
Asynchronous Design Using Commercial HDL Synthesis Tools.

Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, Alex Kondratyev

Theseus Logic, 710 Lakeway Dr., Suite 230, Sunnyvale, CA, 94086, USA

{michiel.ligthart, karl.fant, ross.smith, alexander.taubin, alex.kondratyev}@theseus.com

Abstract

New design technologies rely on truly reusable IP
blocks with simple means of assembly. Asynchronous
methodologies could be a promising option to
implement these requirements. Promotion of
asynchronous design strongly depends upon the
“level of service” delivered to the designer. Current
asynchronous design tools require a significant re-
education of designers and their capabilities are far
behind synchronous commercial tools. One solution
to these problems, which we advance in this paper, is
to stick to a conventional design flow as closely as
possible and to use commercial design tools as much
as possible. The paper considers a particular
subclass of asynchronous circuits (Null Convention
Logic or NCL) and suggests a design flow which is
completely based on commercial CAD tools. It
argues about the trade-off between the simplicity of
design flow and the quality of obtained
implementations.

1. Introduction

There are two common beliefs about asynchronous

design: 1) asynchronous circuits are much more
difficult to design than synchronous ones and 2)
existing CAD tools for synchronous circuits are of no
help for asynchronous design [1,2].

The main aim of this paper is to argue against these
statements. The paper considers a particular subclass
of asynchronous circuits (Null Convention Logic
(NCL) [17,18]) and suggests a design flow that is
completely based on commercial CAD tools.

The trend towards Systems-On-Chip (SOC)
technology is now widely promoted in electronic
industry. The prime goal of SOC technology is to
create truly reusable IP blocks that can be quickly
built and are guaranteed to work the first time [3].
Together with these high quality IP pieces an overall
design methodology should provide a simple means
for IP assembly, based on plug ‘n’ play principles.
Being clock free, asynchronous circuits constitute an
attractive SOC approach. From the system

architecture point of view it is much easier to build
using asynchronous rather than synchronous blocks.
Having asynchronous IPs would be an important step
in developing SOC technology.

Whether the electronic industry would adopt an
asynchronous methodology depends on investments
(to transfer to a new design flow) and the maturity of
CAD support. Though recently a lot of progress has
been achieved in the development of asynchronous
CAD tools [4,5,15,6], the current tools suffer from two
shortcomings: 1) they require a significant re-
education of designers (investment problem) and 2)
their capabilities are far behind commercial tools from
the synchronous domain (CAD support problem).
One solution to these problems, which we advance in
this paper, is to stick to a conventional design flow as
closely as possible and to use commercial design tools
as much as possible.

If successful this methodology will be able to provide
the following benefits:

• Reduced time to market (HDL automated design,
design reuse),

• Plug ‘n’ play without clock system coordination,
• Low power and low EMI – “by construction”[7,

8],
• Delay-insensitivity (DI) as a way to handle wire

delays in deep submicron (DSM) technology.
This paper focuses on performing logic synthesis

with the help of conventional CAD tools. Logic
synthesis algorithms by themselves are not
specifically targeted to synchronous design.
Clocking is a common and simple way to abstract
from timing issues in the behavior of real circuits.
Generally speaking, clocking allows a designer to
ignore timing issues when considering system
functions and describe both the functions performed
and the circuits themselves in terms of Boolean
algebra (according to Shannon’s concept) [9, 10]. As
a result clocking pulses and gates’ switching in a
circuit are causally unrelated and synchronization is
done by matching their delays. This leads several
well-known difficulties in construction of clocks for
big systems [2,11].

By contrast, asynchronous systems coordinate their
behaviors in a purely causal way. As a result logic
synthesis for asynchronous circuits takes care not
only of functionality but also of the proper ordering
of the gates’ switching. This makes logic synthesis
for conventional asynchronous circuits much more
complicated than for synchronous circuits
[12,13,15,19,23], which results in a strong dislike of
the synchronous community towards asynchronous
methodology. Incorporating asynchronous design
into synchronous design flow requires abstracting
from timing issues in a way that will not divert logic
design methods from the synchronous world yet
allow us “to live” without clocks.

Our paper attempts to show that this flow could be
implemented by using NCL as a basis for
asynchronous implementation. The main questions
that the paper answers are:
• Is it possible to use RTL synthesis tools for NCL

asynchronous design and generate correct
designs?

• What are the results of design using the NCL
tools?

The paper is organized as follows. Section 2
introduces the main theoretical concepts. Section 3
places this paper in context among existing works.
Section 4 contains an overview of HDL-design flow,
which is illustrated by a “toy” design in Section 5.
The validity of the suggested approach is proven in
Section 6. Experimental results are presented in
Section 7.

2. Theoretical background
2.1. Boolean networks

Boolean networks provide a formal representation

of combinational circuits for logic synthesis. A
Boolean network is a directed acyclic graph. A gate
in some combinational circuit is represented by node
i in the graph, with name ai and a completely
specified logic function fi [14]. A directed arc from
node i to node j means that variable ai is explicitly
used in the representation of fj, i.e. ai is in a support
of fj. Direct predecessors of a node ai are called ai’s
fan-in, while direct successors of ai are called ai’s
fan-out. Some of the nodes in the graph are
designated as outputs (inputs) of the network, called
“primary outputs” (“primary inputs”).

Combinations of primary inputs that never occur
during operation of a Boolean network contribute to
the so-called external don’t care set of a network.
Two networks with the same set of primary inputs
and primary outputs are called equivalent if for all
values of corresponding primary inputs not in the
external don’t care sets, the corresponding primary

outputs are equal [14]. A Boolean network N is
prime and irredundant if removing a single literal
or cube from any function fi of its node produces a
network N’ which is non-equivalent to N.

2.2. Delay-insensitive combinational circuits

A gate ai of a combinational circuit can be in two
states: stable – when the value on its output
corresponds to the value of Boolean function fi
computed by the gate’s fan-in, and enabled –
otherwise. An enabled gate can either switch (fire)
after the elapsed gate delay or can return to a stable
state because of its fan-in changes. The last case of
resolving the enabling is undesirable in asynchronous
circuits because it might produce glitches on gate
outputs, known in the literature as hazards [10]. A
circuit in which hazards never occur under any
distribution of delays in wires and gates is called
delay-insensitive. An acknowledgement notion plays
the key role in ensuring delay-insensitivity.

Informally, we say that the firing of gate ai

acknowledges the firing of gate aj if the fact that ai
switches after aj has been enabled indicates that aj
has already switched as well. In a delay-insensitive
circuit all the gates in the fan-out of ai must
acknowledge every firing of gate ai. This guarantees
that independently of the skew of wire delays after ai
output (after fork), the information about ai firing is
properly delivered to destination nodes in a network.

Sometimes the requirement of delay-insensitivity
(DI) with respect to every wire fork in a circuit is
overly restrictive for a designer. Some forks could be
considered safe because the skew of their wire delays
is guaranteed to be less than the minimum gate delay.
These forks are called isochronic [15]. For
isochronic forks it is sufficient to get an
acknowledgement from at least one of the gates on
the fork fan-out.

2.3. Null Convention Logic

Regular ways of DI circuits implementations are
often rely on application of DI codes [16]. These
have the attractive property that a receiver is able to
determine that a codeword has arrived by a codeword
itself, without appealing to timing assumptions.

Null Convention Logic [17,18] is a specific way of
implementing data communication based on delay-
insensitive encoding. It assumes a two-phase
discipline in which data communication alternates
between a set and reset phases [19]. Data changes
from spacer (called NULL) to proper codeword
(DATA) in the set phase and then back to NULL in
the reset phase.

In NCL this behavior is pushed down to the level
of each particular gate of a circuit. If the current state
of a gate is NULL, then the gate keeps its output in
NULL until NULL is present in at least one of its
fan-ins. Then, when all gate fan-ins receive a
codeword (DATA), the output of the gate changes to
DATA. A gate has a symmetric behavior in the reset
phase – it keeps output in DATA until all the fan-ins
receive NULL; after that the output also changes to
NULL. Such gates are called strongly indicating
[26] because the firing of gate’s output acknowledges
firing of every fan-in.

This behavior is naturally expressed in a multi-
value logic. Let a signal in a Boolean network takes
three logic values: T and F for data items 1 and 0
respectively and N for NULL value. Then the
behavior of basic gates in NCL logic is described like
in Figure 1(a) (gates are assumed to be initially in a
state NULL).

Figure 1. Symbolic tables for basic NCL gates

From the above explanation it follows that NCL
gates have sequential behavior because they switch
differently depending on the current value on the
output. The description of behavior of basic NCL
gates is accomplished by symbolic tables for initial
state DATA (see Figure 1(b), where H stands for
holding the previous DATA state of the gate (T or F)
while one of the inputs changes to NULL).

The representation of NCL gates in a three-level
logic is called 3NCL [17]. 3NCL logic is a
convenient mathematical abstraction but it has no
efficient physical implementation due to the binary
nature of signals used in design practice.

For physical implementation each signal a in
3NCL is represented by two wires a.t and a.f in a
circuit under the following encoding of 3NCL
symbolic values:

0.,0.

;1.,0.

;0.,1.

==⇔=
==⇔=

==⇔=

fataNa

fataFa

fataTa

The combination of values a.t=a.f=1 is not used.
This encoding is known as a dual-rail encoding [20]
and it gives one of the simplest DI codes.

Implementation of 3NCL logic through a dual-rail
encoding (called 2NCL [17]) gives a physical

representation of NCL logic. The sequential
behavior of gates in 2NCL is ensured by a feedback
from gates’ outputs to their fan-ins, which allows us
to represent gate’s behavior by a logic equation g=S
+gRˆ, where S and R are the set and reset
(respectively) functions of a gate. A general view on
semi-static CMOS implementation of a gate in 2NCL
is shown in Figure 2(a).

Figure 2. Implementation of NCL gate in
CMOS

A refined picture of the gates’ structure could be
obtained through consideration of specific properties
of dual-rail circuits under two-phase (set and reset)
operation. These properties are:

1) in a dual-rail circuit a transition from NULL
to DATA is monotonic

2) the transition of primary inputs of a
combinational circuit from DATA to NULL will
set all gates in a circuit into the NULL state

From (1) it follows that a set function S of a gate
must be positively unate [14], i.e. every variable is
met in function S without inversion. In fact set
conditions for NCL gates are convenient to specify
by a particular subclass of unate functions –
threshold functions [21].

A threshold function S is the one that can be
defined by a system of inequalities: S(x1,…,xn) = 1 iff
w1x1 + w2x2 + … + wnxn ≥ m, where wi are the
weights, m is the threshold value and “+” is an
arithmetic sum. When all weights are 1 a threshold
function can be characterized by two numbers n –
number of variables, and m – the threshold value.
This representation is called an m-of-n threshold
function. Any positive unate function could be
presented as disjunctive or cascaded superposition of
m-of-n threshold functions [22].

The ability to reset an NCL gate can be easily
concluded from (2). An NCL gate changes its output
to NULL when all its inputs are NULL. Since
DATA values are encoded by “01” or “10” we arrive
at Rˆ(x1,…,xn) = x1 ∨ x2 ∨ …∨ xn

A refined view on implementation of 2NCL gate is
shown in Figure 2(b). Clearly every 2NCL n-input
gate has the same reset function that does not depend
upon the particular type of a threshold function the

a b T

T T

F

F

F

F

F

N

N N N

N

N

N

a b T

T T

F

F F

N

N N N

N

N

N

T

T

AND OR

Gate in NULL

a b T

T T

F

F

F

F

F

N

N N

a b T

T T

F

F F

N

N N

T

T

AND OR

Gate in DATA

F

F

H

H

H

H T

T

a) b)

p-tree

n-tree

Set
function

function
Reset

. .
 .x1

xn

g

n-tree

m-of-n

function. .
 .x1

xn

g

threshold

a) b)

gate implements. This property is crucially important
for optimization because the reset behavior of NCL
network does not depend upon the transformations
which are performed on it. In the rest of the paper we
refer to this implementation as threshold gate with
hysteresis.

3. Comparison to prior Work

This Section gives a short summary on the place of

the suggested approach among 1) other methods of
synthesis of delay-insensitive circuits and 2) attempts
of using conventional HDL languages (VHDL) for
design of asynchronous circuits.

3.1. Place of NCL among DI design styles.

The idea of using two-phase discipline in data

communication is known for long time. In [23]
Chuck Seitz suggested the so-called “weak
conditions” which formalized the correctness of a
system operation under the two-phase discipline.
Implementation of two-phase operation by dual-rail
circuits is used elsewhere [15,23,19,24] to name but a
few.

A regular method for implementation of an
arbitrary Boolean network under a two-phase
discipline and dual-rail encoding gives Delay
Insensitive Minterm Synthesis (DIMS) [25]. This
technique is similar to NCL though it uses a very
limited set of threshold gates – C-elements and OR-
gates. Thus, there is room for optimization and
DIMS implementations are significantly larger than
similar designs in NCL. A straightforward
generalization of DIMS method that merges two-
stage DIMS blocks (C-elements + OR-gates) into a
single CMOS gate [26] has better area parameters but
still under-exploits optimization possibilities because
of the limited basis.

An efficient procedure of DI synthesis starting
from high-level behavior specification (CHP) was
suggested by Alain Martin in [15]. A CHP
description in terms of system events is automatically
translated into production rules that describe the set
and reset functions for each event. A pair of
production rules for an event (set and reset) is
implemented as a single CMOS gate. These gates are
more general than the threshold gates with hysteresis
used in NCL because they have no restrictions on the
structure of PMOS network inside the gates. This
flexibility results in more possibilities for
optimization and thus smaller circuits. The DI
properties of implementation are guaranteed by using
involved and specific synthesis methods with an
intensive peephole optimization. Thus its synthesis

approach cannot use synchronous design methods or
tools.

An interesting attempt to incorporate asynchronous
design into a synchronous design flow was done in
phased logic [27]. [27] suggests an effective way of
mapping the topology of synchronous circuit into a
network of phased logic gates. Phased logic gates
use Level-Encoded two-phase Dual-Rail [28] signals
and replace clock signals by phasing activity that
ferries data values from gate to gate. However,
phased logic requires logic synthesis to handle event
ordering. To coordinate the order of gate firing,
additional signals and gates must be inserted in a
circuit to ensure the “safeness” and “liveness”
properties of the circuit. This non-trivial procedure
does not fit the synchronous design flow.

3.2. Use of conventional HDLs in
asynchronous design

The use of conventional HDLs (VHDL/Verilog) as

front-end specifications for asynchronous circuits
gives two immediate advantages: 1) designers outside
the asynchronous community could understand and
write these specifications with less effort 2)
commercial HDL simulators can be used.

Most of the previous works on using conventional
HDLs for asynchronous design targeted these two
advantages [29,30,31]. In these papers,
VHDL/Verilog is the highest level of specification,
and the major part of the methodology relies on
specific design procedures and exotic (for
synchronous designers) models.

One way of using synthesis facilities from HDLs
separates a system into control and datapath [32].
For gluing together the control and datapath, the
synthesizable subset of HDL is extended by the
notion of channels to implement handshake
mechanisms. After adding channels to an HDL
description a datapath could be synthesized by
conventional RTL-synthesis tools in a micropipeline
fashion. For implementation of control [32] uses
asynchronous synthesis tools (petrify [5] e.g.).

Separate implementation of control and datapath
requires a careful timing analysis. This is a
significant complication. In the NCL design flow a
control part is implemented according FSM-based
approach of commercial RTL-synthesis tools (where
asynchronous registers are instantiated instead of
synchronous registers).

4. NCL-shell: Overview of HDL-design
flow.
 Targeting the usage of conventional CAD tools
RTL descriptions of asynchronous designs should

Verilog
HDLVHDL

RTL
Simulation

RTL
Synthesis Design

Ware
Cell

Library

Use ncl_logic
package

3NCL

Synthesis

2NCL
netlist

Use dual_rail
package/DIMS

Cell
Library

closely match common synchronous description
styles. We are using synthesizable VHDL both for
simulation and for synthesis, unlike other approaches
which restrict or modify the HDL.

 4.1. EDA flow

The NCL design flow uses off-the-shelf simulation

and synthesis components (See Figure 3).

Figure 3. RTL flow for NCL

The flow executes two synthesis steps:

1. Translate HDL into 3NCL netlist

The first stage starts with RTL code written with
3NCL, a single-rail multi-valued representation of
NCL. For simulation, the NULL value enables the
proper set/reset behavior and is displayed as a third
state by Model Technology’s ModelSim VHDL
simulator [33]. For RTL synthesis, Design Compiler
[35] treats ‘N’ as a don’t care value [34]. This
enables the tool to use Boolean synthesis, because it
treats 3NCL variables as a single wire. The synthesis
tool performs HDL optimizations and outputs an
unmapped VHDL dataflow description expressed by
AND and INV assignments. This dataflow
description is referred to as a 3NCL netlist.

2. Optimize 3NCL into 2NCL netlist

The second stage expands the intermediate 3NCL
netlist into a fully dual-rail 2NCL by overloading all
AND and INV assignments as DIMS-type dual-rail
assignments. This expansion is described in a VHDL
package. Stage 2 also performs regular ASIC-type
optimization (multilevel minimization of Boolean
network [14]), targeting an NCL library.

This flow has been successfully implemented with
Design Compiler from Synopsys [35], with Leonardo
from Exemplar Logic[36], and with Ambit Envisia
[37] from Cadence. A detailed explanation of the
above design flow is presented in Section 5 via a
small synthesis example.

4.2. NCL coding style

NCL is coded at the register-transfer level (RTL).

Unlike the behavioral level, where the synthesis tool
determines the placement of registers, the designer
must specify the placement of registers in RTL code.
This is done either by inference (i.e., writing code
following specific rules that the synthesis tool
interprets as a register) or by instantiation (i.e.,
declaring a register and its connections explicitly).
Most clocked designs infer registers. We currently
must instantiate the registers and specify the register's
request and acknowledge signals.

To synthesize and simulate an NCL circuit at the
RTL using commercial tools, the tools must handle
the NULL value and hysteresis behavior of threshold
gates. This is accomplished by following these rules:

• Separate combinational logic and registers.
By registers, we mean gates that have request
and acknowledge signals. Like clocked logic,
the combinational logic is written as concurrent
signal assignments or in processes.

• Instantiate NCL registers and provide a
simulation-only model with hysteresis behavior.
The simulation model is ignored during synthesis

• Use a hysteresis procedure inside processes
to simulate hysteresis, but ignore the procedure
during synthesis.

In addition, we introduce an NCL-specific
simulation package, ncl_logic which:

• Defines type NCL_LOGIC with values
{0,1,N, U, X, Z, -} and

• Overloads VHDL operators to incorporate
the NULL.

In pseudo-HDL, the approach looks as follows :

 comb: PROCESS (sensitivity list)
 BEGIN <boolean computation>

 -- synthesis off
 <ncl hysteresis function>
-- synthesis on

 END PROCESS comb ;
 reg: ncl_register

<register bindings>

This approach has the following advantages:
• No limitations on combinational constructs
• Easy to rewrite clocked HDL designs
• The same HDL description can be used for

simulation and synthesis.
The remainder of this paper will focus on the
synthesis aspects of the methodology and ignore the
details of simulation.

5. NCL design flow example.

This section illustrates the design flow using an if-
then-else statement that is implemented as a 2-1
multiplexer (MUX). This statement is frequently
used in RTL. Its efficient implementation has a
significant impact on the size of the final circuit.

The RTL VHDL program is shown in Figure 4. In
terms of Boolean functions MUX behavior is
specified by: bsasz ⋅+⋅=

The 3NCL representation of the MUX function is
indistinguishable from the synchronous circuit – its
sum-of-products implementation is shown in Figure
5(a) while Figure 5(b) shows the same circuit
implemented with NAND gates. Optimization of a
larger circuit can be performed at this stage. The
output of the 3NCL stage is always a Boolean
network of two-input logic gates (two-input NANDs
network in particular). The most important step in
understanding the NCL methodology is “what is done
when 3NCL is expanded into dual-rail 2NCL”.

 The expansion is performed automatically by
replacement of each two-input gate by its dual-rail
DIMS implementation. Mapping of NAND gate into
a DIMS functional block is shown in the truth table
in Figure 6 where dual-rail signals a and b are
encoded as follows: N=00, T=10, F=01. This
conversion to DIMS produces a DI circuit because
each DIMS block is strongly indicating [25,26].
Note that it is essential that every minterm in the
function domain be acknowledged by a single C-
element; merging minterms (and corresponding C-
elements) violates DI properties.

 library ncl;
use ncl.ncl_logic.all;
ENTITY ifthen IS PORT (a, b, s : IN ncl_logic;
 z : OUT ncl_logic);
END ifthen ;

ARCHITECTURE ncl OF ifthen IS
BEGIN
test:
 PROCESS(a, b, s)
 BEGIN
 if (s = ’1’) then z <= a;
 else z <= b;
 end if ;
 END PROCESS test;
END ncl ;

Figure 4. RTL VHDL specification

Replacement of gates from Figure 5(b) with DIMS
blocks (see Figure 6) gives a circuit with 12 two-
input C-elements and 3 three-input OR gates (see
Figure 7)

If this circuit were implemented in semi-static
CMOS, it would have 114 transistors versus 14
transistors for a synchronous circuit. The area
penalty could be reduced by merging three C-
elements and the three-input OR gate into a single
CMOS gate that uses 13 transistors. Using three of
these gates and three C-elements requires 63
transistors. Below we will show that by using Design
Compiler for optimization of DIMS circuit this result
can be further improved.

 s
a

b

c

d

z

(a)

a

s

b

x

y

z

(b)

Figure 5. A 2-1 Multiplexer implemented with
(a) Sum-of-products and (b) NAND gates.

In order to optimize with Design Compiler (which
knows how to work with Boolean logic gates but
unaware of threshold gates with hysteresis) the DIMS
implementation needs to be mapped into Boolean
logic. A direct mapping is not possible because C-
elements are sequential. This problem is resolved if
the two phases (set and reset) of a circuit operation
are handled separately during optimization. In fact
for a two-phase protocol the circuit functionality is
fully expressed by the set phase; the reset phase is
performed uniformly for all circuits. The reset phase
is guaranteed automatically by the use of threshold
gates with hysteresis (see Section 6 for details).
Therefore optimizations are applied to the circuit
functioning in the set phase. Optimization of DIMS
implementation starts by remapping DIMS blocks
into “image patterns”, which are Boolean
combinational gates. DIMS block and the

corresponding image gate have equivalent behaviors
in a set phase of circuit operation. The result of
remapping is called smoothing of a DIMS circuit.

D-R
NAND

a

b

out a b out.t out.f

N N 0 0

F F 1 0

N T/F NO
T/F N CHANGE

F T 1 0
T F 1 0
T T 0 1

(a) (b)

a.t

a.f

b.t

b.f

out.t

out.f

out.t

out.f

C

C

C

C

a.t
b.t

a.f
b.f (c)

 Figure 6. Dual-rail NAND-gate: (a) symbol; (b)

truth table; (c) implementation

b.f

a.t

b.t

D-R
NAND

D-R
NAND

D-R
NAND

x.t

s.f

a.f

x.f

y.t

y.f

z.t

z.f

s.t

Figure 7. Dual-rail expansion for NAND
implementation of MUX

To obtain a smoothing circuit let us consider the
functioning of DIMS circuit in a set phase. The
output of a 3NCL stage gives a representation of
Boolean function through a multi-level combinational
circuit of two-input logic gates. Thus, the
corresponding DIMS blocks contain two-input C-
elements and OR gates only. A two-input C-element
is described by the Boolean equation:

)(bazbaz ++⋅= . In the beginning of a set

phase all gates in DIMS circuit are in the NULL
state. Under this initial state (0=== baz) an
equivalent representation for C-element in a set phase
would be an AND gate: z = a ∧ b.

Mapping each C-element of a DIMS
implementation into AND gates gives the required
smoothing circuit (Figure 8 shows a smoothing

circuit for NAND DIMS from Figure 6(c)). This is
the starting point for optimization.

D-R
NAND
Im age

a

b

out

(a)

a.t

a.f

b.t

b.f

out.t

out.f

out.t

out.f

a.t
b.t

a.f
b.f (b)

Figure 8. Image of Dual-rail NAND-gate: (a)
symbol; (b) functionality.

Design Compiler then proceeds in following
steps:
• A smoothing circuit passes technology

independent optimization (which is an
optimization of a Boolean network
representing smoothing circuit)

• Theseus Logic has developed a complete
library of four-inputs threshold gates with
hysteresis (limitation of four inputs comes
from CMOS technology restrictions). This
library for each gate contains also its
smoothing image: AND gate for C-element,
AB+AC+BC gate for 2-of-3 threshold gate
with hysteresis, etc. The optimized
smoothing circuit is mapped into this library
(mapping is done by images)

• The NCL circuit is produced by replacement
of each image by its corresponding threshold
gate from the library.

if-then-else example continued.

Let us apply the above design flow to the synthesis of
the if-then-else statement. Smoothing of the DIMS
circuit produces the following result:

)..

....(..)..

....(......

.......

fats

tafsfafstbfsfbfs

tbtsfbtstatstbfststa

fytxtyfxfyfxtz

⋅+
+⋅+⋅⋅+⋅+

+⋅+⋅⋅+⋅⋅⋅=
=⋅+⋅+⋅=

and

)......(

)......(...

fbfstbtsfbts

fatstafsfafstytxfz

⋅+⋅+⋅•
•⋅+⋅+⋅=⋅=

Taking into account external don’t cares coming from
dual rail encoding (for any dual-rail variable v the
combination 1.. == fvtv is prohibited) the

functions might be simplified to:

)..(..)..(... tafafstbtbfbtstatz +⋅++⋅=

and
)..(..)..(... tbfbfatstafafbfsfz +⋅++⋅= .

Substitutions α = s.f(a.f + a.t); β = s.t(b.f + b.t);
give an optimized network:

z.f = b.f • α + a.f • β; z.t = a.t • β + b.t • α;
Each gate in a network is an image of a
corresponding threshold gate from the library:
��� and are images (with a pattern “A(B+C)”) for
the gate “th23w2” (or 2-of-3 threshold gate with
weight of input A equal to 2),
2 . z.t and z.f corresponds to the pattern (AB+CD) ,
which is mapped into “thXOR” gate.
Gate “thXOR” could be implemented through C-
elements and an OR gate (in a threshold-disjunctive
form (Figure 9 (a))) or by a threshold cascade form
(Figure 9 (b)). Its direct implementation by a single
CMOS gate is shown in Figure 10. The complexity
of the NCL 2-1 MUX implementation is 44
transistors which is about 30% better than the
optimized DIMS circuit.

b.f

a.t

b.t

s.f

a.f

s.t

C

C

C

C thXOR

thXOR

z.t

z.f

th33w 2

th33w2

(a)

b.f

a.t

b.t

s.f

a.f

s.t

thXOR

z.t

z.f

th33w2

th33w2

thXOR

2

2

thXOR

2

2

th22

th22

th24w2

th24w2(b)

Figure 9 NCL MUX implementation. Threshold-
disjunctive (a) and cascade (b) forms

f

e

m

n

e

f

m

n

k

Figure 10. Semi-static CMOS implementation of

thXOR.

6. Validation of optimization.

The validity of transformations that are applied to

the circuit within NCL synthesis is based on two
properties: 1) functional equivalence of optimized
and original circuits and 2) strong indication by gates
in the optimized circuit which is a basis for delay-
insensitivity.

This Section gives a formal ground for justifying
these properties.
The effectiveness and correctness of the optimization
flow are based on two important facts:

• Two phases of operation (set and reset) are
handled separately. In fact optimization is
performed only for set phase since the reset
procedure is uniform (see the comments to
Figure 2)

• During technology-independent multilevel
synthesis Design Compiler performs only
algebraic operations.

dual-rail
package

Boolean circuit
3NCL

DIMS circuit DIMS smoothing
CDIM S Csm ooth

translation

Smooth. optim

Design
com piler

optimisation

Csm _opt

Threshold gates

Design
com piler

tech.mapping

CTG

Hysteresis gates
CTGH

DI
equivalence

 Figure 11. Optimization flow

The overall optimization flow is illustrated in Figure
11. It starts from 3NCL circuit, that apart from 3
value interpretation of Boolean netlist, is of no
difference with its Boolean prototype. 3NCL circuit
might be translated into dual-rail DI implementation
using DIMS technique (the result is denoted by
CDIMS). DIMS implementation is further converted
into conventional basis by replacing C-elements by
AND gates (Csmooth). In fact, the transformation from
3NCL into Csmooth is performed in one step using a
dual-rail package. Though DIMS circuit is an
imaginary object in the optimization flow, we like to
keep it in Figure 11 for better understanding and
establishing the DI equivalence with the final
implementation. Design Compiler first optimizes a
Boolean network for smoothing circuit Csmooth
(resulting in Csm_opt) and then maps it into the library

of threshold gates (CTG). Finally Boolean threshold
gates of CTG are replaced by threshold gates with
hysteresis which gives the implementation CTGH.
The validity of the suggested optimization flow is
based on two facts:

1. The known result that DIMS technique is a
correct DI implementation for 3NCL [25].

2. The equivalence between CTGH and CDIMS
which is established below.

An equivalence between CTGH and CDIMS is proved
by separate consideration of set and reset phases.
Intuitively: for set phase we prove that each object in
optimization flow shows the same behavior, while for
reset phase CTGH has a DI behavior which is correct
by construction (ensured by inherent properties of
gates with hysteresis).
Though the networks for CTGH and CDIMS consist of
sequential gates abusing formality we will refer to
them as Boolean networks bearing in mind that two
phases of network functioning are considered
separately.
 Our first property states that CDIMS and CTGH have
the same input-output behavior.

 Property 1. Boolean networks for CDIMS and
CTGH are equivalent under two-phase operation.

Proof: The sets of primary inputs and outputs for
CDIMS and CTGH are clearly the same. Let us show
that for any input pattern the outputs of CDIMS and
CTGH coincide.

Case 1. Set phase.
In the beginning of set phase all primary inputs,

internal gates and primary outputs of CDIMS are in 0.
Inputs under the two-phase operation change
monotonously. From unateness of gate functions
follows that every gate in a set phase can produce at
most one transition from 0 to 1. Under monotonously
increasing values on its inputs C-element with the
initial value of the output 0 behaves like an AND
gate. The latter proves that in a set phase CDIMS and
Csmooth have the same input-output behavior.
Optimization performs only equivalent
transformations over the networks and Csmooth is
equivalent to Csm_opt. In the mapping of Csm_opt into
threshold gates with hysteresis the set functions of
threshold gates are the same as in Csm_opt. This
guarantees that under the initial state 0 for all gates
and inputs, and monotonous transitions on inputs,
Csm_opt and CTG are equivalent. The latter by
transitivity gives an equivalence of CDIMS and CTGH
in a set phase.

Case 2. Reset phase.
For reset phase we need to prove that transition of

all primary inputs to NULL state (every input is reset
to 0) resets every output to 0. This is guaranteed by
the properties of threshold gates with hysteresis. Let

us levelize the gates in a Boolean network CTGH
according to topological ordering [14]: a gate which
has only primary inputs at its fan-in goes to Level 1,
a gate with fan-ins from (i-1) level or lower goes to
Level i.

All threshold gates with hysteresis have a set
function which is unate and reset function which
corresponds to disjunction (actually inversion of
disjunction) of all fan-ins (see Figure 2). When
primary inputs make transitions to 0 the set function
of every gate at Level 1 take 0 value but the gate will
keep its output value until the reset function will
become 1. This happens when all gate fan-ins are
reset in 0 which is acknowledged by resetting gate
output. The wave of resets is propagating from level
to level and finally reaches primary outputs. Hence
CDIMS and CTGH are equivalent in a reset phase as
well. ∇

The next statement tells about keeping DI
properties of CTGH by claiming that gates with
hysteresis of CTGH implementation are strongly
indicating.

Property 2. Every gate in CTGH network

implementation is strongly indicating.
Proof: Let us consider set and reset phases

separately.
 Case 1. Set phase.

1) Csmooth is prime and irredundant. Indeed,
under the topological ordering of gates, Csmooth

(obtained from CDIMS) has the following
structure: AND gates at odd levels and OR gates
at even, where each AND gate is unate and none
of them cover each other. From this follows that
AND gates are prime and irredundant. AND
gates in the fan-in of a particular OR gates
represents minterms and hence during the
operation of Csmooth fan-ins of OR gates are
always orthogonal. The latter means the
primality and irredundance of Csmooth with
respect to OR gates as well.

2) Prime and irredundant networks are known to
be 100% stuck-at testable [38].

3) In [39] it was proved that under the
algebraic transformations the set of multifault
test vectors is maintained. Moreover if the circuit
obtained by algebraic transformations is
irredundant then the set of test vectors for single
stuck-at faults is also maintained. Hence we can
conclude that Csmooth and Csm_opt have the same
sets of test vestors for single stuck-at faults.

4) Let us consider gates of Csm_opt in
topological order. Suppose that gate g at the first
level of the network is not strongly indicating
with respect to some input a. Algebraic
transformations preserves unateness and hence

we can represent a logic function for g as: Fg = a
H + C, where C and H are not dependent from
variable a. a is not indicated if and only if there
exists a set X of primary inputs such that a=1 in
X and H(X)=1, C(X)=1. Clearly that in Csmooth

vector X is a test for single stuck-at by input a.
Therefore we can include X in the set of test
vectors for Csmooth . However X is not testing
single stuck-at a for a Csm_opt and we obtain the
contradiction with (3). Considerations similar to
[39] can be repeated to internal (upper levels)
gates of Csm_opt as well. Hence Csm_opt is strongly
indicating in a set phase.

5) It was shown in [39] that tree-based
mapping also maintains the set test vectors for
stuck-at faults. Then repeating arguments from
(4) we might conclude that CTG (and CTGH
respectively) is strongly indicating in set phase.

Case 2. Reset phase. The strong indicatibility of
CTGH in reset phase directly follows from the
properties of threshold gates with hysteresis (see the
proof of Property 1). ∇

7. Experimental results

The results obtained through the suggested

approach are compared in two ways.
First, we compare the synthesis netlist to NCL

designs entered with schematic capture. Since our
goal is to increase our design productivity by using
synthesis, this is an important measure. The numbers
on manual designs are taken from the Theseus Logic
design division, which is experienced in NCL
implementations. They have designed and fabricated
18 chips (five of them over 150,000 transistors with
the biggest one of 660,000 transistors). The
synthesized designs are produced by using Design
Compiler from Synopsys. Error! Reference source
not found. below shows the comparison. Area
results are in number of transistors for a semi-static
prototype library.

Table 1. NCL manual vs. synthesized designs.

Circuit Manual Synthesis ratio
and4 66 68 103%
test7 140 126 90%
clipper 339 212 63%
and16 352 336 95%
set_cnt 238 198 83%
case 594 482 81%
bit_cnt 1059 1072 101%
sync_state 1008 814 81%
sum 4346 3380 78%

With the exception of two circuits, the
implementations obtained by Design Compiler are
excellent. Design Compiler does a good job
optimizing NCL circuits and should be extremely
useful in our design flow.

The second area of comparison is NCL against
synchronous designs. The NCL MUX (from Section
5) requires 44 transistors against 14 transistors of
synchronous implementation, which is 3.1 times
larger. This penalty is similar to a Viterbi decoder
that we translated straight from the clocked design
(See Error! Reference source not found.). The
results are better if we adapt the code to NCL. For
example, we downloaded benchmarks used to
compare HDL synchronous synthesis tools from
different vendors [40]. The first one, hostfird is a
thirty-two by 16-bit unidirectional FIFO buffer. By
redesigning it, we significantly reduced the area
because asynchronous designs are ideally suited to
FIFOs, whereas the clocked design requires two
counters, empty and full logic, two decoders, and two
multiplexers. The second design, addrconv compares
favorably. The clocked data used the same version of
Design Compiler and a library based on LSI Logic’s
LCB500K library [41]. The gate count is the number
of actual gates, not the equivalent gate count, a
number often used for comparison and is typically
four transistors per gate.

Table 2. Synchronous vs. NCL designs.

gates transistors

module clock NCL ratio clocked NCL ratio

decoder 1010 2344 2.3 8788 30574 3.5

hostfird 1691 1123 0.7 23498 26500 1.1

addrcon 41 70 1.7 524 852 1.6

A more than three times penalty in transistors when

comparing NCL and synchronous implementations is
not surprising. A dual-rail implementation
immediately leads to circuits that are twice the size;
the rest of the area increase is due to effective delay-
insensitivity that needs to be ensured in NCL circuit
(though by relaxing DI requirements (using timing
assumptions e.g.) one can make area trade-offs).

In the suggested design flow the area penalty can
be large. This could be unacceptable for a stand-alone
design. However, the prediction [42] tells that in the
future ages of SoC most of the chip area (up to 70-
75%) will be occupied by memories. For that case a
3 times increase in the rest of circuitry could be an
acceptable trade-off for ease and speed of design
flow.

We can reduce the transistor count by designing
circuits that fit NCL’s features better. For example,
in the if-then-else case, we can reduce the transistor
count in one of two ways. If the input data is
orthogonal, then we can use an OR gate instead of a
multiplexer. This solution requires less logic than
the regular Boolean case (MUX). If we compromise
the delay insensitivity by allowing isochronic forks
on the latch inputs we can use a multiplexer that
requires 24 transistors instead of 44, making it 1.7
times larger than the synchronous counterpart, not
3.1.

8. Conclusions and future work.

Theseus Logic is just beginning the development

and application our NCL synthesis tools. The
conclusion at this stage of our work is simple: we
have a working design flow for NCL based on
commercial synchronous HDL tools. We can design
asynchronous (NCL) circuits as easily as one can
design traditional synchronous designs. The results of
the synthesis are acceptable, at least by our customers
[43].

The main concerns for us now are verification of
the timing assumptions behind the isochronic forks
(“orphans” in NCL terminology) and reducing the
area overhead.

At our current level of technology, (CMOS
���� P��DOO�RUSKDQV�LQ�RXU�GHVLJQV�SURYHG�WR�EH�VDIH�
by simulation. For future technologies, Theseus
Logic is developing a special CAD tool to discover
dangerous orphans.

There are several ways to reduce area without
losing delay insensitivity. For example, we typically
get a large area penalty if we generate asynchronous
(NCL) circuitry from synchronous RTL code that has
been modified only so it can be synthesized.
However, the area can frequently be reduced through
redsign. For example, an asynchronous design could
be less global that synchronous (each register has a
separate request instead of a clock). As mentioned in
the if-then-else example, a more detailed
consideration of register interactions can notably
reduce area. One of our future tasks is a HDL
preprocessor that could automatically replace some
of the typical RTL constructions (like the if-then
statement that infers a MUX) by a more effective
NCL implementation.

There are several more technical issues that we will

address in the synthesis flow in the near future.

• Write DesignWare components to improve
performance for arithmetic units by
instantiating hand-designed components.

• Adapt the flow to handle Verilog.
Currently, we can synthesize Verilog code,
but not simulate it.

• We do not want to write a tool to optimize
the netlist, since Design Compiler does its
job well. However, we would like to reduce
the netlist using simple peephole
optimizations. We have already started the
process and are able to merge gates used for
registration with their input gates.

Acknowledgment. We thank Luciano Lavagno for
useful comments on the draft of this paper.

REFERENCES

1. Scott Hauck. Asynchronous design methodologies: An
overview. Proceedings of the IEEE, 83(1):69-93, January
1995.
2. C. H. (Kees) van Berkel, Mark B. Josephs, and Steven
M. Nowick. Scanning the technology: Applications of
asynchronous circuits. Proceedings of the IEEE, 87(2):223-
233, February 1999.
3. Beth Martin. Technology 1999. Analysis and forecast
issues. Electronic Design Automation. IEEE Spectrum
January 1999 Volume 36 Number 1.
4. Kees van Berkel, Joep Kessels, Marly Roncken, Ronald
Saeijs, and Frits Schalij. The VLSI-programming language
Tangram and its translation into handshake circuits. In
Proc. European Conference on Design Automation
(EDAC), pages 384-389, 1991.
5. J. Cortadella, M. Kishinevsky, A.Kondratyev, L.
Lavagno, and A. Yakovlev. Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and
Systems, E80-D(3):315-325, March 1997.
6. K.Yun, P. Beerel, V. Vakilotojar, A. Dooply, J. Arcco.
The Design and Verification of A High-Performance Low-
Control-Overhead Asynchronous Differential Solver, In
Proc. of International Symposium on Advanced research in
Asynchronous Circuits and Systems, The Netherlands, pp
140-153, 1997
7 . Kees van Berkel, Hans van Gageldonk, Joep Kessels,
Cees Niessen, Ad Peeters, Marly Roncken, and Rik van de
Wiel. Asynchronous does not imply low power, but In
Anantha Chandrakasan and Robert Brodersen, editors, Low
Power CMOS Design, pages 227-232. IEEE Press, 1998.
8. W.A. Lien, P.Day, C.Faransworth, D.L.Jackson, J.Liu,
and N.Paver. Noise in a self-timed and synchronous
implementation of a DSP. Unpublished, White Paper,
Cogency Technology Inc., 1997.
9. C. Shannon. A Symbolic analysis of relay and switching
circuits. Trans. AIEE, Vol.57 (1938), pp. 713-723.
10. Stephen H. Unger. The Essence of Logic Circuits. IEEE
Press, second edition, 1997.

11. D. Sylvester, K. Keutzer. Getting to the bottom of Deep
Submicron, In Proc. Of International Conference on
Computer-Aided Design, ICCAD-98, pp 203-211, 1998
12. Steven M. Nowick and David L. Dill. Automatic
synthesis of locally clocked asynchronous state machine.
In Proc. International Conf. Computer-Aided Design
(ICCAD). IEEE Computer Society Press, pp.318-321,
November 1991.
13. A. Kondratyev, M. Kishinevsky, A. Taubin, J.
Cortadella, and L. Lavagno. The use of Petri nets for the
design and verification of asynchronous circuits and
systems. Journal of Circuits Systems and Computers,
8(1):67-118, 1998.
14. R. K. Brayton, G.D. Hachtel, and A.L. Sangiovanni-
Vincentelli. Multilevel Logic Synthesis. Proceedings of the
IEEE, Vol.78, No.2, February 1990, pp,264-300
15 . Alain J. Martin. Programming in VLSI: From
communicating processes to delay-insensitive circuits. In
C. A. R. Hoare, editor, Developments in Concurrency and
Communication, UT Year of Programming Series pages 1-
64. Addison-Wesley, 1990.
16 . T. Verhoeff. Delay-insensitive codes – An overview.
Distributed Computing, vol. 3, no 1, pp. 1-8, 1988.
17. Karl M. Fant and Scott A. Brandt. NULL conventional
logic: A complete and consistent logic for asynchronous
digital circuit synthesis. In International Conference on
Application-specific Systems, Architectures, and
Processors, pages 261-273, 1996.
18. Gerald E. Sobelman and Karl Fant. CMOS circuit
design of threshold gates with hysteresis. In Proc.
International Symposium on Circuits and Systems, pages
61-64, June 1998.
19. Victor I. Varshavsky, editor. Self-Timed Control of
Concurrent Processes: The Design of Aperiodic Logical
Circuits in Computers and Discrete Systems. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1990.
20. C. Sims and H. J. Gray. Design criteria for
autosynchronous circuits. In Proc. Eastern Joint Computer
Conf. (AFIPS), volume 14, pages 94-99, December 1958.
21. Zvi Kohavi. Switching and Finite Automata Theory.
McGraw-Hill, 1978.
22. M. L. Dertouzos. Threshold Logic: A Synthesis
Approach. MIT Press, 1965.
23. Charles L. Seitz. System timing. In Carver A. Mead and
Lynn A. Conway, editors, Introduction to VLSI Systems,
chapter 7. Addison-Wesley, 1980.
24. Ilana David, Ran Ginosar, and Michael Yoeli. An
efficient implementation of Boolean functions as self-timed
circuits. IEEE Transactions on Computers, 41(1):2-11,
January 1992.
25. Jens Sparso and Jorgen Staunstrup. Delay-insensitive
multi-ring structures. Integration, the VLSI journal,
15(3):313-340, October 1993.
26. Christian D. Nielsen. Evaluation of function blocks for
asynchronous design. In Proc. European Design
Automation Conference (EURO-DAC), pages 454-459.
IEEE Computer Society Press, September 1994.
27. Daniel H. Linder and James C. Harden. Phased logic:
Supporting the synchronous design paradigm with delay-
insensitive circuitry. IEEE Transactions on Computers,
45(9):1031-1044, September 1996.

28. Mark Dean, Ted Williams, and David Dill. Efficient
self-timing with level-encoded 2-phase dual-rail (LEDR).
In Carlo H. Sequin, editor, Advanced Research in VLSI,
pages 55-70. MIT Press, 1991.
29. Peter Vanbekbergen, Albert Wand, and Kurt Keutzer. A
design and validation system for asynchronous circuits. In
Proc. ACM/IEEE Design Automation Conference, June
1995.
30. M. Renaudin, P. Vivet, and F. Robin. A design
framework for asynchronous/synchronous circuits based on
CHP to HDL translation. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, pages 135-144, April 1999.
31. N.Starodoubtsev, A. Yakovlev and S. Petrov. Use of
VHDL environment for interactive synthesis of
asynchronous circuits Proceedings VHDL Forum in Europe
Spring'96 Working Conference, Dresden, Germany, May
1996, pp. 21-33.
32. Ivan Blunno and Luciano Lavagno. Towards a
language-based design flow for asynchronous circuits. In
Proc. International Workshop on Logic Synthesis, June
1999.
33. ModelSim from Model Technology -
http://www.model.com/
34. A.Rushton. VHDL for Logic Synthesis. 2-nd ed.,
J.Wiley, 1998.
35. Steve Carlson. Introduction to HDL-based Design using
VHDL. Synopsys Inc, 1991. See also - Design Compiler 99
- http://www.synopsys.com/products/logic/logic.html
36. Exemplar's LeonardoSpectrum -
http://www.mentorg.com/leonardo_spectrum/index.html
37. Envisia Ambit synthesis tool -
http://www.cadence.com/technology/chip/products/
38. D.Scherz, G. Metze. On the design of multiple fault
diagnosable networks. IEEE Trans. Comput., vol. C-21,
August, 1972
39. G. Hatchel, R. Jacoby, K. Keutzer, C. Morrison. On
properties of Algebraic Transformations and the Synthesis
of Multifault-Irredundant Circuits. IEEE Transactions on
CAD, vol.11, N 3, pp. 313-321, 1992
40. Brian Dipert. Hands-On Project: Synthesis Shoot-Out at
the EDN Corral. EDN magazine
Issue 19: Sept 11, 1998 http://www.ednmag.com/
ednmag/reg/1998/091198/19df2.htm
41. LCB500K Preliminary Design Manual, LSI Logic
Corporation, Milpitas, CA, 1995.
42. International Technology Roadmap for
Semiconductors, 1999 edition. -
http://www.itrs.net/1999_SIA_Roadmap/Home.htm
43. David Lammers. Motorola taps data-driven logic from
Theseus for SoC design. EE Times, 10/22/99, p.p.1,6.

