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Abstract— This paper proposes a technique for creating a combi-
national logic network with an output that signals when all other
outputs have stabilized. The method is based on dual-rail encoding, and
guarantees low timing overhead and reasonable area and power overhead.
This is achieved by adopting a set/reset behavior that is reminiscent of the
operation of dynamic logic, but which is suitable for static logic as well.
The transformation from single-rail to dual-rail can be applied both at
the technology-independent and at the technology-dependent levels. We
also discuss various scenarios in which completion detection can be used
to measure the delay of a synchronous circuit at fabrication time or at
run time, and of an asynchronous circuit at run time. We conclude by
showing, on a large set of benchmarks, the effectiveness of the proposed
technique.

I. INTRODUCTION

Variability is a growing concern to digital circuit designers. Pa-
rameters determining the delay of gates and wires vary broadly both
between chips and within chips. While statistical timing analysis tech-
niques try to apply various empirically derived models to combine
together all sources of variability along a critical path, designers
would like to have a way to measure rather than just predict the
actual delay of a circuit. The reason is that a large fraction of
circuits work faster or much faster than worst-case analysis would
predict. Moreover the range of variation of actual performance is
very broad even between nominally identical chips produced by the
same fabrication line.

Unfortunately delay fault testing is a costly proposition, because it
requires the designer to start from a very expensive initial two-level
representation, and then use only a subset of the logic optimization
techniques [1]. Moreover, delay test patterns are more numerous
than functional fault test patterns, and hence require more time
on expensive testing machines. Microprocessors can be tested for
operation speed, and binned accordingly, thanks to the very high
levels of controllability and observability, and to the availability of
functional patterns that test known worst-case paths.

The goal of this paper is to propose a technique, derived from the
properties of dynamic logic circuits but adapted to work with any
static CMOS library, that enables ASIC designers to easily measure
exactly when a combinational circuit is done computing. In practical
terms, we guarantee that without almost any timing overhead and
with some area overhead, every combinational logic block has an
additional completion detection output that rises a few gate delays
after the last primary output has settled. This paper improves with
respect to the state of the art in the following directions, by proposing:

• a technique for dual-rail network creation with much lower area,
power and delay overhead than previously known techniques,
and requiring only standard static CMOS gates.

• a novel method, using timing assumptions rather than comple-
tion detection, for fast reset to the spacer (inactive) state.

• an architecture for completion detection based on standard com-
binational gates, rather than Muller C elements, again exploiting
timing assumptions in the reset phase.

We show in Section VI that circuits obtained using our logic synthesis
flow have a nominal delay which is on average within 33% of the
corresponding circuit optimized using traditional techniques, with a
100% area overhead. However, by using the completion detection
output their true delay can be measured and used to reliably latch
their output values, thus reducing the margins that must be taken at
design time. Moreover, most of this overhead is due to the completion
detection network, that currently is generated to check all outputs, not
just critical ones, and thus can be further optimized.

Regarding power consumption, we can assume that it will increase
approximately by a factor of 2, because our circuits do not have
any glitches (which are known to consume about half of the active
power in combinational logic), but have on average twice as much
capacitance and twice as many transitions as traditional combinational
logic. The increase in transitions due to the set/reset phase operation
described below, approximately offsets the reduction due to absence
of glitches. Leakage and dynamic power thus approximately doubles,
due to the doubling of active area and wiring. 1

Two key assumptions motivate the use of circuits with completion
detection:

• The difference between worst case and true delays is in the
range of 60-100% (see the detailed breakdown of worst case
delay penalties in Section II), and will most likely increase over
time.

• The fraction of “truly critical” register-to-register combinational
logic blocks is relatively small (10-20% according to internal
sources). Many such blocks, especially in ASIC designs, have
significant timing slack.

Based on these two assumptions, we believe that, by using cir-
cuits with completion detection, one can achieve at least 25% of
performance increase with 10% to 20% penalty in power and area
purely remaining in the synchronous domain. In this paper we are
considering the following application scenarios for our design flow:

1) Fully synchronous design, when the circuit must be tested
off-line for operation speed and binned accordingly. In this
scenario, a few test patterns are applied (preferably in normal
operation mode, but also possibly in scan mode) in order to
sensitize the longest paths, and the completion detection output
is sensed in order to determine the speed.

2) Almost synchronous design, when the circuit must be robust
with respect to dynamic parametric variation, due e.g. to
temperature and/or supply voltage. In this case, failures to raise
the completion output in time can be used to slow down or stop
the clock, or to trigger a system reset in the worst case.

3) Asynchronous circuit design, in which one takes advantage
of both parametric variations and data-dependent computation
times (e.g. it is well-known that the average case delay for a

1Results including power consumption and post-routing extracted capaci-
tances will be included in the final version of the paper, if accepted.
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Fig. 1. Delay penalties in the modern synchronous methodology

ripple carry adder is logarithmic in the number of bits, assuming
uniformly distributed input values).

4) Low-EMI design, in which the circuit must absorb current from
its power supply with patterns that do not depend on the actual
data values, in order to minimize emission and make security
attacks based on Differential Power Analysis much harder.

The paper is organized as follows: Section II provides the mo-
tivation for our contribution. Section III describes previous work
in the area. Section IV provides the theoretical background to
justify the correctness of our approach and discusses application
scenarios. Section V illustrates the two design flows that we have
developed. Section VI describes experimental results showing their
effectiveness.

II. MOTIVATION

The main advantage of completion detection in combinational cir-
cuits is the ability to run the circuit using true rather than worst-case
delays. Figure 1 shows the delay penalty stemming from two main
factors: a) static timing analysis technology (the industry standard
for doing timing sign-off) that estimates delays for the worst case
scenario and b) clocking overhead in the conventional synchronous
methodology.

These penalties are:

1) The difference in the library files between typical and worst
case. This may account for up to a 50% penalty.

2) Conservative estimation of the slowdown caused by signal
integrity violations: namely IR drop and crosstalk. Each of them
could be responsible for a 10% penalty [2], [3].

3) Variations of delays due to the process variations. Here we
assumed it to be about 30% for the latest technologies (see
e.g. [4]), though more aggressive forecasts also exist.

4) Clock skew, which is about 10% of the clock cycle for the
modern ASIC methodology [5].

5) Non-ideal balancing of synchronous stages, which increases the
clock cycle with respect to the mean cycle time by up to 20%
[5].

The first three sources come from the combinational logic itself,
while the last two are coming from the clocking scheme.

Summing these penalties gives a quantitative estimation of the
margin that separates true from worst-case delays. This margin shows
the optimization room that is available when implementing circuits
with completion detection. Part of this advantage is offset by the over-
heads due to the dual rail conversion, the two-phase operation and the
completion detection logic itself. However, as shown in Section VI,
these penalties are lower than the combinational logic penalty cited
above. Clock penalties, as well as exploiting data-dependent delays,
may provide additional performance improvements when the circuits
with completion detection are used in an asynchronous environment,
as discussed below.

III. PREVIOUS WORK

Our work has been inspired by two active research areas: asyn-
chronous design and synthesis of dynamic logic.

Asynchronous systems do not rely on timing assumptions to
reason about settling of data at the circuit outputs. Instead they
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Fig. 2. Two ways of dual-rail implementation for AND node

coordinate behaviors in a causal way. As a result, logic synthesis for
asynchronous circuits needs to take care not only of the functionality
but also the proper ordering of the gates switching. This is achieved
by introducing redundancy a) in the protocol with which the circuit
input/output is handled (also called “mode of operation”) and b) in
the circuit itself, in order to derive information about completion of
the evaluation.

One of the most popular operation modes in asynchronous design
alternates data communication between set and reset phases [6], with
the two-fold goal of: a) providing a clean separation between two
consecutive data sets and b) ensuring monotonic behavior at circuit
outputs, avoiding spurious transitions known as hazards [7]. Circuit
inputs and outputs change from a spacer in the reset phase, which
carries no data information and serves only synchronization purposes,
to a proper data codeword during the set phase, and then back to the
spacer in the next reset phase.

The simplest scheme for such communication is given by dual-
rail encoding, in which each signal a is represented by two wires
a.t and a.f : a = 1 is encoded as a.t = 0, a.f = 1, and a = 0
is encoded as a.t = 1, a.f = 0. The spacer for the reset phase is
usually encoded as a.t = a.f = 0 (the complementary encoding,
with spacer a.t = a.f = 1 and exactly one signal falling to indicate
a valid codeword, can also be used). An attractive property of dual-
rail encoding is the capability to determine that a proper codeword
has settled by checking the codeword itself, without making timing
assumptions. Indeed, if the circuit is hazard-free, then the fact that
exactly one of the wires in each dual-rail pair goes high, tells that
the output has settled and the set phase is over.

Two regular methods for implementing an arbitrary Boolean net-
work with two-phase operation and dual-rail encoding were suggested
in [8] and [9]. In both techniques every node of a network represent-
ing Boolean function f is implemented by two logic cones f.t and
f.f , where f.t represents the original function f , while f.f represents
its inverse f . In the DIMS method [8] f.t and f.f are implemented
as sums of minterms (see Figure 2(b) e.g. for the implementation of
AND function), with every minterm being realized by a C-element
(a sequential gate with equation c = ab + ac + bc). When inputs
make transitions from the spacer to a codeword, then one (and only
one) output rises. Moreover, since only one of the minterms in the
cone can rise during the set phase, the rising of the corresponding
output rail happens as the last transition in the cone. In this way the
information about completion is transmitted from inputs of the cone
to its outputs, providing 100% observability for every circuit path.
This advantage, however, comes at a significant cost, because none
of the conventional logic optimizations are possible in DIMS circuits
without losing completion detection properties.

This difficulty is partially addressed in the NCLX design flow [9]
which is the closest approach to ours. In [9] a dual-rail network is
created by 1) simply adding duals to every gate and 2) eliminating
inversions by using corresponding complementary rails. Completion
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detection is carried out separately from the data evaluation (see
Figure 2(c), which uses an OR gate as a completion detector for
f.t and f.f ).

Partitioning a circuit into loosely connected functional and comple-
tion detection parts allows a designer using the flow described in [9]
to optimize and implement circuits using the full power of logic
synthesis and EDA tools. This results in lowering the area penalty,
which however cannot be reduced beyond 2x because of the dual-rail
encoding.

Such area overhead may or may not be acceptable depending
on other advantages (speed/power) that these circuits could provide.
The main goal of detecting completion is to cover the increasing
gap between “true” and worst case nominal delays. Unfortunately
this is impossible in both approaches mentioned above, because the
speed advantage, due to using the true delays instead of worst-case
approximations, is offset by the need to use two operational phases
(set and reset) in a single computational cycle. The nearly 2x delay
penalty from the two-phase operational mode is difficult to recover
through reducing delays from worst case to true.

Dual-rail networks with two-phase operation are also used in
dynamic logic synthesis [10], [11]. In the following we discuss
about domino logic, even though most considerations extend to
other dynamic logic styles. A major limitation of domino logic is
that it can only implement non-inverting logic (other styles require
strict layering of, e.g. pre-charged and pre-discharged gates). Hence
complements of internal signals need to be realized through separate
cones of logic using dual functions and giving rise to partially or
fully dual-rail circuits. Similar to asynchronous systems, dynamic
circuits work in two phases, namely pre-charge and evaluate. This
feature, however, allows dynamic logic to achieve significant speed
improvements over static CMOS, because the reset (pre-charge) phase
is very short. Unfortunately, the inherent noise sensitivity and charge-
sharing problems associated with this design style limit its application
to small timing-critical portions of systems, which are usually hand-
designed.

Our paper makes an attempt to take the best of both worlds and
develop a design flow that combines performance advantages inherent
in true delay measurement, with the robustness and simplicity of
static standard cell CMOS, all within a standard ASIC design flow.
The objective of this this work in terms of area-delay trade-offs is
shown in Figure 3. The figure already takes into account the fact
that circuits with completion detection (our work, DIMS and NCLX)
work with true delays, and hence faster than static CMOS.
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IV. MONOTONIC BOOLEAN NETWORKS

A. Hazards

Glitches in combinational circuits are called hazards [7]. A hazard
is a transient change on a signal caused by the gate propagation
delays. Figure 4 shows an example of hazard. The change 1 → 0 at
input X may produce a static-1 hazard at signal T and a dynamic
hazard at signal Z. A sequence of events that produce such behavior
is

X ↓ S ↓ T ↓ Y ↑ Z ↓ R ↑ T ↑ Z ↑ W ↓ Z ↓ .

To characterize the dynamic behavior of a combinational circuit we
need to define the allowed transitions at the primary inputs of the
circuit. We will focus on a specific set of transitions that are relevant
for the work in this paper.

Definition 4.1 (Monotonic Input Transition (MIT)): A monotonic
input transition consists of the change in the value of a subset of
primary inputs in the same direction, i.e. all changes are either 0 → 1
or 1 → 0.

Definition 4.2 (Monotonic operation mode (MOM)): The mono-
tonic operation mode works by iteratively alternating two sub-phases,
each of which is a Monotone Input Transition (MIT): (a) a subset
of the inputs changes monotonically and (b) a subset of the outputs
changes monotonically.
In order to use this mode of operation for completion detection, the
set of changing outputs must be known in advance. In particular,
with dual-rail encoded signals exactly one input and one output in
every pair changes value in each phase. Dual-rail operation normally
alternates (a) and (b) sub-phases in which half of the inputs and
half of the outputs rise in the set phase, with (a) and (b) sub-phases
in which all inputs and outputs return to zero in the reset phase.
However, MOM and most of the definitions and theorems in this
paper do not require dual-rail encoding and are equally suitable, e.g.,
for 1-of-4 encodings or for dual-rail encodings in which the spacer
is encoded 11, rather than 00.

We now define a class of Boolean networks that are hazard-free
under MOM.

B. Monotonic Boolean networks

We assume the reader to be familiar with the basic concepts on
Boolean functions and Boolean networks. Each non-input node ni of
a Boolean network has an associated Boolean function fi in terms
of its local fanin.

Definition 4.3 (Unate functions): A function f is increasing2 (de-
creasing) in a variable xi if changes in xi from 0 to 1 cannot cause
a change in f from 1 to 0 (from 0 to 1). A function is unate in a
variable if it is increasing or decreasing in that variable.

2Past work called this local characteristic of a gate “monotonicity”. Here
we call it unateness, while we use the term “monotonic” for a global property
of the gate function, with respect to primary inputs.
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Now we introduce the concept of monotonicity of the nodes of a
Boolean network. Monotonicity is related to the fact that each node
can be assigned a positive or negative phase in the network, which
reflects the direction in which its output changes due to a change in
value of primary inputs.

Definition 4.4 (Monotonicity): A node ni with local function fi is
positive if for each input xi in its local fanin it holds that

• xi is positive and fi is increasing in xi, or
• xi is negative and fi is decreasing in xi.

A node ni with local function fi is negative if for each input xi in
its local fanin it holds that

• xi is negative and fi is increasing in xi, or
• xi is positive and fi is decreasing in xi.

A node is monotonic if it is either positive or negative.
While this definition works for any network which admits a consistent
labeling of each node (including primary inputs and primary outputs)
as positive or negative, for the sake of simplicity in the following we
assume that all primary inputs are dual-rail encoded with spacer 00,
and hence are defined to be positive.

Definition 4.5 (Monotonic and positive Boolean networks):
A Boolean network is monotonic (MBN) if all its nodes are
monotonic. An MBN is positive (PBN) if all its nodes are positive
(e.g. a domino logic network is positive).

Theorem 4.1 (Hazard-free behavior of an MBN): An MBN is
hazard-free under a monotonic input transition.

Proof: Let us consider the case in which a subset of inputs
changes from 0 to 1. We will prove that the propagated changes
can produce at most one transition in each node, which can only be
increasing in positive nodes and decreasing in negative nodes. The
proof is done by induction on the depth of the nodes.

For level 0 (primary inputs), all nodes are positive and at most
one change 0 → 1 is produce at each input, by the definition of
MIT. Assume that the monotonicity of changes holds up to level
i− 1 and let us analyze the case for a positive node n at level i (the
proof is similar for a negative node). By the induction hypothesis,
monotonicity holds for any fanin signal of n. If a fanin signal x
comes from a positive node, then the function is increasing in x. If
a fanin signal y comes from a negative node, then it is decreasing in
y (otherwise the network would not be a MBN). The only possible
changes in x and y are 0 → 1 and 1 → 0, respectively. No matter
in which order they occur, the only possible propagated change to n
is 0 → 1, thus preserving the monotonicity up to level i.

The proof for the change 1 → 0 at the inputs is similar.
Figure 5 depicts a monotonic and a non-monotonic network. The

labels P and N indicate the positive and negative nodes, respectively.
The network in Fig. 5(b) is not monotonic since it is not possible
to assign a phase to the output node. Note that the input transition
000 → 111 applied to all inputs may produce a glitch at the output,
if the inverter and the OR gate switch before the AND gate.
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C. Use cases

Combinational logic with completion detection can be used in
two different environments: synchronous and asynchronous (see
Figure 6(a) and (b)).

In the synchronous environment, the output of the completion
detector (denoted by CD in Figure 6(a)) is used to check whether a
circuit can work at a given clock frequency. If a change at the output
of a completion detector happens before the clock edge, then data
inputs of receiving flip-flops have settled before the clock rises and
no synchronization fault occurs. If, however, the completion detector
makes a transition after the clock edge, then there are chances that
erroneous values have been stored in flip-flops, and the error signal
must be raised.

The error signal may be used:

• during production test to bin chips according to their perfor-
mance

• to provide an on-line testing capability, assuming that the system
may roll back and repeat the computation cycle or is capable of
stretching the clock.

In order to give a qualitative estimation of the potential perfor-
mance benefits from using circuits with completion detection, let
us compare their cycle time with the cycle time of conventional
synchronous designs.

The cycle time in a synchronous circuit must satisfy the following
timing constraints:
CLmax +Tskew +Tsetup +TCQ max ≤ Tcycle setup constraint
CLmin + TCQ min ≤ Thold + Tskew hold constraint

In these inequalities CLmax and CLmin stand for worst and best
case propagation delays through combinational logic, while TCQ is
the clock-to-output delay of a flip-flop.

The cycle time in a circuit with a completion detection also needs
to satisfy hold and setup constraints which are:
CLtrue +Tskew +Tsetup +TCQ max +Treset max +TCD ≤ Tcycle

CLmin + TCQ min ≤ Thold + Tskew

where CLtrue is the true delay of combinational logic, while
TCD and Treset max are the delay overheads of the architecture with
completion detection (delays of the completion detector and reset
phase respectively).

A circuit with completion detection must satisfy an additional
timing assumption in order to function correctly in the reset phase:



Treset min ≤ Thold

where Treset min is the minimum delay for propagating spacer
values to the outputs of the combinational logic. This constraint is
similar to the hold constraint and is needed to ensure that spacer does
not overwrite data values before they are stored in registers.

The reset signal can be derived directly from the clock, assuming
that it has an (asymmetric) duty cycle of Treset max/Tcycle. In this
case the reset phase is triggered by the rising edge of the clock and
its duration is defined by the width of a clock pulse.

One can see that a synchronous architecture with completion
detection provides a performance advantage if
CLtrue + Treset max + TCD < CLmax

Experimental results give a quantitative estimation of Treset max

and TCD , showing that the conditions of the above inequality are
indeed met very often.

In order to use circuits with completion detection in an asyn-
chronous environment, one can exploit standard micropipeline-based
architectures [12]. For example, they are suitable for desynchronized
circuits [13], which are derived from synchronous synthesizable spec-
ifications. The only difference is that the request signals triggering
controllers are derived from completion detectors rather than from
matched delays, as shown in Figure 6(b).

V. TRANSFORMATIONS TO OBTAIN AND PRESERVE A

MONOTONIC BOOLEAN NETWORK

The questions that we want to address in this section are the
following:

1) Given an arbitrary Boolean network, how do we transform
it into an MBN with no delay increase and minimum area
increase?

2) Given an MBN, which transformations and optimizations can
we apply, such that the result is another MBN?

A. Conversion to Monotonic Boolean Network

We can generate an MBN from a generic Boolean network by using
a special encoding of inputs and outputs, the dual-rail code, using
two different procedures. The first one operates on a technology-
independent Boolean network, generates a PBN, and requires tech-
nology mapping afterward. The second one operates on a technology-
mapped Boolean network and generates an MBN by only using De
Morgan’s laws. The result of both can also be optimized, by using
the techniques listed in Section V-B, which preserve MBN.

Technology-independent (TI) conversion

1) From each primary input x, two primary inputs xt and xf

are created in the DR circuit to represent the true and false
evaluations of x.

2) From each node implementing the function yi =
fi(x1, . . . , xn), two nodes are created with the functions

yt
i = DR (fi(x1, . . . , xn)) yf

i = DR
`

fi(x1, . . . , xn)
´

where DR denotes the transformation of the function into
positive unate, changing also its input signals from xi to xt

i

and xf
i as appropriate. Formally, the transformation DR can be

recursively defined as follows, using Shannon’s expansion:

DR(0) = 0 DR(1) = 1

DR(x · fx + x · fx) = xt · DR(fx) + xf · DR(fx)

As an example, the function

y = ab + b(c + d)

would be converted into

yt = DR
`

ab + b(c + d)
´

= atbf + bt(ct + df )

yf = DR
“

ab + b(c + d)
”

= (af + bt)(bf + cfdt)

As a particular case, the inverters (y = x) are eliminated and
converted into wires (yt = xf and yf = xt).

Figure 7 depicts a complete example of how a single-rail circuit
(a) is converted into a dual-rail circuit (b). After technology mapping,
the circuit in Fig. 7(c) can be obtained.

We are now interested in proving that the behavior of a dual-rail
circuit is equivalent to that of the single-rail. The following theorem
indicates that the dual-rail equivalence of the inputs implies the dual-
rail equivalence of the outputs.

Theorem 5.1: Given a function y = f(x1, . . . , x
n) and the as-

sumption that xi = xt
i = xf

i , for any input xi, then it holds that
y = yt = yf .

Proof: By induction on the number of variables in the support of
f . It clearly holds for 0 variables, since DR(0) = 0 and DR(1) = 1.

Let us assume that it holds for functions up to n − 1 variables
and that the support of f has n variables. By choosing one splitting
variable x, we have

yt = xtDR(fx) + xf DR(fx)

By induction we know that DR(fx) = fx and DR(fx) = fx, since
the size of support of fx and fx is smaller than n. Therefore,

yt = xfx + xfx = y.

The proof is similar for yf .

Technology-mapped (TM) conversion

This procedure assumes that each gate used in the technology
mapped netlist has a dual gate, based on De Morgan’s law. This
assumption is satisfied by most modern gate libraries.

1) For each gate in the circuit, producing signal yt
i from signals

yt
j , . . . , y

t
k, add a dual gate using De Morgan’s law, producing

signal yf
i from signals yf

j , . . . , yf

k . Inverters yi = yj are simply
replaced by wires connecting yt

i = yf
j and yf

i = yt
j .

2) Label each node as positive or negative, starting from primary
outputs. Labeling is done as in Section IV-B, only in the
opposite direction, in order to perform phase correction at
inputs if needed. In case multiple paths of different length
reconverge at a node, we give priority to the longest path, to
which we do not want to add inverters in the following step.

3) For each gate input or primary input which is inconsistently
labelled, insert an inverter connecting it to the dual signal.
E.g. an input of gate yt

i connected to signal yt
j and requiring

the opposite phase is connected to yf
j via an inverter which

does not change functionality but corrects the phase.
Figure 8 depicts a complete example of how a technology-mapped

circuit is converted into a dual-rail circuit. Steps 1 and 2 are shown
in Figure 8(b). Levels are labelled from the outputs to the inputs,
where P indicates a positive net, and N indicates a negative net. Step
3 is shown in Figure 8(c), where phase correction at the inputs takes
place and wires are swapped and inverters added.

Both procedures are conceptually equivalent. However they are
different from a practical point of view. The TI-conversion is suitable
for early stages of the synthesis flow, in which limited logic synthesis
can still be executed on the converted circuits. The TM-conversion is
suitable for circuits that have already been mapped and analyzed, in
which the designer prefers to introduce as few changes as possible
on the core data-path.
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nology mapped circuit, (b) dual-rail circuit with level labeling and (c) phase
correction by introduction of inverters.

B. Hazard-non-increasing transformations

In [14], a set of transformations that do not introduce new hazards
in Boolean networks was presented. They extend the set originally
given in [7] and include De Morgan’s laws, dual global flow, global
flow, tree decomposition, gate replication, collapsing, kernel-factoring
and cube-factoring. These transformations cover, among others, the
conventional algebraic optimizations performed during technology-
independent logic synthesis [15].

During technology mapping, the set of transformations applied to
the network also usually falls into the previous categories. In partic-
ular, technology mappers perform the following transformations:

1) Tree decomposition into 2-input gates.
2) Gate replication of multiple-fanout nodes (e.g. [16]).
3) Collapsing several nodes in order to map them to a library gate.

Additionally, pairs of inverters are inserted in the wires to increase
the chances of matching better gates in the library. This insertion
also maintains the levelization, and hence the monotonicity, of
the network. Some advanced technology mappers also incorporate
algebraic transformations [17].

In summary, logic synthesis and technology mapping can be
performed on MBNs as long as the set of transformations fall into
the category of hazard-non-increasing.

C. Fast reset and completion detection

A circuit obtained using one of the two procedures above would
operate at half the speed of its original counterpart, due to the need
for resetting all primary inputs before another monotonic phase can
begin. We can speed up this reset phase by inserting signals that force
gate outputs to their “quiescent” value (i.e. to the value that they
assume when all dual-rail inputs are at 0, in the spacer condition).
Of course there is a trade-off here between the number of gates which
are reset in this manner (the more numerous, the faster becomes the
reset phase) and the large capacitance connected to the reset signal
(which may end up slowing down the circuit too much). We are in
the process of evaluating what is the optimal fraction of the total
number of levels where one should insert the reset signal, and what
optimization algorithms can be used here. Gates with fewer inputs
are obviously better candidates, since the delay of a gate increases
quadratically with the number of transistors in series.

Furthermore, the network that detects when all outputs have
stabilized can be built simply by using an or gate for each dual-
rail pair, whose output rises when one of the signals rises, and a tree
of and gates.

VI. RESULTS

Both procedures described in Section V have been automated and
can be applied to any circuit. The first procedure, which operates at
the level of Boolean networks, has been implemented as an add-on
package to the SIS synthesis tool [18]. The second procedure, which
operates using transformations on a technology-mapped netlist, has
been implemented as a sequence of netlist conversion scripts.

Based on these two procedures we implemented a total of three
design flows for dual-rail conversion, as shown in Figure 9. All three
flows are compatible with commercial EDA tools. In fact the last
step in all three flows is to feed the circuit into Synopsys Design
CompilerTM . This tool is used in order to: a) appropriately buffer nets
in order to drive the fanout, b) re-optimize the circuit after technology
mapping and c) perform timing analysis and area estimation.

The three flows were applied to the largest SIS combinational
benchmark circuits and to a set of larger Verilog RTL circuits, i.e.
the pipeline stages of a DLX CPU and a pipelined DES stage. All
circuits were mapped to the UMC 0.18µm technology library. Due to
the relatively small size of the circuits considered (fewer than 100,000
gates) we are ignoring the effects of layout on the performance. We
are aware that in principle, for large flat designs, the area increase will
result also in a delay increase. However, we are expecting that dual-
rail conversion for delay measurement will be used only on relatively
small, critical portions of the overall circuit. The final version of the
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paper, if accepted, will contain post-layout delay and power figures
for some representative benchmarks.

Flow 1 implements the TM-conversion using netlist conversion
scripts. At the end of the conversion process of the circuit to dual-rail,
the circuit requires fanout fixing, as inverters which were originally
used for buffering were removed during the conversion process.
Thus, optimizing the fanout drive of the gates of the dual-rail circuit
is necessary. Fixing fanout, while preserving the circuit structure
was implemented in Synopsys DC by setting all circuit gates as
“don’t touch” and then compiling the circuit for minimum input to
output delay. In this way, DC is only allowed to insert buffers to
fix maximum input to output delay without touching the original
netlist. This approach is much more effective than imposing fanout
constraints on the design. Flow 1 results are shown in Table VI.
The shorthands SR, DR, DR R and DR CD in the column labels
correspond to Single-Rail, Dual-Rail, Dual-Rail with Fast Reset, and
Dual-Rail with Fast Reset and Completion Detection respectively.
Percentage increase is computed as 100× (DR−SR)/SR for both
area and delay.

Flow 2 implements the TI-conversion using the add-on package
written for the SIS synthesis tool. In Flow 2, fanout fixing is not
necessary, because the conversion is performed at the level of Boolean
network, thus SIS will fix fanout during technology mapping. After
SIS technology mapping, we move the circuit into Synopsys DC and
let it re-optimize and re-map the circuit. In that way, DC is given full
power to apply its own optimization transformations on the mapped
dual-rail netlist and then re-map it to optimize the timing of the
circuit. Although this process is potentially hazardous, as it cannot
be guaranteed that the transformations and optimizations imposed
on the dual-rail netlist are hazard-non-increasing, we verified that in
practice for the circuits we tried, monotonicity was preserved after
optimization for timing by Synopsys DC.

Flow 3 is identical to Flow 1 except for the last step. Synopsys
DC is allowed to re-optimize the circuit and technology map it as in

Flow 2, instead of only fixing fanout as in Flow 1.
The summary about the penalty in design flows 1, 2 and 3

with respect to conventional single-rail implementation is shown in
Table II.

As can be seen from Table II, the delay penalty for the data
phase of the dual-rail circuits, indicated by columns DR and DR R,
is relatively small. The penalty due to completion detection, which
is currently larger, can be reduced by considering it only for critical
outputs. The area penalty is about two-fold. Figure 10 shows the delay
and the area of the benchmark circuits, relative to the optimized and
mapped single-rail original, i.e. in the same form as Figure 3. The
dots are spread around the 2x area, 1x delay point with respect to
traditional combinational logic. However, one should note that the
delay results are worst-case, while the delay of our circuits can be
measured exactly, and thus they will work closer to the average case.

As dual-rail circuits operate using the two-phase discipline, the
reset phase delay must also be taken into account. For the circuits
presented here, with reset employed every 6 circuit levels, the reset
time is between 0.16ns and 0.22ns.

VII. CONCLUSIONS

This paper proposes a novel technique to create circuits with
completion detection, based on a dual-rail encoding. We describe both
theory ensuring correct hazard-free operation, and implementations
working both at the technology-independent and at the technology-
dependent levels. The experimental results show that a 100% area
and power increase and a 30% delay increase are sufficient to obtain
a circuit that is fully able to signal when its outputs have stabilized.

Bearing in mind the margin of 60-100% between worst case and
true delays, one can conclude that circuits with completion detection
could operate at 25-65% higher clock frequencies than traditional
ones.

This enables for the first time a trade-off between applying
completion detection to the whole design, and achieving the 25-
65% speedup with 100% area and power penalty, versus applying
it only to the most critical stages of logic, and gaining less speed
with significantly smaller penalty in area and power. Exploring this
trade-off is left to future work.
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2) increase increase increase increase increase increase
SIS Benchmarks

C1908 2.07 9709 -4% 79% -0% 91% 12% 99%
C2670 1.53 13592 3% 79% 9% 93% 34% 121%
C3540 2.59 16665 7% 79% 14% 90% 23% 94%
C5315 2.08 33737 6% 77% 40% 90% 58% 103%
C7552 2.16 35294 26% 81% 32% 100% 50% 111%
alu4 1.85 9079 0% 80% 4% 90% 13% 93%

apex6 0.89 11006 11% 91% 15% 107% 57% 139%
dalu 1.34 10998 -2% 84% 2% 94% 18% 99%
des 1.46 51910 34% 73% 35% 99% 63% 108%
frg2 0.94 10965 3% 67% 5% 82% 45% 116%
i10 2.34 32489 5% 80% 41% 96% 59% 113%
i2 0.73 3062 9% 94% 16% 102% 21% 105%
i7 0.71 8754 -40% 62% -39% 72% 8% 96%
i8 1.05 13149 -11% 86% -7% 95% 25% 115%
i9 1.09 9612 -5% 77% -0% 85% 29% 109%
k2 1.18 14942 0% 87% 4% 102% 30% 112%

pair 1.49 21544 6% 86% 12% 98% 37% 116%
rot 1.27 9132 9% 79% 13% 95% 42% 138%
vda 0.96 9059 0% 90% 6% 99% 35% 108%
x3 0.72 10669 -2% 91% 4% 203% 55% 236%
x4 0.61 5749 -3% 72% 3% 86% 59% 116%

RTL Circuits
DLX IF 0.82 18340 -4% 55% -1% 69% 47% 89%
DLX ID 4.01 158709 7% 68% 11% 86% 24% 103%
DLX EX 3.46 121404 -2% 88% 5% 103% 16% 105%

DLX MEM 0.50 3294 -18% 64% -16% 94% 58% 184%
DES stage 1.61 27704 -12% 74% -8% 89% 18% 109%

average 1.52 25791 3% 77% 11% 95% 33% 109%

TABLE I
FLOW 1: TM-CONVERSION AND FANOUT FIXED BY SYNOPSYS DC.

Flow Comparison SR delay SR area DR delay DR area DR R delay DR R area DR CD delay DR CD area
Flow 1 1.52 25791 3% 77% 11% 95% 33% 109%
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TABLE II
SUMMARY OF FLOWS 1,2 AND 3.
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