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Abstract 

New design technologies rely on truly reusable IP 
blocks with simple means of assembly.  Asynchronous 
methodologies could be a promising option to 
implement these requirements. Promotion of 
asynchronous design strongly depends upon the 
“level of service” delivered to the designer. Current 
asynchronous design tools require a significant re-
education of designers and their capabilities are far 
behind synchronous commercial tools.  One solution 
to these problems, which we advance in this paper, is 
to stick to a conventional design flow as closely as 
possible and to use commercial design tools as much 
as possible. The paper considers a particular 
subclass of asynchronous circuits (Null Convention 
Logic or NCL) and suggests a design flow which is 
completely based on commercial CAD tools.  It 
argues about the trade-off between the simplicity of 
design flow and the quality of obtained 
implementations.   

 
1. Introduction 
 
There are two common beliefs about asynchronous 

design: 1) asynchronous circuits are much more 
difficult to design than synchronous ones and 2) 
existing CAD tools for synchronous circuits are of no 
help for asynchronous design [1,2]. 

The main aim of this paper is to argue against these 
statements.  The paper considers a particular subclass 
of asynchronous circuits  (Null Convention Logic 
(NCL) [17,18]) and suggests a design flow that is 
completely based on commercial CAD tools.  

The trend towards Systems-On-Chip (SOC) 
technology is now widely promoted in electronic 
industry.  The prime goal of SOC technology is to 
create truly reusable IP blocks that can be quickly 
built and are guaranteed to work the first time [3]. 
Together with these high quality IP pieces an overall 
design methodology should provide a simple means 
for IP assembly, based on plug ‘n’ play principles.  
Being clock free, asynchronous circuits constitute an 
attractive SOC approach.  From the system 

architecture point of view it is much easier to build 
using asynchronous rather than synchronous blocks. 
Having asynchronous IPs would be an important step 
in developing SOC technology. 

Whether the electronic industry would adopt an 
asynchronous methodology depends on investments 
(to transfer to a new design flow) and the maturity of 
CAD support. Though recently a lot of progress has 
been achieved in the development of asynchronous 
CAD tools [4,5,15,6], the current tools suffer from two 
shortcomings: 1) they require a significant re-
education of designers (investment problem) and 2) 
their capabilities are far behind commercial tools from 
the synchronous domain (CAD support problem).  
One solution to these problems, which we advance in 
this paper, is to stick to a conventional design flow as 
closely as possible and to use commercial design tools 
as much as possible.  

If successful this methodology will be able to provide 
the following benefits: 

• Reduced time to market (HDL automated design, 
design reuse), 

•  Plug ‘n’ play without clock system coordination, 
•  Low power and low EMI – “by construction”[7, 

8], 
•  Delay-insensitivity (DI) as a way to handle wire 

delays in deep submicron (DSM) technology. 
This paper focuses on performing logic synthesis 

with the help of conventional CAD tools. Logic 
synthesis algorithms by themselves are not 
specifically targeted to synchronous design.   
Clocking is a common and simple way to abstract 
from timing issues in the behavior of real circuits. 
Generally speaking, clocking allows a designer to 
ignore timing issues when considering system 
functions and describe both the functions performed 
and the circuits themselves in terms of Boolean 
algebra (according to Shannon’s concept) [9, 10]. As 
a result clocking pulses and gates’ switching in a 
circuit are causally unrelated and synchronization is 
done by matching their delays. This leads several 
well-known difficulties in construction of clocks for 
big systems [2,11].  



By contrast, asynchronous systems coordinate their 
behaviors in a purely causal way. As a result logic 
synthesis for asynchronous circuits takes care not 
only of functionality but also of the proper ordering 
of the gates’ switching. This makes logic synthesis 
for conventional asynchronous circuits much more 
complicated than for synchronous circuits 
[12,13,15,19,23], which results in a strong dislike of 
the synchronous community towards asynchronous 
methodology.  Incorporating asynchronous design 
into synchronous design flow requires abstracting 
from timing issues in a way that will not divert logic 
design methods from the synchronous world yet 
allow us “to live” without clocks. 

Our paper attempts to show that this flow could be 
implemented by using NCL as a basis for 
asynchronous implementation.  The main questions 
that the paper answers are: 
• Is it possible to use RTL synthesis tools for NCL 

asynchronous design and generate correct 
designs? 

• What are the results of design using the NCL 
tools? 

The paper is organized as follows.  Section 2 
introduces the main theoretical concepts.  Section 3 
places this paper in context among existing works.  
Section 4 contains an overview of HDL-design flow, 
which is illustrated by a “toy” design in Section 5.  
The validity of the suggested approach is proven in 
Section 6.  Experimental results are presented in 
Section 7.  

 
2. Theoretical background 
2.1.  Boolean networks 

 
Boolean networks provide a formal representation 

of combinational circuits for logic synthesis.  A 
Boolean network is a directed acyclic graph.  A gate 
in some combinational circuit is represented by node 
i in the graph, with name ai and a completely 
specified logic function fi [14]. A directed arc from 
node i to node j means that variable ai is explicitly 
used in the representation of fj, i.e. ai is in a support 
of fj.  Direct predecessors of a node ai are called ai’s 
fan-in, while direct successors of ai are called ai’s 
fan-out.  Some of the nodes in the graph are 
designated as outputs (inputs) of the network, called 
“primary outputs” (“primary inputs”).  

Combinations of primary inputs that never occur 
during operation of a Boolean network contribute to 
the so-called external don’t care set of a network. 
Two networks with the same set of primary inputs 
and primary outputs are called equivalent if for all 
values of corresponding primary inputs not in the 
external don’t care sets, the corresponding primary 

outputs are equal [14].  A Boolean network N is 
prime and irredundant if removing a single literal 
or cube from any function fi  of its node produces a 
network N’ which is non-equivalent to N.  

 

2.2. Delay-insensitive combinational circuits  
 

A gate ai of a combinational circuit can be in two 
states: stable – when the value on its output 
corresponds to the value of Boolean function fi 
computed by the gate’s fan-in, and enabled – 
otherwise.  An enabled gate can either switch (fire) 
after the elapsed  gate delay or can return to a stable 
state because of its fan-in changes.  The last case of 
resolving the enabling is undesirable in asynchronous 
circuits because it might produce glitches on gate 
outputs, known in the literature as hazards [10]. A 
circuit in which hazards never occur under any 
distribution of delays in wires and gates is called 
delay-insensitive. An acknowledgement notion plays 
the key role in ensuring delay-insensitivity. 

Informally, we say that the firing of gate ai 

acknowledges the firing of gate aj if the fact that ai 
switches after aj has been enabled indicates that aj 
has already switched as well.  In a delay-insensitive 
circuit all the gates in the fan-out of ai must 
acknowledge every firing of gate ai. This guarantees 
that independently of the skew of wire delays after ai 
output (after fork), the information about ai  firing is 
properly delivered to destination nodes in a network.  

Sometimes the requirement of delay-insensitivity 
(DI) with respect to every wire fork in a circuit is 
overly restrictive for a designer. Some forks could be 
considered safe because the skew of their wire delays 
is guaranteed to be less than the minimum gate delay.  
These forks are called isochronic [15]. For 
isochronic forks it is sufficient to get an 
acknowledgement from at least one of the gates on 
the fork fan-out. 

 

2.3. Null Convention Logic  
 

Regular ways of DI circuits implementations are 
often rely on application of DI codes [16]. These 
have the attractive property that a receiver is able to 
determine that a codeword has arrived by a codeword 
itself, without appealing to timing assumptions.  

Null Convention Logic [17,18] is a specific way of 
implementing data communication based on delay-
insensitive encoding. It assumes a two-phase 
discipline in which data communication alternates 
between a set and reset phases [19]. Data changes 
from spacer (called NULL) to proper codeword 
(DATA) in the set phase and then back to NULL in 
the reset phase. 



In NCL this behavior is pushed down to the level 
of each particular gate of a circuit.  If the current state 
of a gate is NULL, then the gate keeps its output in 
NULL until NULL is present in at least one of its 
fan-ins.   Then, when all gate fan-ins receive a 
codeword (DATA), the output of the gate changes to 
DATA.  A gate has a symmetric behavior in the reset 
phase – it keeps output in DATA until all the fan-ins 
receive NULL; after that the output also changes to 
NULL.  Such gates are called strongly indicating 
[26] because the firing of gate’s output acknowledges 
firing of every fan-in. 

This behavior is naturally expressed in a multi-
value logic. Let a signal in a Boolean network takes 
three logic values: T and F for data items 1 and 0 
respectively and N for NULL value. Then the 
behavior of basic gates in NCL logic is described like 
in Figure 1(a) (gates are assumed to be initially in a 
state NULL).  

 
 

Figure 1.  Symbolic tables for basic NCL gates  

From the above explanation it follows that NCL 
gates have sequential behavior because they switch 
differently depending on the current value on the 
output. The description of behavior of basic NCL 
gates is accomplished by symbolic tables for initial 
state DATA  (see Figure 1(b), where H stands for 
holding the previous DATA state of the gate (T or F) 
while one of the inputs changes to NULL). 

The representation of NCL gates in a three-level 
logic is called 3NCL [17].  3NCL logic is a 
convenient mathematical abstraction but it has no 
efficient physical implementation due to the binary 
nature of signals used in design practice. 

For physical implementation each signal a in 
3NCL is represented by two wires a.t and a.f in a 
circuit under the following encoding of 3NCL 
symbolic values:  

0.,0.

;1.,0.

;0.,1.

==⇔=
==⇔=

==⇔=

fataNa

fataFa

fataTa
 

The combination of values a.t=a.f=1 is not used. 
This encoding is known as a dual-rail encoding [20] 
and it gives one of the simplest DI codes.  

Implementation of 3NCL logic through a dual-rail 
encoding (called 2NCL [17]) gives a physical 

representation of NCL logic.  The sequential 
behavior of gates in 2NCL is ensured by a feedback 
from gates’ outputs to their fan-ins, which allows us 
to represent gate’s behavior by a logic equation  g=S 
+gRˆ, where S and R are the set and reset 
(respectively) functions of a gate. A general view on 
semi-static CMOS implementation of a gate in 2NCL 
is shown in Figure 2(a). 

 

Figure 2. Implementation of NCL gate in 
CMOS 

A refined picture of the gates’ structure could be 
obtained through consideration of specific properties 
of dual-rail circuits under two-phase (set and reset) 
operation.  These properties are: 

1) in a dual-rail circuit a transition from NULL 
to DATA is monotonic 

2) the transition of primary inputs of a 
combinational circuit from DATA to NULL will 
set all gates in a circuit into the NULL state 

From (1) it follows that a set function S of a gate 
must be positively unate [14], i.e. every variable is 
met in function S without inversion.  In fact set 
conditions for NCL gates are convenient to specify 
by a particular subclass of unate functions – 
threshold functions [21].  

A threshold function S is the one that can be 
defined by a system of inequalities: S(x1,…,xn) = 1 iff 
w1x1 + w2x2 + … + wnxn  ≥  m, where wi are the 
weights, m is the threshold value and “+” is an 
arithmetic sum. When all weights are 1 a threshold 
function can be characterized by two numbers n – 
number of variables, and m – the threshold value. 
This representation is called an m-of-n threshold 
function.  Any positive unate function could be 
presented as disjunctive or cascaded superposition of 
m-of-n threshold functions [22]. 

The ability to reset an NCL gate can be easily 
concluded from (2). An NCL gate changes its output 
to NULL when all its inputs are NULL.  Since 
DATA values are encoded by “01” or “10” we arrive 
at  Rˆ(x1,…,xn) = x1 ∨ x2 ∨ …∨ xn   

A refined view on implementation of 2NCL gate is 
shown in Figure 2(b). Clearly every 2NCL n-input 
gate has the same reset function that does not depend 
upon the particular type of a threshold function the 
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gate implements. This property is crucially important 
for optimization because the reset behavior of NCL 
network does not depend upon the transformations 
which are performed on it. In the rest of the paper we 
refer to this implementation as threshold gate with 
hysteresis. 

 
3. Comparison to prior Work 

 
This Section gives a short summary on the place of 

the suggested approach among 1) other methods of 
synthesis of delay-insensitive circuits and 2) attempts 
of using conventional HDL languages (VHDL) for 
design of asynchronous circuits. 

 

3.1. Place of NCL among DI design styles. 
 
The idea of using two-phase discipline in data 

communication is known for long time. In  [23] 
Chuck Seitz suggested the so-called “weak 
conditions” which formalized the correctness of a 
system operation under the two-phase discipline.  
Implementation of two-phase operation by dual-rail 
circuits is used elsewhere [15,23,19,24] to name but a 
few.  

A regular method for implementation of an 
arbitrary Boolean network under a two-phase 
discipline and dual-rail encoding gives Delay 
Insensitive Minterm Synthesis (DIMS) [25].  This 
technique is similar to NCL though it uses a very 
limited set of threshold gates – C-elements and OR-
gates.  Thus, there is room for optimization and 
DIMS implementations are significantly larger than 
similar designs in NCL.  A straightforward 
generalization of DIMS method that merges two-
stage DIMS blocks (C-elements + OR-gates) into a 
single CMOS gate [26] has better area parameters but 
still under-exploits optimization possibilities because 
of the limited basis.  

An efficient procedure of DI synthesis starting 
from high-level behavior specification (CHP) was 
suggested by Alain Martin in [15].  A CHP 
description in terms of system events is automatically 
translated into production rules that describe the set 
and reset functions for each event. A pair of 
production rules for an event (set and reset) is 
implemented as a single CMOS gate.  These gates are 
more general than the threshold gates with hysteresis 
used in NCL because they have no restrictions on the 
structure of PMOS network inside the gates.  This 
flexibility results in more possibilities for 
optimization and thus smaller circuits.  The DI 
properties of implementation are guaranteed by using 
involved and specific synthesis methods with an 
intensive peephole optimization.  Thus its synthesis 

approach cannot use synchronous design methods or 
tools. 

An interesting attempt to incorporate asynchronous 
design into a synchronous design flow was done in 
phased logic [27].  [27] suggests an effective way of 
mapping the topology of synchronous circuit into a 
network of phased logic gates.  Phased logic gates 
use Level-Encoded two-phase Dual-Rail [28] signals 
and replace clock signals by phasing activity that 
ferries data values from gate to gate.  However, 
phased logic requires logic synthesis to handle event 
ordering. To coordinate the order of gate firing, 
additional signals and gates must be inserted in a 
circuit to ensure the “safeness” and “liveness” 
properties of the circuit.  This non-trivial procedure 
does not fit the synchronous design flow. 

 

3.2. Use of conventional HDLs in 
asynchronous design 

 
The use of conventional HDLs (VHDL/Verilog) as 

front-end specifications for asynchronous circuits 
gives two immediate advantages: 1) designers outside 
the asynchronous community could understand and 
write these specifications with less effort 2) 
commercial HDL simulators can be used.  

Most of the previous works on using conventional 
HDLs for asynchronous design targeted these two 
advantages [29,30,31].  In these papers, 
VHDL/Verilog is the highest level of specification, 
and the major part of the methodology relies on 
specific design procedures and exotic (for 
synchronous designers) models. 

One way of using synthesis facilities from HDLs 
separates a system into control and datapath [32].  
For gluing together the control and datapath, the 
synthesizable subset of HDL is extended by the 
notion of channels to implement handshake 
mechanisms.  After adding channels to an HDL 
description a datapath could be synthesized by 
conventional RTL-synthesis tools in a micropipeline 
fashion. For implementation of control  [32] uses 
asynchronous synthesis tools (petrify [5] e.g.).  

Separate implementation of control and datapath 
requires a careful timing analysis.  This is a 
significant complication.  In the NCL design flow a 
control part is implemented according FSM-based 
approach of commercial RTL-synthesis tools   (where 
asynchronous registers are instantiated instead of 
synchronous registers).  

 
4. NCL-shell: Overview of HDL-design 
flow. 
  Targeting the usage of conventional CAD tools 
RTL descriptions of asynchronous designs should 
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closely match common synchronous description 
styles. We are using synthesizable VHDL both for 
simulation and for synthesis, unlike other approaches 
which restrict or modify the HDL. 

 

 4.1. EDA flow 
 
The NCL design flow uses off-the-shelf simulation 

and synthesis components (See Figure 3).   

 

Figure 3. RTL flow for NCL 

 
The flow executes two synthesis steps: 

 
1. Translate HDL into 3NCL netlist 
 

The first stage starts with RTL code written with 
3NCL, a single-rail multi-valued representation of 
NCL.  For simulation, the NULL value enables the 
proper set/reset behavior and is displayed as a third 
state by Model Technology’s ModelSim VHDL 
simulator [33].  For RTL synthesis, Design Compiler 
[35] treats ‘N’ as a don’t care value [34].  This 
enables the tool to use Boolean synthesis, because  it 
treats 3NCL variables as a single wire.  The synthesis 
tool performs HDL optimizations and outputs an 
unmapped VHDL dataflow description expressed by 
AND and INV assignments.  This dataflow 
description is referred to as a 3NCL netlist. 

 

 
2. Optimize 3NCL into 2NCL netlist 
 

The second stage expands the intermediate 3NCL 
netlist into a fully dual-rail 2NCL by overloading all 
AND and INV assignments as DIMS-type dual-rail 
assignments.  This expansion is described in a VHDL 
package.  Stage 2 also performs regular ASIC-type 
optimization (multilevel minimization of Boolean 
network [14]), targeting an NCL library. 

This flow has been successfully implemented with 
Design Compiler from Synopsys [35], with Leonardo 
from Exemplar Logic[36], and with Ambit Envisia 
[37] from Cadence.  A detailed explanation of the 
above design flow is presented in Section 5 via a 
small synthesis example. 

 

4.2. NCL coding style 
 
NCL is coded at the register-transfer level (RTL).  

Unlike the behavioral level, where the synthesis tool 
determines the placement of registers, the designer 
must specify the placement of registers in RTL code.  
This is done either by inference (i.e., writing code 
following specific rules that the synthesis tool 
interprets as a register) or by instantiation (i.e., 
declaring a register and its connections explicitly).  
Most clocked designs infer registers.  We currently 
must instantiate the registers and specify the register's 
request and acknowledge signals. 

To synthesize and simulate an NCL circuit at the 
RTL using commercial tools, the tools must handle 
the NULL value and hysteresis behavior of threshold 
gates.  This is accomplished by following these rules: 

• Separate combinational logic and registers.  
By registers, we mean gates that have request 
and acknowledge signals.  Like clocked logic, 
the combinational logic is written as concurrent 
signal assignments or in processes.   

• Instantiate NCL registers and provide a 
simulation-only model with hysteresis behavior.  
The simulation model is ignored during synthesis 

• Use a hysteresis procedure inside processes 
to simulate hysteresis, but ignore the procedure 
during synthesis. 

In addition, we introduce an NCL-specific 
simulation package, ncl_logic which:  

• Defines type NCL_LOGIC with values 
{0,1,N, U, X, Z, -} and 

• Overloads VHDL operators to incorporate 
the NULL. 

In pseudo-HDL, the approach looks as follows : 
 

  comb: PROCESS (sensitivity list) 
    BEGIN <boolean computation> 



    -- synthesis off 
  <ncl hysteresis function> 
-- synthesis on 

    END PROCESS comb ; 
    reg: ncl_register  

<register bindings> 
  

This approach has the following advantages: 
• No limitations on combinational constructs  
• Easy to rewrite clocked HDL designs 
• The same HDL description can be used for 

simulation and synthesis. 
The remainder of this paper will focus on the 
synthesis aspects of the methodology and ignore the 
details of simulation. 

 

5. NCL design flow example. 
 

This section illustrates the design flow using an if-
then-else statement that is implemented as a 2-1 
multiplexer (MUX).  This statement is frequently 
used in RTL.  Its efficient implementation has a 
significant impact on the size of the final circuit.  

The RTL VHDL program is shown in  Figure 4.  In 
terms of Boolean functions MUX behavior is 
specified by: bsasz ⋅+⋅=  

The 3NCL representation of the MUX function is 
indistinguishable from the synchronous circuit – its 
sum-of-products implementation is shown in Figure 
5(a) while Figure 5(b) shows the same circuit 
implemented with NAND gates. Optimization of a 
larger circuit can be performed at this stage.  The 
output of the 3NCL stage is always a Boolean 
network of two-input logic gates (two-input NANDs 
network in particular). The most important step in 
understanding the NCL methodology is “what is done 
when 3NCL is expanded into dual-rail 2NCL”.  

 The expansion is performed automatically by 
replacement of each two-input gate by its dual-rail 
DIMS implementation. Mapping of NAND gate into 
a DIMS functional block is shown in the truth table 
in Figure 6 where dual-rail signals a and b are 
encoded as follows: N=00, T=10, F=01. This 
conversion to DIMS produces a DI circuit because 
each DIMS block is strongly indicating  [25,26].  
Note that it is essential that every minterm in the 
function domain be acknowledged by a single C-
element; merging minterms (and corresponding C-
elements) violates DI properties. 

 
 library ncl; 
use ncl.ncl_logic.all; 
ENTITY ifthen IS PORT ( a, b, s : IN     ncl_logic; 
   z      : OUT ncl_logic); 
END ifthen ; 

ARCHITECTURE ncl OF ifthen IS 
BEGIN 
test: 
   PROCESS(a, b, s)    
   BEGIN 
    if (s = ’1’) then  z <= a;  
 else z <= b;  
 end if ; 
  END PROCESS test; 
END ncl ; 
 

Figure 4.  RTL VHDL specification 
 

Replacement of gates from Figure 5(b) with DIMS 
blocks (see Figure 6) gives a circuit with 12 two-
input C-elements and 3 three-input OR gates (see 
Figure 7)  

If this circuit were implemented in semi-static 
CMOS, it would have 114 transistors versus 14 
transistors for a synchronous circuit.  The area 
penalty could be reduced by merging three C-
elements and the three-input OR gate into a single 
CMOS gate that uses 13 transistors.  Using three of 
these gates and three C-elements requires 63 
transistors. Below we will show that by using  Design 
Compiler for optimization of DIMS circuit this result 
can be further improved.  
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Figure 5. A 2-1 Multiplexer implemented with 
(a) Sum-of-products and (b) NAND gates. 

In order to optimize with Design Compiler (which 
knows how to work with Boolean logic gates but 
unaware of threshold gates with hysteresis) the DIMS 
implementation needs to be mapped into Boolean 
logic.  A direct mapping is not possible because C-
elements are sequential.  This problem is resolved if 
the two phases (set and reset) of a circuit operation 
are handled separately during optimization.  In fact 
for a two-phase protocol the circuit functionality is 
fully expressed by the set phase; the reset phase is 
performed uniformly for all circuits.  The reset phase 
is guaranteed automatically by the use of threshold 
gates with hysteresis (see Section 6 for details).  
Therefore optimizations are applied to the circuit 
functioning in the set phase. Optimization of DIMS 
implementation starts by remapping DIMS blocks 
into  “image patterns”, which are Boolean 
combinational gates.  DIMS block and the 



corresponding image gate have equivalent behaviors 
in a set phase of circuit operation.  The result of 
remapping is called smoothing of a DIMS circuit.  
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 Figure 6. Dual-rail NAND-gate: (a) symbol; (b) 

truth table; (c) implementation 
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Figure 7. Dual-rail expansion for NAND 
implementation of MUX 

To obtain a smoothing circuit let us consider the 
functioning of DIMS circuit in a set phase. The 
output of a 3NCL stage gives a representation of 
Boolean function through a multi-level combinational 
circuit of two-input logic gates. Thus, the 
corresponding DIMS blocks contain two-input C-
elements and OR gates only. A two-input C-element 
is described by the Boolean equation: 

)( bazbaz ++⋅= .  In the beginning of a set 

phase all gates in DIMS circuit are in the NULL 
state. Under this initial state ( 0=== baz ) an 
equivalent representation for C-element in a set phase 
would be an AND gate:  z = a ∧ b.  

Mapping each C-element of a DIMS 
implementation into AND gates gives the required 
smoothing circuit (Figure 8 shows a smoothing 

circuit for NAND DIMS from Figure 6(c)).  This is 
the starting point for optimization.  
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Figure 8. Image of Dual-rail NAND-gate: (a) 
symbol; (b) functionality. 

Design Compiler then proceeds in following 
steps: 
• A smoothing circuit passes technology 

independent optimization (which is an 
optimization of a Boolean network 
representing smoothing circuit) 

• Theseus Logic has developed a complete 
library of four-inputs threshold gates with 
hysteresis (limitation of four inputs comes 
from CMOS technology restrictions). This 
library for each gate contains also its 
smoothing image: AND gate for C-element, 
AB+AC+BC gate for 2-of-3 threshold gate 
with hysteresis, etc. The optimized 
smoothing circuit is mapped into this library 
(mapping is done by images) 

• The NCL circuit is produced by replacement 
of each image by its corresponding threshold 
gate from the library.  

 
if-then-else example continued. 

Let us apply the above design flow to the synthesis of 
the if-then-else statement.  Smoothing of the DIMS 
circuit produces the following result:  

)..

....(..)..

....(......

.......

fats

tafsfafstbfsfbfs

tbtsfbtstatstbfststa

fytxtyfxfyfxtz

⋅+
+⋅+⋅⋅+⋅+

+⋅+⋅⋅+⋅⋅⋅=
=⋅+⋅+⋅=

 

and 

)......(

)......(...

fbfstbtsfbts

fatstafsfafstytxfz

⋅+⋅+⋅•
•⋅+⋅+⋅=⋅=

Taking into account external don’t cares coming from 
dual rail encoding (for any dual-rail variable v the 
combination 1.. == fvtv  is prohibited) the 

functions might be simplified to: 



)..(..)..(... tafafstbtbfbtstatz +⋅++⋅=  

and  
)..(..)..(... tbfbfatstafafbfsfz +⋅++⋅= . 

Substitutions  α = s.f(a.f + a.t); β = s.t(b.f + b.t);  
give an optimized network: 

z.f = b.f • α + a.f • β;   z.t = a.t • β + b.t • α; 
Each gate in a network is an image of a 
corresponding threshold gate from the library:  
���  and  are images (with a pattern “A(B+C)”) for 
the gate “th23w2” (or 2-of-3 threshold gate with 
weight of  input  A  equal to  2), 
2 . z.t and z.f  corresponds to the pattern (AB+CD) , 
which is mapped  into “thXOR” gate.  
Gate “thXOR” could be implemented through C-
elements and an OR gate (in a threshold-disjunctive 
form (Figure 9 (a)) ) or by a threshold cascade form 
(Figure 9 (b)). Its direct implementation by a single 
CMOS gate is shown in Figure 10.  The complexity 
of the NCL 2-1 MUX implementation is 44 
transistors which is about 30% better than the 
optimized DIMS circuit.  
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Figure 9 NCL MUX implementation. Threshold-
disjunctive (a) and cascade (b) forms 
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Figure 10. Semi-static CMOS implementation of 

thXOR. 
 

6. Validation of optimization.  
 
The validity of transformations that are applied to 

the circuit within NCL synthesis is based on two 
properties: 1) functional equivalence of optimized 
and original circuits and 2) strong indication by gates 
in the optimized circuit which is a basis for delay-
insensitivity.  

This Section gives a formal ground for justifying 
these properties.  
The effectiveness and correctness of the optimization 
flow are based on two important facts: 

• Two phases of operation (set and reset) are 
handled separately. In fact optimization is 
performed only for set phase since the reset 
procedure is uniform (see the comments to  
Figure 2) 

• During technology-independent multilevel 
synthesis Design Compiler performs only 
algebraic operations. 
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 Figure 11. Optimization flow 

The overall optimization flow is illustrated in  Figure 
11. It starts from 3NCL circuit, that apart from 3 
value interpretation of Boolean netlist, is of no 
difference with its Boolean prototype. 3NCL circuit 
might be translated into dual-rail DI implementation 
using DIMS technique (the result is denoted by 
CDIMS). DIMS implementation is further converted 
into conventional basis by replacing C-elements by 
AND gates (Csmooth). In fact, the transformation from 
3NCL into Csmooth is performed in one step using a 
dual-rail package. Though DIMS circuit is an 
imaginary object in the optimization flow, we like to 
keep it in  Figure 11 for better understanding and 
establishing the DI equivalence with the final 
implementation. Design Compiler first optimizes a 
Boolean network for smoothing circuit Csmooth 
(resulting in Csm_opt ) and then maps it into  the library 



of threshold gates (CTG). Finally Boolean threshold 
gates of CTG  are replaced by threshold gates  with 
hysteresis which gives the implementation CTGH. 
The validity of the suggested optimization flow is 
based on two facts: 

1. The known result that  DIMS technique is a 
correct DI implementation for 3NCL [25]. 

2. The equivalence between CTGH  and CDIMS 
which is established below. 

An equivalence between CTGH  and CDIMS  is proved 
by separate consideration of set and reset phases. 
Intuitively: for set phase we prove that each object in 
optimization flow shows the same behavior, while for 
reset phase CTGH  has a DI behavior  which is correct 
by construction (ensured by inherent properties of  
gates with hysteresis).   
Though the networks for CTGH  and CDIMS  consist of 
sequential gates abusing formality we will refer to 
them as Boolean networks bearing in mind that two 
phases of network functioning are considered 
separately. 
 Our first property states that CDIMS  and CTGH   have 
the same input-output behavior. 
 
     Property 1.  Boolean networks for CDIMS and 
CTGH are equivalent under two-phase operation. 

Proof: The sets of primary inputs and outputs for 
CDIMS  and CTGH  are clearly the same. Let us show 
that for any input pattern the outputs of CDIMS  and 
CTGH  coincide. 

Case 1. Set phase. 
In the beginning of set phase all primary inputs, 

internal gates and primary outputs of CDIMS  are in 0. 
Inputs under the two-phase operation change 
monotonously. From unateness of gate functions 
follows that every gate in a set phase can produce at 
most one transition from 0 to 1. Under monotonously 
increasing  values  on its inputs C-element with the 
initial value of the output 0 behaves  like an AND 
gate. The latter proves that in a set phase CDIMS  and  
Csmooth  have the same input-output behavior. 
Optimization performs only equivalent 
transformations over the networks and Csmooth  is 
equivalent to Csm_opt.  In the mapping of Csm_opt into 
threshold gates with hysteresis the set functions of 
threshold gates are the same as in Csm_opt. This 
guarantees that under the initial state 0 for  all gates 
and inputs, and monotonous transitions on inputs, 
Csm_opt  and CTG  are equivalent. The latter by 
transitivity gives an equivalence of CDIMS  and CTGH 
in a set phase. 

Case 2.  Reset phase. 
For reset phase we need to prove that transition of 

all primary inputs to NULL state (every input is reset 
to 0) resets every output to 0. This is guaranteed by 
the properties of threshold gates with hysteresis. Let 

us levelize the gates in a Boolean network CTGH 
according to topological ordering [14]: a gate which 
has only primary inputs at its fan-in goes to Level 1, 
a gate with  fan-ins from (i-1) level or lower goes to 
Level i.   

All threshold gates with hysteresis have a set 
function which is unate and reset function which 
corresponds to disjunction (actually inversion of 
disjunction) of all fan-ins (see Figure 2). When 
primary inputs make transitions to 0 the set function 
of every gate at Level 1 take 0 value but the gate will 
keep its output value until the reset function will 
become 1. This happens when all gate fan-ins are 
reset in 0 which is acknowledged by resetting gate 
output. The wave of resets is propagating from level 
to level and finally reaches primary outputs. Hence 
CDIMS  and CTGH are equivalent in a reset phase as 
well. ∇ 

The next statement tells about keeping DI 
properties of CTGH  by claiming that gates with 
hysteresis of CTGH implementation  are strongly 
indicating. 

 
Property 2.  Every gate in CTGH network 

implementation  is strongly indicating. 
Proof: Let us consider set and reset phases 

separately. 
   Case 1. Set phase. 

1) Csmooth   is prime and irredundant. Indeed, 
under the topological ordering of gates,   Csmooth   

(obtained            from CDIMS ) has the following 
structure: AND gates at odd levels and OR gates 
at even, where each AND gate is unate and none 
of them cover each other. From this follows that 
AND gates are prime and irredundant. AND 
gates in the fan-in of a particular OR  gates 
represents minterms and hence during the 
operation of Csmooth   fan-ins of OR gates are 
always orthogonal. The latter means the 
primality and irredundance of Csmooth   with 
respect to OR gates as well. 

2) Prime and irredundant networks are known to                  
be 100% stuck-at testable [38]. 

3) In [39] it was proved that under the 
algebraic transformations the set of multifault 
test vectors is maintained. Moreover if the circuit 
obtained by algebraic transformations is 
irredundant then the set of test vectors for single 
stuck-at faults is also maintained. Hence we can 
conclude that Csmooth   and  Csm_opt   have the same 
sets of test vestors for  single stuck-at faults.  

4) Let us consider gates of Csm_opt   in 
topological order. Suppose that gate g at the first 
level of the network is not strongly indicating 
with respect to some input a. Algebraic 
transformations preserves unateness and hence 



we can represent a logic function for g as: Fg = a 
H + C, where C and H are not dependent from 
variable a. a is not indicated  if and only if there  
exists a set X of primary inputs such that a=1 in 
X and H(X)=1, C(X)=1. Clearly that in Csmooth   

vector X is a test for single stuck-at by input a. 
Therefore we can include X in the set of test 
vectors for Csmooth . However X is not testing 
single stuck-at  a for a  Csm_opt   and we obtain the 
contradiction with (3). Considerations similar to 
[39] can be repeated to internal (upper levels) 
gates of Csm_opt   as well. Hence Csm_opt   is strongly 
indicating in a set phase. 

5) It was shown in [39] that tree-based 
mapping also maintains the set test vectors for 
stuck-at faults. Then repeating   arguments from 
(4) we might conclude that CTG   (and CTGH 
respectively) is strongly indicating in set phase. 

Case 2. Reset phase. The strong indicatibility of 
CTGH   in reset phase directly follows from the 
properties of threshold gates with hysteresis (see the 
proof of Property 1). ∇ 

 

7. Experimental results 
 
The results obtained through the suggested 

approach are compared in two ways. 
First, we compare the synthesis netlist to NCL 

designs entered with schematic capture.  Since our 
goal is to increase our design productivity by using 
synthesis, this is an important measure.  The numbers 
on manual designs are taken from the Theseus Logic 
design division, which is experienced in NCL 
implementations.  They have designed and fabricated 
18 chips (five of them over 150,000 transistors with 
the biggest one of 660,000 transistors).  The 
synthesized designs are produced by using Design 
Compiler from Synopsys.  Error! Reference source 
not found. below shows the comparison.  Area 
results are in number of transistors for a semi-static 
prototype library.  

Table 1.  NCL manual vs. synthesized designs. 

 
Circuit Manual Synthesis ratio 
and4 66 68 103% 
test7 140 126 90% 
clipper 339 212 63% 
and16 352 336 95% 
set_cnt 238 198 83% 
case 594 482 81% 
bit_cnt 1059 1072 101% 
sync_state 1008 814 81% 
sum 4346 3380 78% 

With the exception of two circuits, the 
implementations obtained by Design Compiler are 
excellent.  Design Compiler does a good job 
optimizing NCL circuits and should be extremely 
useful in our design flow.  

The second area of comparison is NCL against 
synchronous designs.  The NCL MUX (from Section 
5) requires 44 transistors against 14 transistors of 
synchronous implementation, which is 3.1 times 
larger.  This penalty is similar to a Viterbi decoder 
that we translated straight from the clocked design  
(See Error! Reference source not found.).  The 
results are better if we adapt the code to NCL.  For 
example, we downloaded benchmarks used to 
compare HDL synchronous synthesis tools from 
different vendors [40].  The first one, hostfird is a 
thirty-two by 16-bit unidirectional FIFO buffer.  By 
redesigning it, we significantly reduced the area 
because asynchronous designs are ideally suited to 
FIFOs, whereas the clocked design requires two 
counters, empty and full logic, two decoders, and two 
multiplexers.  The second design, addrconv compares 
favorably.  The clocked data used the same version of 
Design Compiler and a library based on LSI Logic’s 
LCB500K library [41]. The gate count is the number 
of actual gates, not the equivalent gate count, a 
number often used for comparison and is typically 
four transistors per gate.     

Table 2.  Synchronous vs. NCL designs. 

 

gates transistors 

module clock NCL ratio clocked NCL ratio 

decoder 1010 2344 2.3 8788 30574 3.5 

hostfird 1691 1123 0.7 23498 26500 1.1 

addrcon 41 70 1.7 524 852 1.6 
 
A more than three times penalty in transistors when 

comparing NCL and synchronous implementations is 
not surprising.  A dual-rail implementation 
immediately leads to circuits that are twice the size; 
the rest of the area increase is due to effective delay-
insensitivity that needs to be ensured in NCL circuit 
(though by relaxing DI requirements (using timing 
assumptions e.g.) one can make area trade-offs).  

In the suggested design flow the area penalty can 
be large. This could be unacceptable for a stand-alone 
design.  However, the prediction [42] tells that in the 
future ages of SoC most of the chip area (up to 70-
75%) will be occupied by memories.  For that case a 
3 times increase in the rest of circuitry could be an 
acceptable trade-off for ease and speed of design 
flow.  



We can reduce the transistor count by designing 
circuits that fit NCL’s features better.  For example, 
in the if-then-else case, we can reduce the transistor 
count in one of two ways.  If the input data is 
orthogonal, then we can use an OR gate instead of a 
multiplexer.   This solution requires less logic than 
the regular Boolean case (MUX).  If we compromise 
the delay insensitivity by allowing isochronic forks 
on the latch inputs we can use a multiplexer that 
requires 24 transistors instead of 44, making it 1.7 
times larger than the synchronous counterpart, not 
3.1. 

 

8.  Conclusions and future work. 
 
Theseus Logic is just beginning the development 

and application our NCL synthesis tools.  The 
conclusion at this stage of our work is simple: we 
have a working design flow for NCL based on 
commercial synchronous HDL tools.  We can design 
asynchronous (NCL) circuits as easily as one can 
design traditional synchronous designs. The results of 
the synthesis are acceptable, at least by our customers 
[43].   

The main concerns for us now are verification of 
the timing assumptions behind the isochronic forks 
(“orphans” in NCL terminology) and reducing the 
area overhead.  

At our current level of technology, (CMOS 
���� P��DOO�RUSKDQV�LQ�RXU�GHVLJQV�SURYHG�WR�EH�VDIH�
by simulation.  For future technologies, Theseus 
Logic is developing a special CAD tool to discover 
dangerous orphans. 

There are several ways to reduce area without 
losing delay insensitivity.  For example, we typically 
get a large area penalty if we generate asynchronous 
(NCL) circuitry from synchronous RTL code that has 
been modified only so it can be synthesized.  
However, the area can frequently be reduced through 
redsign.  For example, an asynchronous design could 
be less global that synchronous  (each register has a 
separate request instead of a clock).  As mentioned in  
the if-then-else example, a more detailed 
consideration of register interactions can notably 
reduce area.  One of our future tasks is a HDL 
preprocessor that could automatically replace some 
of the typical RTL constructions (like the if-then 
statement that infers a MUX) by a more effective 
NCL implementation. 

 
There are several more technical issues that we will 

address in the synthesis flow in the near future.   
 

• Write DesignWare components to improve 
performance for arithmetic units by 
instantiating hand-designed components.  

• Adapt the flow to handle Verilog.  
Currently, we can synthesize Verilog code, 
but not simulate it. 

• We do not want to write a tool to optimize 
the netlist, since Design Compiler does its 
job well.  However, we would like to reduce 
the netlist using simple peephole 
optimizations.  We have already started the 
process and are able to merge gates used for 
registration with their input gates. 
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