P|, in the worst case, S-Components.

E. Inter-MSFSM Synchronisation Integration

With the synchronisation primitives identified, this step

completes the transformation process by promoting the mono-

lithic δi functions of each FSM to ∆i, so as to explicitly

include the inter-MSFSM synchronisations dictated by the

synchronisation primitives, and it also implements the global

output generation function, Λ.

The finest grain of synchronisation, according to Definition

3.2, is the Wait State. A Transition Barrier, Definition 3.3 is

indeed a set of interlocked Wait States. Thus, with respect to

integrating inter-MSFSM synchronisation, it is both necessary

and sufficient to integrate Wait State synchronisation and

express each ∆i as ∆i : I ×O1 ×O2 × . . .×Si × . . .×ON → Si

functions, i.e. determine the dependent intra-FSM outputs for

a state change.

We now illustrate specifically how the synchronisation is

integrated. Each Wait State (W , t, s1, s2, . . ., sm), which may

indeed be a member of a Transition Barrier, dictates that states

(s1, s2, . . ., sm) form corresponding state-generated outputs,

(o(s1), o(s2), . . ., o(sm)), which, along with transition t form

the transition function for entering State W. With respect to

the state-generated outputs, o(si) will evaluate to logic 1, if

the FSM is currently in this corresponding state, or logic 0

otherwise. Thus, the transition function into W will be of the

form Wenter = (t . o(s1). o(s2) o(sm)), i.e. the Boolean

conjunction of t and the state-generated outputs. In this way,

each Wait State contributes to the generation of local state-

generated outputs, and subsequently the formation of the ∆i

next state functions.

The global output generation function, Λ, where Λ : I×O1×
O2 × . . .×ON → O, is expressed by forming the consensus

of the corresponding local outputs. Hence, output transitions

which exist in multiple FSM’s λi functions must be combined,

again through Boolean conjunction, so as to render the con-

sensus of the local outputs.

The complexity of this step is equal to the worst case total

number of wait states i.e. O(P2T), as each place-transition pair

in the original PTNet may have been cloned to all |P| FSMs.

V. TRANSFORMATION COMPLETENESS AND

EQUIVALENCE

In this section, we formally prove that the presented trans-

formation flow is complete, i.e. any FCPTnet is transformable

to an equivalent MSFSM set. Prior to the proof itself, we

formally define the notions of global state for the MSFSM

set, and input, output trace equivalence.

Definition 5.1 (FCPTnet, MSFSM Global State): The

global state of a safe FCPTnet System (N, Mo), is its current

Marking, MC, i.e. the set of currently Marked Places.

The global current state of an MSFSM set M, composed of

n FSMs, is the n-tuple, (CS1, CS2, . . ., CSn), formed by the

current states of the n MSFSMs.

The presented transformation indeed forms a bijection be-

tween the global states of the FCPTnet and MSFSM set, as

we prove in the following Lemma.

Lemma 5.1 (Global State Change Bijection): A bijection

relation exists between the Global State Change of the

FCPTnet and the Global State Change of the MSFSM set.

Proof: A global state change of the FCPTnet represents

a change in the marking of the net. The latter is based on

token movement, in accordance to the firing of input and

output transitions. According to Lemmas 2.1 and 2.2, S-

Cover’s global state change is indeed a bijection of the global

state of the FCPTnet, as any token movement in the latter

has a direct correspondence to token movement in the former.

Now, the MSFSM set is generated directly from the S-Cover,

and as described in Sections IV-B-IV-E, both a unique and

bi-directional structural pairing exists between places of the

S-Covers and states of the MSFSM set, and a unique and bi-

directional correspondence, i.e. a matching by name, exists

between input and output transitions of the S-Covers and

inputs and outputs of the MSFSM set. Further on, the next state

transition functions, ∆i, of the MSFSMs are formed precisely

to correspond to, and implement the allowed token movement

of the S-Cover. Thus, any input transition, t, simultaneous

between S-Covers corresponds to a Transition Barrier, and in

turn corresponds to Wait State Boolean transition functions

Wenter = (t . o(s1). o(s2) o(sm)). In addition, any output

transition of the S-Cover, corresponds directly to a local output

generation in the MSFSM set. From this bi-directional pairing

between places, states, inputs and outputs and the formation

of the transition functions to implement the allowed token

movement of the S-Covers, it follows that any global state

change of the S-Covers, through an allowed token movement,

corresponds to an exactly matched, 1-1 and onto global state

change in the MSFSM set, as dictated by the input and output

transitions. As the opposite also holds, based on the above,

the global state change relation is a bijection.

Now, proving input, output trace equivalence between an

FCPTnet and its corresponding MSFSM set, requires defining

input and output trace equivalence with respect the the global

states of the two models.

Definition 5.2 (k-Distinguishable Global States): The

global states of an FCPTnet System, (N, Mo), Mc, and the

MSFSM set, M, (CS1, CS2, . . ., CSn), are distinguishable

if and only if there exists at least one finite, allowed input

sequence of length k, which, when applied to both N and M,

with N and M residing in their corresponding initial global

states, it causes different output sequences.

It thus follows that global states which are not k-

distinguishable are k-equivalent. Thus, equivalence may be

defined as follows.

Definition 5.3 (FCPTnet, MSFSM Equivalence): An

FCPTnet System, (N, Mo) is equivalent to an MSFSM set,

M, if and only if, for every allowed input sequence, the same

output sequence will be produced from their corresponding

initial global states of the FCPTnet N and MSFSM set M.

The allowed input sequences are the valid input transition

sequences described in the FCPTnet specification. Now, equiv-

alence between the original FCPTnet and resultant MSFSM set

must be proved with respect to Definition 5.3.

Theorem 5.1 (Transformation Equivalence, Completeness):

For any well-formed, STG-labeled FCPTnet System, (N, Mo),

an equivalent MSFSM set, M, is derived by the presented

flow.

Proof: (Induction) Assume the FCPTnet System (N, Mo),

and the MSFSM set, M, are not k-distinguishable, according

to Definition 5.2, and are thus k-equivalent, i.e. for all input

sequences of length k (or less), output sequences match.

We must subsequently prove that they are not (k + 1)-

distinguishable and thus (k + 1)-equivalent.

According to our induction hypothesis, the global states of

the FCPTnet System (N, Mo), and the MSFSM set, are not k-

distinguishable, i.e. after k input transitions, the global states

of the two are indeed equivalent, as they produce the same

output sequences. Thus, starting from equivalent global states,

we consider the arrival of an additional, allowed input; the next

observable output will determine (k + 1)-distinguishability.

Now, if an output is not generated for the (k + 1) input, it

follows straightforwardly that (k + 1)-distinguishability does

not hold. Thus, we consider the case that an observable output

is indeed generated. According to Lemma 5.1, the global

state change of the FCPTnet and that of the MSFSM set

is a bijection, thus the global state change of the FCPTnet,

which will produce the next observable output, will possess

a corresponding global state change for the MSFSM set, and

both will be reachable from the two equivalent global states

of the k-input sequence. It thus follows that the (k + 1) input

must also lead to equivalent global states for the FCPTnet and

the MSFSM set, hence the (k + 1) allowed input sequence is

not (k + 1)-distinguishable.

VI. RESULTS

We now present experimental results of the FCPTnet to

Interactive Synchronised FSM polynomial complexity flow

presented, on a set of 25 PTnet benchmarks. The benchmarks

used stem from the asynchronous circuit implementation

field and represent asynchronous control circuit specifications,

whereby PTnet events represent the assertion or deassertion

of the relevant circuit signals. We contrast the state space and

execution time of our flow to that of tool Petrify [23], which,

in order to implement a PTnet specification, it expresses the

latter’s state space as a monolithic FSM, i.e. the event State

Graph (SG).

Table I illustrates state space and execution time results of

the flow presented in this paper, as well as the corresponding

results of the Petrify tool. The first column of Table I clas-

sifies the PTnet of the relevant benchmark, between Marked

Graph (MG), State Machine (SM), FC (Free-choice), or State-

Machine Decomposable (SMD). The latter class refers to a

General PTnet, coverable by S-Components.

Petrify results clearly indicate several cases of state explo-

sion occurring while the tool explores the PTnet specification’s

state space, particularly for the more concurrent benchmarks

of the set. As an example, master_read2, which consists of

52 places, requires a SG with 8×107 states for state-based, SG

analysis! In comparison, the total number of states produced

by our flow is 62, and correspond to a total of 10 Interacting,

Synchronised FSMs. With respect to execution time, for a

fair comparison, this includes solely the required time for

state-space generation, without any additional time for SG

processing required to generate the implementation. The exe-

cution time results illustrate significant runtime improvement

over Petrify, with several orders of magnitude difference. We

should emphasise that the resultant set of Interacting FSMs

are not optimised in any way, for instance by running a state

minimisation algorithm per FSM.

VII. CONCLUSIONS AND FUTURE WORK

The contribution of this paper is a polynomial complex-

ity flow for transforming an event-driven FCPTnet into a

state-based Interacting FSMs model. This flow tackles the

deficiencies of the PTnet and monolithic FSMs models, i.e.

state explosion and efficient representation of concurrency, by

acting as bridge between the these two models. The key to the

Benchmark Original PTnet Petrify [23] MSFSM
Type Num. of Num. of Num. of Exec. Num. of Total Num. Total Num. Exec.

Places Trans. States Time(s) FSMs of States of Trans. Time(s)

art_jordi_10_9 MG 216 198 9.3×1017 39 19 216 216 0.31
two_pipes_weak3 MG 23 14 160 0.03 7 28 28 <0.01

two_pipes_weak6 MG 47 26 10 ×103 0.33 13 52 52 0.01

two_pipes_weak9 MG 71 38 6.5×105 1.54 19 76 76 0.02

two_pipes_weak12 MG 95 50 4.2×107 11.22 25 100 100 0.03

two_pipes_arb3 SMD 38 24 1 ×103 0.17 11 61 61 0.01

two_pipes_arb6 SMD 62 36 6.9×104 1.19 23 115 115 0.02

two_pipes_arb9 SMD 86 48 4.4×106 19.2 33 158 158 0.04

two_pipes_arb12 SMD 95 50 2.8×108 550.4 25 100 100 0.07

three_pipes_weak3 MG 34 20 1.6×103 0.13 11 44 44 <0.01

three_pipes_weak6 MG 70 38 8.5×105 1.31 20 80 80 0.02

three_pipes_weak9 MG 106 56 4.3×108 38.4 29 116 116 0.04

three_pipes_weak12 MG 142 74 2.2×1011 356.94 38 152 152 0.06

three_pipes_arb3 SMD 56 36 1.4×104 0.56 16 121 126 0.01

three_pipes_arb6 SMD 70 38 7.3×106 9.3 34 192 197 0.02

three_pipes_arb9 SMD 106 56 3.7×109 200.5 51 280 287 0.07

three_pipes_arb12 SMD 142 74 1.9×1012 1045.7 69 335 340 0.11
dup-4-pull.sl.3 FC 121 112 155 0.62 17 1360 1496 0.88
count2 FC 19 16 27 0.01 5 41 46 <0.01
dup-4-ph FC 133 123 169 0.95 20 1814 2014 0.93
hybridf MG 26 16 80 0.03 8 48 48 <0.01

master_read2 MG 74 52 8×107 1.12 20 102 102 <0.01
master_read MG 38 26 1882 0.17 10 62 76 <0.01
mmu MG 20 16 174 0.24 5 31 31 <0.01
tangram MG 98 92 426 0.48 6 348 348 0.06

TABLE I: MSFSM Generation for FCPTnets for Concurrent Benchmarks

flow is the definition of a new formalism for Interacting FSMs,

which exposes the inter-FSM synchronising interactions, us-

ing a set of synchronisation primitives, i.e. Wait States and

Transition Barriers. The new flow can be used for algorithms

which need to explore the state space of a PTnet specification,

e.g. PTnet implementation. Experimental results, on a set of

25 PTnet benchmarks from the field of asynchronous circuit

design, demonstrate a significant reduction in both state space

and execution time for our approach, when compared to the

corresponding results of the Petrify tool.

ACKNOWLEDGEMENT

This work has been partly funded by FORTH-ICS, Greece.

REFERENCES

[1] F. Wagner, R. Schmuki, T. Wagner, and P. Woltenholme, Modeling

Software with Finite State Machines: A Practical Approach. Auerbach
Publications, 2006.

[2] J. Hopcroft, “An nlogn Algorithm for Minimizing States in a Finite
Automaton,” Stanford University, Computer Science Department, Tech.
Rep. STAN-CS-71-190, Jan. 1971.

[3] J.-K. Rho et al., “Exact and Heuristic Algorithms for the Minimiza-
tion of Incompletely Specified State Machines,” IEEE Transactions on

Computer-Aided Design, vol. 13, no. 2, pp. 167–177, 1994.
[4] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-

rithms. Kluwer Academic Publishers, 1996, iSBN 0-7923-9746-0.
[5] S. Nowick, “Automatic synthesis of burst-mode asynchronous con-

trollers,” Ph.D. dissertation, Stanford University, March 1995, (revised
tech. report, Stanford Computer Systems Lab. CSL-TR-95-686, Dec.
1995).

[6] L. A. Hollaar, “Direct implementation of asynchronous control units,”
vol. C-31, no. 12, pp. 1133–1141, Dec. 1982.

[7] R. K. Brayton et al., “VIS: A System for Verification and Synthesis,”
in Proc. International Workshop on Computer Aided Verification, 1996,
pp. 428–432.

[8] J. Cortadella et al., Logic Synthesis of Asynchronous Controllers and

Interfaces. Springer-Verlag, 2002.

[9] T. Kam, Synthesis of Finite State Machines: Functional Optimization.
Norwell, MA, USA: Kluwer Academic Publishers, 1996.

[10] T. Murata, “Petri Nets: Properties, analysis and applications,” Proceed-

ings of the IEEE, pp. 541–580, Apr. 1989.
[11] K. Biliński, E. L. Dagless, J. M. Saul, and M. Adamski, “Parallel

controller synthesis from a petri net specification,” in Proc. European

Conference on Design Automation (EDAC), 1994.
[12] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-

Vincentelli, “Solving the state assignment problem for signal transition
graphs,” in Proc. ACM/IEEE Design Automation Conference, June 1992.

[13] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, June
1978.

[14] J. Hartmanis and R. Stearns, Algebraic Structure Theory of Sequential

Machines. Prentice-Hall, 1966.
[15] S. Devadas and A. Newton, “Decomposition and factorization of se-

quential finite state machines,” IEEE Transactions on Computer-Aided

Design, vol. 8, no. 11, pp. 1206 –1217, nov 1989.
[16] J. Lind-Nielsen et al., “Verification of Large State/Event Systems using

Compositionality and Dependency Analysis,” in TACAS’98 Tools and

Algorithms for the Construction and Analysis of Systems. Lecture Notes
in Computer Science, 1998.

[17] J. Desel and J. Esparza, Free Choice Petri Nets. Cambridge University
Press, 1995, iSBN-10 0-521-01945-1.

[18] P. Kemper, “Linear time algorithm to find a minimal deadlock in a
strongly connected free-choice net,” in Application and Theory of Petri

Nets, 1993, pp. 319–338.
[19] Peter Kemper, “O(PT) - Algorithm to Compute a Cover of S-components

in EFC-nets,” Informatik IV, University of Dortmund, Tech. Rep., 1994.
[20] D.-I. Lee, S. Kodama, and S. Kumagai, “Decomposition Algorithms for

Live and Safe Free Choice Nets,” Electronics and Communications in

Japan (Part III: Fundamental Electronic Science), vol. 78, 1995.
[21] P. Kemper and F. Bause, “An efficient polynomial-time algorithm to

decide liveness and boundedness of free-choice nets,” in Application

and Theory of Petri Nets. Springer, 1992, pp. 263–278.
[22] J. Carmona, J. Cortadella, and E. Pastor, “A Structural Encoding

Technique for the Synthesis of Asynchronous Circuits,” Fundam. Inf.,
vol. 50, pp. 135–154, February 2002.

[23] J. Cortadella et al., “Petrify: a tool for manipulating concurrent speci-
fications and synthesis of asynchronous controllers,” IEICE Trans. Inf.

and Syst., vol. E80-D, no. 3, pp. 315–325, Mar. 1997.

