
An E�cient Polynomial-Time Algorithm toDecide Liveness and Boundedness of Free-ChoiceNetsPeter Kemper and Falko BauseInformatik IVUniversit�at DortmundPostfach 500 5004600 Dortmund 50GermanyAbstract. In [3] J. Esparza presented an interesting characterization of struc-turally live and structurally bounded Free-Choice Nets (LBFC-Nets). Ex-ploiting this characterization in combination with new results and re�ned al-gorithms the authors formulate an O(jP jjT jjF j) algorithm deciding whethera Free-Choice Net is a LBFC-Net or not. Furthermore the algorithm containsa simple and e�cient test to ensure that the initial marking of a LBFC-Net islive. This test is based on a simpli�ed characterization of liveness for LBFC-Nets.1 IntroductionPetri Nets have been successfully used for modelling discrete concurrent systems.Petri Net theory o�ers a variety of analysis algorithms, which often have exponen-tial worst case time complexity as far as liveness and boundedness of a Petri Net isconcerned. Polynomial-time algorithms for examination of liveness and boundednessdo exist for certain subclasses obeying restrictions on the net's structure. The bor-der between polynomial-time and exponential-time algorithms seems to lead directlythrough the class of Free-Choice Nets (FC-Nets). In [6] it is proven that the livenessproblem for FC-Nets is Co-NP-complete while in [4] a polynomial-time algorithmdetermining liveness of bounded FC-Nets is exhibited. This algorithm is based ona linear algebraic characterization of deadlocks and traps given in [7] employinglinear programming techniques. Its worst case time complexity is O(jP jjT jjF j6).In this paper an algorithm deciding whether a Free-Choice-Net is structurally liveand structurally bounded in O(jP jjT jjF j) is described. It is based on a character-ization of LBFC-Nets given in [3] and employs an e�cient graph-orientated algo-rithm to recognize State-Machine-Decomposable Nets (SMD-Nets). State-Machine-Decomposability can be checked e�ciently due to the close relationship betweenS-components and minimal deadlocks in LBFC-Nets.This article is structured as follows: Sect. 2 contains basic de�nitions. An outlineof the complete algorithm and its theoretical background is presented in Sect. 3.Sections 4 - 7 contain algorithms for certain subproblems left open in the outlineof the algorithm. Section 4 summarizes an algorithm from [2] computing a mini-mal deadlock, which contains a certain place p of a strongly connected FC-Net. A



question left open in this algorithm is solved by the algorithm described in Sect. 5,which altogether leads to an e�cient algorithm to compute a minimal deadlock for acertain place p. Section 6 contains an algorithm which checks a minimal deadlock forgenerating an S-component. In Sect. 7 we exploit our simpli�ed characterization ofliveness for LBFC-Nets to describe a simple and e�cient algorithm testing livenessof an initial marking. Finally the algorithms of all subproblems are employed for theformulation of the complete algorithm. This section also contains the calculation ofthe algorithm's time complexity.2 Basic De�nitionsDe�nition1 Net.A net is a triple N = (P; T; F ) where1. P and T are non-empty, �nite sets and jP j = n, jT j = m,2. P \ T = ;,3. F � (P � T ) [ (T � P ).The next de�nition summarizes some well known notions for nets.De�nition2.Let N = (P; T; F ) be a net.1. Let x 2 P [ T . The preset �x and postset x� are given by�x := fy 2 P [ T j(y; x) 2 Fg, x� := fy 2 P [ T j(x; y) 2 FgThe preset (postset) of a set of nodes is the union of presets (postsets) of itselements.2. W denotes the characteristic function of F. The incidence matrix C of N is givenby cij :=W (tj ; pi)�W (pi; tj). Rank(C) denotes the rank of the incidence matrix.3. A path of a net N is a sequence (x1; : : : ; xn) of nodes xi 2 P [ T; i 2 f1; : : : ; ng,such that (xi; xi+1) 2 F for all i 2 f1; : : : ; n� 1g.4. N is a S-graph i� 8t 2 T : j � tj = jt � j = 1.5. N is a Free-Choice Net (FC-Net) i� 8p 2 P : jp � j > 1) �(p�) = fpg.6. A net N 0 = (P 0; T 0; F 0) is a subnet of N , (N 0 � N ), i� P 0 � P; T 0 � T andF 0 = F \ ((S0 � T 0) [ (T 0 � S0)).7. The subnet N 0 = (P 0; T 0; F 0) ofN generated by P 0 � P is given by T 0 = �P 0[P 0�and F 0 = F \ ((P 0 � T 0) [ (T 0 � P 0)).8. N 0 � N is an S-component of N i� N 0 is a strongly connected S-graph andT 0 = �S0 [ S0�.9. N is State Machine Decomposable (SMD) i� it is covered by S-components, i.e.every node belongs to an S-component of N.10. P 0 � P is a deadlock of N i� P 0 6= ; and �P � P�. A deadlock is minimali� it does not contain a deadlock as a proper subset. A deadlock P 0 is stronglyconnected i� N 0 = (P 0; �P 0; F 0) with F 0 = F\((P 0��P 0)[(�P 0�P 0)) is stronglyconnected.11. P 0 � P is a trap of N i� P 0 6= ; and P� � �P . A trap is minimal i� it does notcontain a trap as a proper subset.



De�nition3 Place/Transition Nets, Petri Nets and related de�nitions.A function M : P ! IN is called marking. A Place/Transition Net or Petri Net is atuple (N;M0) where N is a net and M0 is a marking named initial marking.1. P 0 � P is marked at M i� 9p 2 P 0 :M (p) > 0.2. t 2 T is enabled at M i� 8p 2 �t :M (p) > 0.3. A transition t enabled at M can �re and thereby create a new markingM 0 givenby M 0(p) := M (p) +W (p; t) �W (t; p) 8p 2 P . This is denoted by M [t > M 0and M 0 is called reachable from M .4. The reexive and transitive closure of reachable markings from markingM0 for(N;M0) is called reachability set and denoted by R(N;M0).5. (N;M0) is bounded i� 9k 2 IN : 8p 2 P;M 2 R(N;M0) : M (p) � k. (N;M0) issafe i� it is bounded with k = 1 .6. N is structurally bounded i� 8M0 2 [P ! IN] : 9k 2 IN : (N;M0) is bounded.7. (N;M0) is live i� 8t 2 T;M 2 R(N;M0) : 9M 0 2 R(N;M ) : t is enabled at M 0.8. N is structurally live i� 9M0 2 [P ! IN] : (N;M0) is live.Structurally live and structurally bounded FC-Nets are denoted by LBFC-Nets.3 Deciding Liveness and Boundedness of FC-NetsThis section presents an outline of a new algorithm to decide liveness and bound-edness of FC-Nets. In [6] it is shown that the liveness problem for FC-Nets is Co-NP-complete and in [4] a polynomial-time algorithm to decide liveness for boundedFC-Nets is presented. Our new algorithm does not decide liveness independentlyfrom boundedness. It checks whether the net satis�es both properties, liveness andboundedness, or not. The well known fact that all live and bounded Petri nets arestrongly connected can be exploited as a precondition.Theorem4 [9].Let (N;M0) be a Petri Net.(N;M0) is live and bounded )N is strongly connected.In the following we regard strongly connected nets. The new algorithm is based onthe following characterization:Theorem5 Characterization of LBFC-Nets [3].Let N = (P; T; F ) be a FC-Net with incidence matrix C and a = jF \ (P � T )j.N is structurally live and structurally bounded i� N is SMD and rank(C) = jP j+jT j � a� 1. (a is the number of arcs leading from a place to a transition.)Obviously LBFC-Nets are structurally live and SMD. In [5] it is proven that a liveand safe initial marking exists for a structurally live SMD-FC-Net. FC-Nets witha live and safe initial marking are denoted by LSFC-Nets. The following theoremstaken from [1] hold for LSFC-Nets as well as for LBFC-Nets.Theorem6 [1].Let N = (P; T; F ) be a LSFC-Net (LBFC-Net).D � P is a minimal deadlock )D generates an S-component.



Theorem7 [1].Let N = (P; T; F ) be a LSFC-Net (LBFC-Net).D � P is a minimal deadlock )D is a minimal trap.Let us consider Theorems 5 and 6 �rst. Checking the condition rank(C) = jP j+jT j� a� 1 in Theorem 5 is trivial due to well known algorithms with tolerable timecomplexity, cf. [10]. The crux of this characterization is to decide the SMD propertyof a FC-Net e�ciently. Naturally this problem can be solved by searching one S-component containing a place p for any p 2 P . Theorem 6 implies that searching fora minimal deadlock will result in an S-component for LBFC-Nets. J. Esparza gavein [2] an outline of an algorithm to �nd a minimal deadlock in a strongly connectedFC-Net containing a certain place. This algorithm is summarized in Sect. 4. If aminimal deadlock not generating an S-component is found, N is not structurallylive and structurally bounded. Obviously at most jP j minimal deadlocks have tobe found and checked for generating an S-component in order to decide the SMDproperty for N.If a net is a LBFC-Net it is still left open whether a given initial marking is alive marking. J. Esparza suggested to check this by solving a linear programmingproblem, cf. [3], Proposition 4.3. We suggest to check this property by exploiting asimpli�ed characterization of liveness for LBFC-Nets which follows from Theorem 7andTheorem8 [5].Let N = (P; T; F ) be a FC-Net with an initial marking M0.(N,M0) is live i� every minimal deadlock contains a marked trap.Theorems 7 and 8 allow the followingConclusion9 Simpli�ed characterization of liveness for LBFC-Nets.Let N = (P; T; F ) be a LBFC-Net. M0 is a live marking i� all minimal deadlocksare marked at M0.In order to check liveness for a given initial marking of a LBFC-Net we simply tryto �nd a deadlock which is a subset of the set of unmarked places.All these theorems give reason for the following outline of a new algorithm:Input (N;M0) and N is a FC-NetOutput Yes N is LBFC and M0 is a live initial markingNo otherwisestep1 Check the net for being strongly connected.If the net is not strongly connected Stop with No due to Theorem 4.step2 For all places p �nd an S-component which contains p by1. �nding a minimal deadlock D containing p.Such a minimal deadlock exists due to an algorithm in [2].2. checking D for generating an S-component.If D does not generate a subnet being an S-component Stop with No due toTheorem 6.After successful completion of step2 all places are covered by at least one S-component and the net is SMD.



step3 Check rank(C) = m + n � a� 1.If this condition is not satis�ed Stop with No due to Theorem 5. Otherwise thenet is LBFC-Net and the liveness of the initial marking has to be checked instep4.step4 Check existence of an unmarked deadlock.If an unmarked deadlock exists Stop with No due to Theorem 8. Otherwise thenet is marked live due to Conclusion 9.In the following sections we present e�cient algorithms for these steps apart fromsteps 1 and 3, because e�cient algorithms are well known for the computation ofthe strongly connected components of a directed graph and for the calculation of amatrix rank, see [8] and [10] for example.4 Calculation of Minimal Deadlocks in FC-NetsThis section summarizes an algorithmdescribed in [2] computing a minimaldeadlockin a strongly connected FC-Net containing a given place p. The following character-ization of minimal deadlocks in FC-Nets is exploited for this algorithm.Theorem10 [2].Let N = (P; T; F ) be a FC-Net and D � P a deadlock in N.D is minimal i� D is strongly connected and 8t 2 �D : j � t \Dj = 1.The central idea for searching a minimal deadlock is to �nd a handle for any placeof the minimal deadlock (starting with p) that has an input transition not being anoutput transition.De�nition11 Handle.Let N = (P; T; F ) be a net with two non-empty sets S; S0 � P [ T , S [ S0 = P [ Tand S \ S0 = ;. A path H = (x0; x1; : : : ; xn�1; xn) in N is a handle i� x0; xn 2 S,x1; : : : ; xn�1 2 S0, (xi; xi+1) 2 F; 8i 2 f0; : : : ; n � 1g and furthermore xi 6= xj ,8i; j 2 f1; : : : ; n� 1g; i 6= j.Given two such sets S; S0 a handle always exists for strongly connected nets. Thefollowing algorithm computes minimal deadlocks by searching handles for all placesbelonging to the minimal deadlock in demand. The set P̂ of places belonging to theminimal deadlock is initiated with fpg and successively all places of the computedhandles are inserted into P̂. The algorithm terminates if all places in P̂ have handlescovering all of their input transitions.Algorithm12. get-minimal-deadlock(P,T,F,p,TD), [2]Input:N = (P; T; F ) strongly connected FC-Net with p 2 P .Output:1. Minimal deadlock D � P containing p and2. Set TD which is �DInitiate:P̂ = fpg; T̂ = ;;



Function: get-handle(S,S',F,p,t), cf. Sect. 5This function computes a handle (x0; x1; : : : ; xn�2; t; p) with x0; p 2 Sand x1; : : : ; xn�2; t 2 S'. It returns the handle as a set fx0; x1; : : : ; xn�2; t; pg.Program:beginwhile (9p0 2 P̂ : 9t 2 �p0 : t 62 T̂ )beginH := get-handle((P̂ [ T̂ ); (P [ T ) � (P̂ [ T̂ ); F; p0; t);P̂ := P̂ [ (H \ P );T̂ := T̂ [ (H \ T );endD := P̂; TD := T̂ ;endThe correctness of this algorithm follows straight forward from the following fourproperties holding at every stage of the algorithm:1. N̂ = (P̂ ; T̂ ; F̂ ) with F̂ = F \ ((P̂ � T̂ ) [ (T̂ � P̂ )) is a subnet of N.2. N̂ is strongly connected in terms of F̂ .3. Every transition in T̂ has exactly one incoming F̂ -arc.4. After termination of the algorithm, if p̂ 2 P̂ then all incoming arcs of p̂ in F arealso in F̂ . Thus �p̂ � T̂ .These properties ensure that output D is a minimal deadlock due to Theorem 10.For details proving correctness see [2].The time complexity of Algorithm 12 is clearly dominated by the e�ort for func-tion get-handle. The computation of a minimal deadlock cannot cause more than jT jget-handle calls. In [2] it is left open, how to compute a handle and therefore no timecomplexity of Algorithm 12 is presented there. We show in Sect. 5, that the compu-tation of a single handle is possible in O(jP j+ jT j+ jF j). This results in a worst casetime complexity for the computation of a minimal deadlock inO(jT j(jP j+jT j+jF j)).5 Computing a Handle in O(jP j + jT j + jF j)In this section we suggest an algorithm that solves the open problem in Algorithm12. The precise problem is:De�nition13 Compute handle (x0; : : :xn�2; t; p).Let N = (P; T; F ) be a net and S; S0 two non-empty sets with the propertyS � P [ T and S0 = (P [ T ) � S. Let p 2 S and t 2 �p; t 2 S0. Compute ahandle H = (x0; : : : ; xn) satisfying x0 2 S; xn = p; xn�1 = t, xi 2 S0 and xi 6= xj,8i; j 2 f1; : : : ; n� 1g; i 6= j:



The handle, we are looking for, is a path of the net starting at an arbitrary node1 inS and ending at place p. All other nodes on this path are elements of S0 and appearexactly once. From an algorithmic point of view the search of a handle obviouslystarts at the �xed end and follows possible paths backwards (!) in the net. Thenew algorithm suggested here follows Depth-First-Search (DFS) to visit all nodesreachable from a start node. Within this search a path is followed in depth as faras possible. Each visited node gets an individual DFS-number num. This numberexhibits the node's type. Assume a node v is reached by the DFS-algorithm, thenumbers assigned to v are explained in the following:1. num(v) = -1v belongs to S and is a node the handle can start from, thus search of a handleterminates at v. For all nodes in S the number -1 is assigned as an initial valueand is never changed.2. num(v) = 0v belongs to S0 and has not been visited so far. This node is a candidate for anode of the handle we are looking for and search will continue with this node.Zero is the initial value for all nodes in S0 and num(v) is set to a value greaterthan zero as soon as a node is reached by DFS-search.3. num(v) > 0v belongs to S0 and has been visited before. num(v) represents two di�erentsituations leading to the same consequence:(a) v was completely checked before and no handle was found. Thus it is notnecessary to check v again.(b) v has been checked and is reached again. Because a handle does contain anode of S' exactly once, this node cannot be part of a handle.Altogether this node is not checked furthermore and search has to continue withthe predecessor node of v w.r.t. DFS.Application of these assignments to all nodes leads to the following algorithm search-ing a handle backwards in the net.Algorithm14. get-handle(S; S0 ; F; p; t)Input:N = (P; T; F ) is a strongly connected FC-Net, with S; S0 � P [ TS [ S0 = P [ T , S \ S0 = ;, p 2 S, t 2 S0 and t 2 �p, cf. De�nition 13Output:Handle H = (x0; : : : ; xn�2; t; p) orMessage "No handle exists"Initiate:i := 1 ;Stack := empty-stack ;num(x) := 0, 8x 2 S0 ;num(x) := -1, 8x 2 S ;1 The node x0 must be a place in order to �nd a deadlock being an S-component.



Function: dfs(v)beginnum(v) := i ; i := i + 1 ; push(Stack,v) ;forall ( w 2 �v )beginif (num(w) = -1 ) f start node of the handle gthen push(Stack,w) ; return Yes ;endforall ( w 2 �v )beginif (num(w) = 0 ) f a new node is reached gthen if (dfs(w) = Yes )then return Yes ;endpop(Stack,v) ;return No ;endProgram:beginpush(Stack,p) ;if (dfs(t) = No )then Stop with Message "No handle exists" ;else Stop with Output Stack ;endRemarks:The stack is used to store nodes which might belong to a handle. First p is pushedon the stack and not popped until termination, because p is surely member of ahandle, if a handle exists at all. A node v is pushed on the stack if dfs(v) is calledinitiating a depth-�rst-search from v. If this search is successful, v is not poppedat the end of dfs(v), because dfs(v) returns with Yes. If no handle is found on thesearch starting at v, v is not element of a handle, which might be found lateron andis therefore popped at the end of dfs(v) returning No.Theorem15. Algorithm 14 terminates and is correct.Proof Termination. The forall loops terminate due to the �niteness of all sets. Therecursion in dfs terminates because of two e�ects:1. A call of function dfs with parameter x can only occur if num(x) = 0.2. Within dfs(x) num(x) is set to a value greater than 0 and is not changed anywhereelse in the algorithm.Thus dfs(x) can only be called once for any x 2 P [ T . ut



Proof Correctness. Because of termination dfs(t) returns either Yes or No.The algorithm is correct i�1. dfs(t) = No =) no handle exists.2. dfs(t) = Yes =) the stack contains a handle.at 1)Assumption: dfs(t) = No and handle (x0; x1; : : : ; xn�2; t; p) exists.dfs(t) = No )all dfs calls have returned with No)num(x1) = 0)8v 2 x1� : num(v) = 0)num(x2) = 0)This argumentation can be continued successively yielding num(xn�2) = 0)num(t) = 0, which is a contradiction due to the explicit call for dfs(t)setting num(t) = 1.at 2)If dfs(t) terminates with Yes, the stack contains a handle (x0; x1; : : : ; xn�2; t; p),because1. x0; p 2 S and x1; : : : ; xn�2; t 2 S0 by construction2. no node of S0 occurs twice on the stack,because any v 2 S0 on the stack must have been pushed in dfs(v) and dfs is onlycalled once with parameter v (cf. proof of termination).3. (w; v) 2 F , because dfs(w) occurs only if w 2 �v. utExample 1. The sequence of Figs. 1 - 5 show a LBFC-Net and a possible computationof a handle for place a. S = fag and S0 = P � fag. Letters are identifying di�erentnodes and numbers attached to the nodes represent their actual value of num. Figure1 displays the situation starting with dfs(b). Following the incoming arcs with depth-�rst-search, node b is reached again in Fig. 2. num(b) = 1 causes a successive returnto node f. From node f an incoming arc to node l is checked which leads to a revisit ofnode j. This situation is presented in Fig. 3. Returning to node c searching throughm leads to k again causing a return to node b, which is shown in Fig. 4 beforereturning to node b. Finally a successful search is started from b through n and oreaching node a, cf. Fig. 5. The output stack contains nodes a,b,n,o and a on top.This example demonstrates the worst case for searching a handle, which can causea depth-�rst-search starting from any node at most once.The e�ciency of Algorithm 14 is based on the fact that nodes are not checkedseveral times. Obviously the e�ort of this algorithm depends on the number of callsof function dfs. For any v 2 S0 dfs is called only once and any arc leading to v ischecked at most twice. The net has (jP j+ jT j) nodes and jF j arcs, thus obviouslythe worst case time complexity is O(jP j+ jT j+ jF j).6 Checking a Minimal Deadlock for Generating anS-componentThis section describes an e�cient test for a minimal deadlock generating an S-component or not.
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A deadlock D in a net N generates a subnet N̂ = (P̂ ; T̂ ; F̂) withP̂ = DT̂ = �D [D�F̂ = F \ ((�D �D) [ (D �D�))For being an S-component, N̂ must satisfy the following conditions1. N̂ is strongly connected.2. 8t 2 T̂ : j � t \Dj = jt � \Dj = 1 ( �-operation w.r.t. N )Minimal deadlocks satisfy these properties partly. Theorem 10 ensures that anyminimal deadlock is strongly connected and ful�lls 8t 2 �D : j � t \ Dj = 1. Theconditions still in question are summarized by the followingConclusion16.Let N = (P; T; F ) be a FC-Net with a minimal deadlock D � P .D generates an S-component i� �D = D� and 8t 2 �D : jt � \Dj = 1( �-operation w.r.t. N ).One way to check these conditions is to count the arcs (t; s) 2 F of any transitiont 2 T̂ leading to an s 2 D. In the following algorithm the vector num is used for thispurpose.Algorithm17. check-s-component(T,F,D,TD)Input:T,F of a FC-Net N=(P,T,F)D � P is a minimal deadlock of NTD = �D � TOutput:Yes ,D generates an S-component.No , D does not generate an S-component.Initiate:num(x) := 0, 8x 2 T � TD ;num(x) := 1, 8x 2 TD ;Program:beginforall(s 2 D)beginforall(t 2 T)beginif ((t,s) 2 F)then num(t) := num(t) - 1 ;if (num(t) < 0)then return No ;if ((s,t) 2 F ^ t 2 T � TD)then return No ;end



endreturn Yes ;endTermination is ensured by the �niteness of sets D and T.Theorem18.1. Algorithm 17 terminates with No )D does not generate an S-component.2. Algorithm 17 terminates with Yes )D generates an S-component.In the following proofs �D is used instead of TD to improve readability.Proof 1. part. Two cases can cause a termination with No :1. 9t 2 T : num(t)<02. 9(s; t) 2 F : s 2 D ^ t 2 T � �Dat 1) a) If t 2 �D)num(t) = 1 by initiation)num(t) is decremented at least twice to get num(t)<0)9s; s0 2 D; s 6= s0 : (t; s) 2 F ^ (t; s0) 2 F)jt � \Dj > 1)D does not generate an S-component due to Conclusion 16at 1) b) If t 2 T � �D)num(t) = 0 by initiation)9s 2 D : (t; s) 2 F , because of termination due to num(t) < 0)t 2 �D, contradicting assumption t 2 T � �D.Thus, if Algorithm 17 terminates with No due to the existence of a transition t withnum(t)<0, this transition t =2 T � �D.at 2) t 2 D� and t =2 �D)�D 6= D�)D does not generate an S-component due to Conclusion 16. utProof 2. part. Assumption: Algorithm 17 terminates with Yes and D does not gen-erate an S-component.Because of Conclusion 16 only two reasons might prevent D from generating an S-component:1. �D 6= D�2. 9t 2 �D : jt � \Dj 6= 1.at 1) D is a minimal deadlock.)9t 2 D� : t 62 �DInitial value of num(t) = 0num(t) is never decremented because of 8s 2 D : (t; s) =2 F ,but 9(s; t) 2 F ^ t 2 T � �D ensuring return of No contradicting the assumption.at 2) Thus initial value of num(t) = 1 and 9s; s0 2 D; s 6= s0 : (t; s); (t; s0) 2 F)num(t) is decremented twice which causes return of No contradicting the assump-tion.The case jt�\Dj < 1 is not possible for minimal deadlocks, because they are stronglyconnected. ut



The worst case time complexity is obviouslyO(jDjjT j) caused by the nested forallloops.7 How to Ensure Liveness for LBFC-Nets at the InitialMarkingThis section presents an algorithm to decide whether a structurally live and struc-turally bounded FC-Net is marked live by an initial marking M0. Theorem 8 for-mulates a necessary and su�cient condition for liveness in FC-Nets2. Conclusion 9shows that it is su�cient and necessary for LBFC-Nets to check all minimal dead-locks for being marked in order to ful�ll the deadlock/trap-property of Theorem8. This conclusion can be exploited for an e�cient algorithm. The main idea isto take the set of places U, that are unmarked at M0, and delete successively thoseplaces preventing U from satisfying the deadlock property �U � U�. If �nally U = ;,M0 is a live marking. Otherwise Theorem 8 is not satis�ed by (N;M0) and the netis not live. A formulation in pseudocode is:Algorithm19. check-initial-marking(N,M0)Input:N = (P; T; F ) is LBFC-Net with initial marking M0Output:Yes ,M0 is a live marking.No , M0 is not a live marking.Initiate:U := fpjp 2 P ^M0(p) = 0g ;T' := �U ;done := False ;Program:beginwhile ( U 6= ; and not done )beginif ( 9t 2T' : U \t� 6= ;^ U \ � t = ; )then U := U �t� ; T' = T' - ftg ;else done := True ;endif (U = ;)then Stop with Yeselse Stop with NoendU is the set of unmarked places, which are reduced to a set being a deadlock.T' is the set of transitions, which have output places in U. The termination is2 Note that we only regard strongly connected nets due to Theorem 4.



ensured by the �niteness of U and the fact that in each iteration of the while-loopat least one element is eliminated from U. The correctness follows directly fromConclusion 9. Time complexity is clearly dominated by e�orts concerning the whileloop. Initiating U and T costs at most O(jP jjT j). There are at most jT j iterationswithin the while-loop, because once a transition's output places are not in U thisproperty will hold until termination. Because at least one place is eliminated from Uper iteration, altogether at mostmin(jT j; jP j) iterations are possible. Finding t 2 T 0with U \ t� 6= ; ^ U \ �t = ; costs O(jP j) comparisons to match U with t� and �tper(!) t 2 T'. The size of T' decreases on any iteration and has jT j as its maximalcardinality leading to a maximum e�ort of O(jP jjT j) per iteration. Thusly a roughestimation for the algorithm's worst case time complexity is O(jP j2jT j). 38 Algorithm to Decide Liveness and Boundedness forFC-NetsNow we exploit the algorithms of Sects. 4 - 7 to formulate the complete algorithmfor deciding liveness and boundedness of FC-Nets.Algorithm20.Input:N = (P; T; F ) is a FC-Net with incidence matrix C and initial marking M0Output is one of the following messages:1: "N is not strongly connected"2: "N contains a minimal deadlock not generating an S-component"3: "N is SMD but not structurally live"4: "N is a LBFC-Net but not live at M0"5: "N is a LBFC-Net and M0 is a live marking"Initiate:Uncovered := P ;a := jF \ (P � T )j ;TD := ;;Function: check-str-connected(N), see [8]This function checks, if a directed graph is strongly connected.Function: get-minimal-deadlock(P,T,F,p,TD), cf. Sect. 4This function �nds a minimal deadlock containing place p.Function: check-s-component(T,F,D,TD), cf. Sect. 6This function checks deadlock D being an S-component.Function: rank(C), see [10]This function computes the rank of matrix C.3 or to be more precise: O(min(jT j; jP j)jP jjT j)



Program:beginif ( check-str-connected(N) = No )then Stop with "N is not strongly connected" ;while (Uncovered 6= ;)beginchoose p 2 Uncovered ;TD := ; ;D := get-minimal-deadlock(P,T,F,p,TD) ;fTD is set in get-minimal-deadlockgif ( check-s-component(T,F,D,TD) = No )then Stop with"N contains a minimal deadlock not generating an S-component" ;else Uncovered := Uncovered - D ;endif ( rank(C) 6= jP j+ jT j � a� 1)then Stop with "N is SMD but not structurally live" ;if ( check-initial-marking(N,M0) = No )then Stop with "N is a LBFC-Net but not live at M0" ;else Stop with "N is a LBFC-Net and M0 is a live marking" ;endThe set Uncovered is used to store places not covered by S-components calculated sofar. TD holds the preset of deadlock D. This set is computed in get-minimal-deadlockand exploited in check-s-component.Termination of Algorithm 20 is ensured by the �niteness of P being the initialset for Uncovered and by the fact, that in each iteration of the while-loop at leastthe chosen place p is deleted from Uncovered or the algorithm stops with output 2respectively. The correctness of Algorithm 20 follows directly the argumentation ofthe algorithm's outline in Sect. 3.For determining worst case time complexity of Algorithm 20, worst case timecomplexities of all functions are listed below:check-str-connected O(jP j+ jT j+ jF j)get-minimal-deadlockO(jT j(jP j+ jT j+ jF j))check-s-component O(jP jjT j)rank O(jP j2jT j)check-initial-marking O(jP j2jT j)Functions check-str-connected, rank and check-initial-marking are called at mostonce. The number of calls of get-minimal-deadlock and check-s-component is deter-mined by the number of iterations within the while-loop. This number is at mostjP j, because at least one place is eliminated from Uncovered per iteration. Thuslyworst case time complexity for Algorithm 20 is given byO([jP j+ jT j+ jF j] + jP j[jT j(jP j+ jT j+ jF j) + jP jjT j] + 2jP j2jT j) =O(jP j jT j (jP j+ jT j+ jF j)).



9 ConclusionsWe have described a polynomial-time algorithm deciding if a FC-Net is structurallylive and structurally bounded and has a live initial marking. This algorithm has aworst case time complexity of O(jP jjT j(jP j+ jT j + jF j)), which can be estimatedas O(n4) with n = max(jP j; jT j). The algorithm combines and re�nes ideas andtheorems of J.Esparza in a new way and adds a new idea to prove in an e�cientway, if an initial marking is live given a structurally live and structurally boundedFC-Net. A polynomial-time algorithm of comparable functionality is described in[4]. It is based on the linear algebraic characterization of deadlocks and traps in[7] and exploits linear programming techniques. Its worst case time complexity isestimated as O(jP jjT jjF j6). In order to show a direct comparison our algorithm'stime complexity can be estimated by O(jPjjTjjFj), because for strongly connectednets jP j+ jT j � jF j holds. Therefore we regard our algorithm, exploiting a graphorientated approach, as a major improvement of FC-Net analysis.References1. Best,E.: Some Classes of Live and Safe Petri Nets, in K.Voss, H.J.Genrich, G.Rozenberg:"Concurrency and Nets, Advances of Petri Nets", Springer, Berlin 1987.2. Esparza,J.; Best,E.; Silva,M.: Minimal Deadlocks in Free Choice Nets, Hildesheimer In-formatikberichte 1/89, Institut f�ur Informatik, Universit�at Hildesheim.3. Esparza,J.: Synthesis Rules for Petri Nets, and How They Lead to New Results,Hildesheimer Informatikberichte 5/90, Institut f�ur Informatik, Universit�at Hildesheim.4. Esparza,J.;Silva,M.: A Polynomial-Time Algorithm to Decide Liveness of Bounded FreeChoice Nets, Hildesheimer Informatikberichte 12/90, Institut f�ur Informatik, Universit�atHildesheim.5. Hack,M.H.T.:Analysis of Production Schemata by Petri Nets, TR-94, MIT, Boston 1972corrected june 19746. Jones,N.;Landweber,L.;Lien,Y.: Complexity of some Problems in Petri Nets, TheoreticalComputer Science, Vol 4, pp. 277-299, 1977.7. Lautenbach,K.: Linear Algebraic Calculation of Deadlocks and Traps in K.Voss,H.J.Genrich, G.Rozenberg: "Concurrency and Nets, Advances in Petri Nets", Springer,Berlin 1987.8. Mehlhorn,K.: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness, EATCS Monographs on Theoretical Computer Science, Springer, BerlinHeidelberg 1984.9. Starke,P.: Analysetechniken von Petri-Netz-Modellen, Teubner, Stuttgart 1990 (in Ger-man).10. Stewart,G.W.: Introduction to Matrix Computations, Academic Press, New York, 1973.This article was processed using the LaTEX macro package with LLNCS style


