SPIN-SIM: Logic and Fault Simulation for Speed-Independent Circuits -

Feng Shi
Electrical Engineering Dept.
Yale University
New Haven, CT 06520, USA

Abstract

We present SPIN-SIM, a logic and fault simulator
for Speed-Independent Circuits, that extends the classical
Eichelberger’s method and overcomes its limitations. In or-
der to improve simulation accuracy, SPIN-SIM adopts a 13-
valued algebra, maintains the relative order of causal sig-
nal transitions, and unfolds time frames judiciously. In ad-
dition, complex gates are handled through replacement by
pseudo-gate equivalents with regards to functionality, tim-
ing and faulty behavior. Experimental results show that
SPIN-SIM incurs a negligible increase in computational
time over Eichelberger’s method, vet is much more accurate
and achieves a significant improvement in fault coverage.

1 Introduction

Asynchronous circuits promise several advantages over
their synchronous counterparts, including the potential for
higher performance, lower power consumption and design
reusability. At the same time, they avoid a key emerg-
ing challenge of traditicnal synchronous design, namely
high-frequency clock distribution. As chip complexity in-
creases, clock skew effects are significantly amplified, mak-
ing the problem intractable. Consequently, interest in asyn-
chronous circuits has been resurrected and several commer-
cial products have already been designed.

For asynchronous circuits to take off, however, CAD so-
Iutions for assisting their design and test are urgently re-
quired. Among these issues, we focus on the problem of
testing asynchronous circuits. Due 1o the lack of a global
clock, asynchronous circuits operate independently and are
sensitive to race conditions and hazards. Moreover, control-
ling and observing internal nodes in asynchrenous circuits,
even through the use of DFT, is not straightforward. To
compound the problem, different assumptions on the un-
derlying timing models have lead to a number of distinct
classes of asynchronous circuits, each of which may require
its own fault simulation and test generation methods.

A number of efforts have been recently devoted to fault
modeling, fault simulation and test generation for asyn-
chronous circuits. In order to expleit existing infrastructure,

ITC INTERNATIONAL TEST CONFERENCE

0-7803-8580-2/04 $20.00 Copyright 2004 IEEE

Yiorgos Makris
Electrical Engineering Dept.
Yale University
New Haven, CT 06520, USA

the problem of testing asynchronous circuits using avail-
able commercial testers for synchronous circuits has been
studied by several researchers [1, 2, 3]. Since many asyn-
chronous circuits operate in fundamental mode, test vectors
can only be applied after the circuit has stabilized and fault
effects have to be observed when the circuit is in a stable
state.

Hazard analysis is critical in simulation and test gener-
ation of asynchronous circuits. Eichelberger [4] first used
ternary logic simulation for detecting hazards in both com-
binational and sequential logic, He also proposed a method
for simulation of asynchronous sequential circuits. Subse-
quently, multi-valued logic has been used in different con-
texts. For instance, Chakraborty et al. [5] used the 13-
valued algebra for delay fault test generation, Fsimac, a
gate-level fault simulator for stuck-at and gate-delay faults
in extended burst mode machines was developed in [6], us-
ing min-max timing analysis [7] and 13-valued logic. Fsi-
mac assumes fundamental mode of operation and simulates
both the good circuit and the bad circuit in a time-unfolding
manner until the primary outputs and state signals stabilize.

In this paper we propose SPIN-SIM, a logic and fault
simulation algorithm for Speed-Independent circuits, which
extends Eichelberger’s method. We first briefly introduce
asychronous circuits in section 2, then demonstrate the chal-
lenges in fault simulation of Speed-Independent circuits in
section 3, and we describe our algorithm in sections 4 and
5. Experimental results are provided in section 6.

2 Classes of Asynchronous Circuits

Asynchronous circuits are classified into several cate-
gories based on their timing assumptions. Delay-Insensitive
circuits [8] operate correctly under arbitrary gate and wire
delays, hence are the most robust. Unfortunately, the class
of such circuits built out of simple gates is rather limited.
Quasi-Delay-Insensitive circuits are delay-insensitive ex-
cept that “isochronic forks™ are required to build practical
circuits using simple gates and operators. An isochronic
fork is a forked wire where all branches have exactly the
same delay. Timed circuits [9] operate correctly under spe-
cific internal and/or environmental timing assumptions such

Paper 21.1

597

as bounded delays. Speed-Independent circuits [10] tolerate
arbitrary gate delays, but assume negligible wire delays.

Alternatively, asynchronous circuits are divided into two
main categories according to their design style, namely
Huffinan and Muller circaits. Huffman circuits [11] are de-
signed using a traditional asynchronous state machine ap-
proach. The state is stored in combinational feedback loops
and, thus, may need delay elements along the feedback path
to prevent state changes from occurring too rapidly. Huff-
man circuits are typically designed under the bounded gate
and wire delay model. I this model, circuits are guaran-
teed to work regardless of gate and wire delays, as long as
a bound on these delays is known. In order to design cor-
rect Huffman circuits, it is also necessary to set constraints
on the behavior of the environment, namely when inputs
are allowed to change. Moreover, correctness of Huffman
circuits relies on the assumption of “fundamental operation
mode”, which means that outputs and state variables sta-
bilize before either new inputs or feed-back state variables
arrive at the inputs. Violation of this assumption may result
in a sequential hazard.

Muller circuits [11] are designed mainly based on state
transition graphs (or Petri Nets) as the specification form.
Under the unbounded gate delay model, circuits are guaran-
teed to work regardless of gate detays, assuming that wire
delays are negligible. Muller circuit design requires explicit
knowledge of the behavior protocol allowed by the environ-
ment. However, no restrictions are imposed on the order or
the speed that inputs, outputs, and state signals change, ex-
cept that they must behave according to the protocol. Muller
circuits correspond to Speed-Independent circuits, and al-
though the two terms are used interchangeably in the liter-
ature, we will only use the latter in the rest of the paper, in
order to avoid confusion. -

3 Simulating Speed-Independent Circuits

Simulation of asynchronous circuits is more complex
than that of their synchronous counterparts, since it needs
to deal with hazardsfraces and oscillations. Moreover,

" due to their particular timing model, simulation of Speed-
Independent circuits presents an additional set of chal-
lenges, some of which are discussed in this section.

3.1 Dealing with Hazards

Similar to simulators for other types of asynchronous cir-
cuits, such as Fsimac [6] which handles Huffman circuits,
a simulator for Speed-Independent circuits needs to detect
hazard conditions. However, the particular timing model for
Speed-Independent circuits requires a different logic sim-
ulation method than that for Huffman circuits, especially
when handling feedback signals. As illustrated in Figure 1,

Paper 21.1
598

yl'y2 yly2 0 1
w i
o |
1 <D
10 11

(a)

delay3 -y

-y

vl delay]l -1

.

SC

g
X —)¢ — N\l
—_/ L
[d
g

ey o |
_l—._r/ L_/y2

el

delay2 ™4

(b)

Figure 1. Essential Hazard in Asynchronous Circuit

it is possible that essential hazards exist in an asynchronous
sequential circuit. Figure 1 (a) shows the flow table of an
asynchronous state machine, and (b) demonstrates its gate-
level implementation. Essential hazards arise when some
arrangement of circuit delays allows a state change to com-
plete before the input change is fully processed [12]. Forex-
ample, suppose that the circuit is initially in state y;4, = 00
with input z = 0. If input x rises, the circuit will transition
to state y172 = 10 according to its flow table. But if the
inverter a is slow in comparison to other gates or delay el-
ements on the feedback paths, as shown in Figure 2, ¢ will
rise, followed by 1, while a remains high. The rise of 3
through the feedback path triggers the rise of 4 and 4, since
a is still high. Then y2 rises and ¢ falls, which causes b
and ¢ to fall. The rise of y2 also causes e to rise. If now
the inverter a finishes evaluation and a falls, then d will fall,
causing y; to fall. But y» remains high since now e is high.
So the final state of the circuit, in this arrangement of gate
delays, is y1yo = 01. Therefore, an essential hazard exists.

Such hazards are often avoided in Huffman circuits by
inserting enough delays in the feedback lines to ensure that
logic signals stabilize after the input transitions and before
further transitions occur throngh the internal state variables.

Figure 2. Waveform for the Hazard Condition

For example, if enough delay is inserted in the feedback
paths in the circuit of Figure 1 (b), after x rises, ¢ and 14
rise and a falls, so in the end of the first time frame the
state is y1y2 = 10. Then the circuit stabilizes in this state,
which is consistent with its specification. Simulators for
Huffman circuits, such as Fsimac [6], assume this “funda-
mental operation mode” and simulate the circuit in a simple
time frame expansion manner. Hence they are not supposed
to detect essential hazards. Although valid for simulation
of Huffman circuits, this may lead to incorrect results when
simulating Speed-Independent circuits, in which no delay
elements are inserted in the feedback paths and, hence, es-
sential hazards may exist. Therefore, simulation of Speed-
Independent circnits requires a separate method.

In [4], Eichelberger developed an algorithm for detect-
ing hazards in a sequential circuit, which can be adapted
and used for simulation of Speed-Independent circuits. His
method used § to denote an unknown state, which we typi-
cally denote by X. Suppose each feedback line is cut, with
one end denoted as a pseudo primary input (PP[) and the
other as a pseudo primary output (PPO). The algorithm con-
sists of two procedures: in Procedure A, all changing state
signals are determined by setting changing primary inputs
(PIs) to X and all other Pls and PPIs as originally speci-
fied, and then evaluating the PPQs. If there are any PPOs
equal to X, the corresponding PPIs are changed to X and
the process is repeated until no additional changes occur in
PPOs. Then, Procedure B takes over to determine which
value each state signal stabilizes to. With the changing Pls
equal to their new values and all other Pls and PPIs equal
to their values at the end of Procedure A, PPOs and primary
outputs (POs) are evaluated. If one or more PPOs change
from X to 1 or 0, the corresponding PPI is changed and the
process is repeated until no more changes occur in PPOs.

However, Eichelberger’s method is too conservative in
many cases. Figure 3 gives such an example. In this sim-

Figure 3. Example Circuit for Demonstrating the
Conservativeness of Eichelberger's Method

Node | Istiter | 2nditer | 3rditer | 4thiter
a X X X 1
b 1 1 1 1
¢ 0 0 X X
[0 X X X
d 1 X X X
e 0 X X X
e X X X X

Table 1. Simulation of the Circuit of Figure 3

ple circuit, there are two feedback paths; one is denoted as
e while the other is inside the c-element. In Eichelberger’s
method, these feedback paths are cut into PPIs and PPQOs.
Let’s denote the PPls as ¢’ and ¢/, and the PPOs as e and ¢
respectively. Table 1 lists the signal value on each node in
every iteration of the method. Assume that the circuit state
ise = 0and ¢ = 0, input b is high, and the stimulus to input
a is a falling transition. In the first iteration of Procedure A,
the changing input ¢ is set to X, and then the circuit is eval-
uated. If there is an unknown value on any of the PPOs, such
as e, the corresponding PPL, €', is set to X during the next
iteration. Procedure A ends when no more X's appear on
the PPOs. Then Procedure B starts, input ¢ is set to its new
value of 1 in the fourth iteration, and the circuit is evaluated
again. Procedure B ends after the fourth iteration since no
X on the PPOs is resolved. Therefore, the final result indi-
cates that the circuit falls into an undetermined state. This,
however should not be the case. Initially b = 1, ¢ = 0,
d=1,a=1, f =0and e = 0. After a falls, f and e rise,
s0 ¢ also rises. Then 4 falls and so does e. But ¢ doesn’t
change since b remains at 1. In the end, the output of the
c-element becomes 1, which is fully determined. This con-
servativeness is a key problem when using Eichelberger’s
method on Speed-Independent circuits.

3.2 Preserving Relative Transition Order

Multi-valued algebras have been widely used in tasks
that require hazard detection, such as simulation of asyn-
chronous circuits and test generation for delay path faults
[4,5,7, 6]. The 13-valued algebra has been particularly ex-
plored, since it can accurately describe signal transitions.
Moreover, it is compact and it avoids unnecessary event

Paper 21.1

599

— ‘ QBAR
clE b

Figure 4. Gate-Level Schematic of a D-Latch

proliferations by abstracting the details of multi-transition
waveforms. Another reason for using 13-valued logic is
that it facilitates the expression of functions of some com-
plicated gates, such as C-elements, latches and complex
domino gates, which are widely used in asynchronous cir-
cuits. The 13-valued waveforms are listed below, adopting
the interpretation and notation of [7]:

Constant: < 1,1,1>,<0,0,0>

Transition: < 0,7,1>,<1,],0>

Hazard: < 0,X,0>.<0,X,1>,<1,X,0><1,X,1>
Stabilizing: < X, X,0>, < X, X, 1>

Destabilizing: <0, X, X >, <1, X, X >

Undefined: < X, X, X >

The extension of gate functions from the 3-valued logic to
the 13-valued logic is not difficult and is detailed in the
above references. ;

However, 13-valued algebra cannot express the relative
order of signal transitions, which, in some cases, may lead
to false indications of hazard conditions. Figure 4 gives
such an example. Suppose that the initial values of the Pls
of the D-Latch are CLK = 1 and D = 1, the values of
the internal nodes are abede fg = 1100101, and the values
of the POs are @ = 1 and QBAR = 0. Also suppose
that C' LK falls to 0 and I doesn’t change, or in 13-valued
logic, CLK =< 1,],0 > and D} =< 1,1,1 >. There-
fore, b =< 1,],0 > ¢c=<0,7,1 >ande =< 1,X,1 >
by gate evaluation, and a glitch on ¢ is reported. However,
the circuit assumes that o and 4 fall simultaneously because
they are branches of an isochronic fork. Since the gate delay
for ¢ is positive, ¢ rises after a falls, hence after b falls, so

* there is no glitch on e. In fact, e =< 1,1,1 >. In this case,
simulation based on 13-valued algebra leads to a false in-
dication of hazard. In order to achieve higher accuracy, the
relative order of signal 1r¢nsitions needs to be considered
during gate evaluation.

3.3 Handiing Complex Gates

Another difficulty in simulating asynchronous circuits
stems from complex gates. Complex gates are commonly
used to extend the limited class of Delay-Insensitive cir-
cuits that can be built out of simple gates and operators.

Paper 21.1
600

By extension, complex gates such as C-elements and com-
plex domino gates are also frequently used in the design
of Speed-Independent circuits. While it is possible to treat
them as simple gates, as in [6], the number of types of com-
plex gates is not small. Hence, allocating a dedicated truth
table for each of them is a considerable memory cost. In ad-
dition, the number of inputs of a complex gate is often high,
and since the number of entries in the truth table is exponen-
tial to the number of inputs, this memory cost is amplified.
Moreover, the utilization of muiti-valued algebras augments
the memory cost significantly by increasing the base num-
ber. An alternative solution would be to replace the complex
gates with their simple gate implementations for the pur-
pose of simulation. This method incurs no additional mem-
ory cost, but unfortunately some Speed-Independent cir-
cuits do not longer remain Speed-Independent when com-
plex gates are replaced by their simple gate equivalent, since
internal gate delays are now considered. Therefore, an ef-
ficient mechanism for handling complex gates is necessary
in order to simulate accurately Speed-Independent circuits.

4, Proposed Simulation Method

SPIN-SIM, the proposed simulator, is developed based
on Eichelberger’s method for hazard detection. However,
SPIN-SIM extends this method in several ways to overcome
its conservativeness. In addition to adopting a 13-valued al-
gebra to represent signal transitions more accurately, SPIN-
SIM preserves the relative order of causal signal transitions,
performs judicious time-frame unfolding, and handles com-
plex gates through pseudo-gate replacement.

4.1 Adapted Eichelberger’s Method

Since Eichelberger's method is able 1o detect essential
and other hazards in a sequential circuit, it can be adapted
into a simulation algorithm for Speed-Independent circuits.
To achieve this, the unknown value, X, of the typical 3-
valued algebra is replaced by appropriate values in a 13-
valued algebra which carry more information about transi-
tion waveforms. As an example, Table 2 illustrates the sim-
ulation results for the circuit of Figure 1 using the adapted
Eichelberger’s method. During every simulation iteration,
each of the feedback paths y;, y2 and g is cut into two ends.
The ends that feed gate inputs are denoted by y7, ¥4 and ¢,
while the other ends are denoted by y3, ¥2 and g, respec-
tively. The initial values of the feedback paths are] yhg' =
000, and the stimulus on input z is < 0,T,1 >. The sim-
ulation results for the first, second and third simulation it-
erations are listed in the second, third and fourth columns
respectively. The value on i is replaced by < 0, X, X > in
the second iteration since Eichelberger’s method sets an un-
known value, X, on a PPI if the value on the corresponding

| (1, t) _J
@ _J_ (:2, 2)) —I (i3, 13)

[L th) _D_ _‘_(B!m
(© | (i2,t2)

| (i1, 1)
® | (2, 22)

| G, ty
C)) _r—(i2,t2)

D ERGES)
D [o

Figure 5. Examples of Maintaining the Time Stamps

Node Ist iter 2nd iter 3rd iter
x <0,T,1> <0, 7,1> <0, T,1>
a <1,1,0> | <1,1,0> <1,],0>
b <0,00> | <0, X,X> | <0,X,X>
e <0,7,1>) <0,7,1> | <0, X, X >
d <0,0,0> | <0, X, X > | <0,X, X >
e < 0,0,0 > < 0,0,0 > <0, X, X >
f <0,0,0 > <0,0,0> <0,X,X >
g <LL1> [<L, X, X> | <LX,X>
Y1 <0N1l> | <0,X,X> | <0, X, X>
y2 <0,0,0> [<0, X, X> | <0, X, X>
vl <0,0,0> | <0,X,X> | <0,X,X >
¥ < 0,0,0 > < 0,0,0 > <0, X, X >
g <LLl> | <1,L,1> | <L, X, X>

Table 2. Adapted Eichelberger’s Method

PPO is unstable in the previous iteration. As a result, the
values on #; and y; become destablizing in the following
iterations and the simulation terminates because the values
on the PPOs are consistent with those on the PPIs. Since
the final state of either ; or y» is destabilizing, the essen-
tial hazard described previously is detected by the adapted
Eichelberger’s method. In contrast, simulation algorithms
for Huffman circuits assume sufficient delays on feedback
paths and, thus, they use the final states of the PPOs as the
values of the PPIs for the next time frame. Hence they are
unable to detect this essential hazard.

4.2 Preserving Relative Transition Order

SPIN-SIM maintains the relative order of signal tran-
sitions by keeping a simple time stamp during gate eval-
vation. Since Speed-Independent circuits assume the un-
bounded gate delay model [10], (ie. delay elements are
attached only to gate outputs and the delay magnitude is
positive and finite but unknown), min-max timing analy-
sis for asynchronous circuits based on the bounded delay
model, as in [6, 7], is not necessary. As in [6], we mainly
assume the pure delay type, i.e. waveforms are shifted in
time but do not change shape. However, as shown before,
the relative order of causal signal transitions is necessary in
many cases for correct simulation. In order to keep track
of the relative order of causal signal transitions, we keep a
time stamp for every transition. The time stamp is simple
and only includes a signal group I} and a time. The group

ID is used to indicate causal transitions since signal tran-
sitions with a causal relation are assigned the same group
ID. The relative order of the causal transitions is recorded
in the time field, which is incremented with the propagation
of the transition. Hence, for two transitions with the same
group ID, the one with the smaller time field precedes the
other. For instance, if the input to an inverteris < 1, |,0 >
with a group ID of ¢ and a time field of ¢, then the output
is < 0,7,1 > with the same group ID ¢ and a time field of
t + 1. Notice that we only maintain time stamps for transi-
tions, thatis, < 0,T,1 > and < 1, |,0 >. The time stamps
for other signal values are not kept, since they are typically
not necessary. While this might sacrifice some accuracy, it
saves significantly in computational time.

Maintaining time stamps for the output of a multi-input
gate is more complicated than for an inverter. In the sim-
plest case, the output transitions as a result of changes on
input signals that belong to the same group, while the re-
maining inputs are stable. In this case the group ID of the
output transition is the same as that of the input transitions
and the time field is that of the triggering input transition in-
cremented by 1. It is possible, however, that the cutput is the
result of multiple input transitions that do not all belong to
the same group. For instance, Figure 5 illustrates four such
cases. In cases (a) and (b), the output transition takes place
only after both of the input transitions have taken place. In
order to represent this relation, a new group ID 3 is as-
signed to the output and this new group is denoted as a
successor of both groups 71 and ¢2. Transitions in a pre-
decessor group precede transitions in its successor groups.
SPIN-SIM keeps track of this relation by maintaining group
masks. Each group is assigned a group mask, within which
every group is assigned a corresponding bit. A bit is set to
1 if its corresponding group is a predecessor of the current
group, otherwise it is set to 0. In the previous example, the
two bits corresponding to groups ¢1 and ¢2 are set o 1 in the
mask of group ¢3. SPIN-SIM also sets the time field of the
output transition to the maximal of those of the input transi-
tion plus 1. In cases (c) and (d), the output transition takes
place after either of the input transitions takes place. The
input transition which takes place first precedes the output
transition. However, since it is not known which transition
occurs first, this relation is difficult to express. In the inter-

Paper 21.1

601

<l Ll>

<l 1,l> —

AND2
<0. T, I>
<0, T 1> — i1.2) j} <1.X.1>

{il, 1) ANDA

OR1

Group ID:

Figure 6, Maintaining Time Stamps

est of simulation speed, we decided to avoid representing
this information in SPIN-SIM and set both mask bits to 0,
because the degradation of simulation accuracy by doing so
is seldom noticeable,

A transition triggered by another transition is typically
within the same group as the first one. However, there are
exceptions, Figure 6 gives such an example. Since one in-
putto gate AND1is < 1,1,1 > and the other is a transition
< 0,T,1 > with group ID {1 and time field 1, the transi-
tion propagates to the output of AN.D1 and the waveform
is < 0,T,1 > with the same group ID and an incremented
time field of 2. This output fans out to both gates AN D2
and N AN D1, so the transition propagates to their outputs
since, for both of them, the other input is < 1,1, 1 >. Thus,
the output waveform of gate AND2 is < 0,1,1 > and
that of gate NAND1 is < 1, [,0 >. However, neither of
the two output transitions inherits the group ID of the input
transition. This happens because although both transitions
are triggered by a common input transition, which definitely
precedes them, they exercise different gate delays, hence
their relative order is undetermined. If both of them inher-
ited the group ID of the inbut transition, their relative order
would be falsely set. Therefore, SPIN-SIM assigns a new
group id {2 to the output transition of gate AN D2 and an-
other new group id ¢3 to that of gate NAND1. Both of
their time fields are set to. 3, which is the time field of the
input transition incremented by 1. The signal group 41 is
set to be the predecessor of both signal groups i2 and i3 in
their group masks respectively, which confirms the fact that
the output transition of AN D1 precedes both of those of
gates AN D2 and ¥ AN D1. The group masks of these sig-
nal groups are also iltustrated in figure 6. Notice that the bit
corresponding to group 1 in the group mask of both ¢2 or 23
is setto 1. By convention, in the mask of every group, the bit
corresponding to the group itself is always set to 1. When

Paper 21.1
602

the output transitions of gate AN D2 and NAN D1 reach
gate ORI, they belong to different groups. This implies
that there is no relative order between them and, therefore,
the output waveform of gate OR is < 1, X,1 >.

The gate evaluation process is adapted after consider-
ing the relative timing of the signal transitions. If there are
fewer than two input transitions on the inputs or if there is
no relative order between any two transitions, the gate func-
tion is evaluated through the original truth table. However,
if there is a relative order between any two input transitions,
the output might be different. One method to address this
would be to store the outputs under all possible input and
relative order combinations into the truth table, and index
by both input values and their timing during gate evaluation.
Yet this:method expands the truth table and needs additional
memory space. Instead, SPIN-SIM adopts an alternative
method which keeps the original truth table but splits the
evaluation process into several phases. For example, in Fig-
ure 7 the two input transitions of the AND gate are within
the same group and, therefore, have a relative order. Since
the time field of the transition on input a is smaller than that
on input b, the transition on input a precedes that on input
b. In the first phase, the signal on input @ is < 1,[,0 >
and the signal on input b takes its pre-transition value, that
is, < 0,0,0 >. The output is < 0,0,0 > according to the
original gate evaluation method. Then in the second phase,
the signal on the input a takes its post-transition value, that
is, < 0,0,0 >, and the signal on input 4 is correspondingly
< 0,7,1 >, and the output is < 0,0,0 >. SPIN-SIM com-
putes the final output as the concatenation of the outputs of
the two phases which, in this case, is < 0,0,0 >. Note that
this is the correct result, which is different from the original
truth table result of < 0, X, 0 >.

4.3 Judicious Time Frame Unfolding

SPIN-SIM carefully unfolds time frames. Unlike in Pro-
cedure A of Eichelberger’s algorithm, which treats transi-
tions and hazards in the same way, if there is a hazard but
no transition detected on any PPO after evaluation, the cor-
responding PPI is set to the destabilizing value, and the pro-
cess is repeated until no more hazards are detected. If a
transition is detected on any PPO, the corresponding PPI
is set accordingly, the circuit is re-evaluated and any haz-
ards are handled as described previously. This process is e-
peated until no more hazards and transitions occur on PPOs,
or until the number of iterations exceeds the pre-specified
maximum limit. Setting such a limit on the maximom num-
ber of iterations is necessary to break the infinite loop that
occurs when the circuit oscillates, in which case the first ter-
minating condition will be never satisfied. After this step,
a procedure similar to Procedure B of Eichelberger’s algo-
rithm takes place to determine the stabilizing values on the
POs and the state signals.

I (L, th Q_DC
] 1, u+3) 0 B

Phase 1

i ¢ A :
{ b—:::}- ,_J__b— J

(<0,0,0>)

Phase 2

Figure 7. Example of Gate Evaluation with Time Stamps

Nede 1st iter 2nd iter 3rd iter d¢h iter
a <L,,0> [<1,1,0> [<1,[,0> | <1,[,0>
(0,1) (0, 1) (0,1) (0,1)
b <1L,L,1> | <L1L1>» [<1,1,1>» | <1,1,1 >
NA NA NA NA
4 <0,0,0> | «0,0,0> | <0, T,1> | <0, T,1>
NA NA {0, 2004) {0, 2004)
c <0,0,0> | <0,T,1> [<0, T,1> | <0,7T,1 >
NA (0,1004) | (0,1004) {0,1004)
d <1,1,1> | <1,[,0> | <1,[,0> | <1,[,0>
NA (0,1005) {0, 1005) (0,1005)
e 1 <0,0,0> | <0,T,1>[<0,7,1> | <1,[,0>
NA (0,16003) {0, 1003) {0, 2006)
[0, 1003]
e | <0,1,1>]<1,,0>|<1,L,0> | <1,],0>
(0,3) (0, 1006) {0, 1006) (0, 10086)
[0,3] [, 3] [0, 3]
f <0, 11>} <0,7,1> | <0,1,1> | <O,T,1>
(0,2) (0,2) 0,2 ©.2)

Table 3. SPIN-SIM Results on the Example Circuit

We demonstrate this by simulating again the circuit of
Figure 3 using SPIN-SIM. The initial condition is ¢ = 0 and
e=0. Thestimulusisa =< 1,[,0 >and b =< 1,1,1 >.
The signal values for each node in the four simulation iter-
ations are listed in the second through fifth column in Table
3, respectively. The time stamps of signal transitions are
also listed in parenthesis when applicable. The first num-
ber in the parenthesis is the signal group ID and the second
number is the time field value. Since SPIN-SIM uses the
13-valued algebra, it is not necessary to set the changing in-
puts to undefined values in the first simulation iteration in
procedure A. The input transition on & is assigned a group
ID of 0 and a time stamp of 1. The circuit is then evaluated
and the value on PPO e turns out to be a rising transition
with a time stamp (0, 3). Unlike Eichelberger’s method, in
which the corresponding PPI e’ is set to the destabilizing
value in the next iteration, SPIN-SIM replaces the value on
e’ with the previous value on e, which is < 0, 1,1 >, since
this is a transition and not a hazard, Note that this kind of
replacement of a stable value with a transition resembles
more a signal value correction than a time frame unfold-
ing, since there is no signal timing information loss, In the
second iteration, the time stamp of €' becomes (0, 1003).
This, however, does not imply that the transition on ¢’ fol-
lows the one on e in the first iteration. SPIN-SIM uses this
method to just indicate that the transition has propagated

over a feedback path. After evaluation, the result is a rising
transition on ¢ and a falling transition on e. Given the in-
puts f =< 0,T,1 > (0,2) and d =< 1, |,0 > (0, 1005),
the result on e would be < 0, X, 0 >. However, SPIN-SIM
identifies from their time stamps that there are two transi-
tions in the result and the former has been already stored
in €', 50 only the latter transition is reported, but the time
stamp of the previous one is still kept, as shown in brack-
ets, to indicate the starting point of the current waveform.
In the third iteration SPIN-SIM corrects the value on ¢/ to
< 0,T,1 > (0, 2004} but does not change the value on €’ to
< 1,/,0 > (0,2006), since by doing so, it would discard
the old waveform information on ¢’. Thus, this is a time
frame unfolding. SPIN-SIM always preforms signai cor-
rections before time frame unfolding, in order to make sure
that no hazard conditions exist. Since no hazard is detected
in the end of the third iteration, the time frame unfolding on
e’ is performed and the time stamp of the old transition is
kept as its new starting point. Since the evaluation results in
no additional signal changes, Procedure A terminates.

Procedure B is not executed because the next states on
the PPOs coincide with those on the PPIs and the simula-
tion finishes. The final result confirms the previous analysis
which indicates that the final value should be ¢ = 1. Note
that if any hazards are detected on PPQOs, the correspond-
ing PPIs are set to destabilizing values, as in Eichelberger’s
method. The starting points of waveforms are maintained
so that evalvation of unfolded signals will produce a correct
result with a proper starting point. Time frame unfolding
might not terminate in case of oscillations. Hence, a maxi-
mal number of allowable simulation iterations is set, so that
when the number of iterations exceeds this limit SPIN-SIM
assumes that the circuit is in oscillation and sets the switch-
ing signals to destabilizing values.

4.4 Handling Complex Gates

Many complex gates are commonly used in Speed-
Independent circuits. Instead of storing a truth table for
each of them, SPIN-SIM uses simple gates to represent each
of these complex gates that have simple gate level equiv-
alent implementations. However, a naive replacement of-
ten introduces additional hazards which result in a circuit
that is no longer Speed-Independent. The key challenge is
to design such gate level equivalent implementations that

Paper 21.1

603

pesuda-BUF 1 "

prouic-BUF2

Figure 8. C-element: Pseudo Gate Implementation

'

mimic the original complex gate in both functionality and
timing, employing both pseudo gates and real gates. Figure
8 gives an example of a pseudo-gate implementation of a
c-element. All gates in this example are pseudo-gates, ex-
cept for the output-stage buffer. SPIN-SIM assumes no de-
lay when a signal propagates through a pseudo-gate, hence
its time stamp does not increase. Therefore, the only de-
lay is contributed by the buffer on the output, which mimics
successfully the timing property of a complex c-element.
Pseudo-buffers are also inserted in the inputs to make inter-
nal fan-out invisible to the outside of the complex gate. To
support SPIN-SIM, we have developed a library of gate and
pseudo-gate equivalent implementations for the most com-
monly used complex gates by hand. In this way, SPIN-SIM
simulates complex gates accurately and efficiently, without
incurring additional memory cost.

5 Fault Simulation

Fanlt simulation of Speed-Independent circuits is similar
to that of synchronous circuits. The required stuck-at fault
list may be either user-défined or generated automatically,
including all stuck-at faults on inputs or output of gates,
except those inside a complex gate. The fault list may be
pruned through equivalent fault collapsing to speed up fault
simulation. Each test vector is then simulated on the good
circuit and on each bad circuit, where a single stuck-at fault
from the fault list is injected, The output values of the faulty
circuit are compared to those of the good circuit and if the
fault is detected it is dropped from the fault list. This pro-
cess is repeated until all the test vectors are simulated.

In order to discuss fanlt collapsing in Speed-Independent
circuits, we adopt the definitions of [13]. We refer
to fault equivalence/dominance in a single gate as g-
equivalence/dominace, in a combinational circuit as c-
equivalence/dominace, and in a synchronous sequential cir-
cuit as s-equivalence/dominance. The corresponding exten-
sions to asynchronous sequential circuits are defined as fol-
lows. A fault y is said to g-dominate another fault x in
an asynchronous sequential circuit if and only if every test
sequence for x is also a test sequence for y. Two faults,

Paper 21.1
604 |

z and v, are said to be a-equivalent in an asynchronous
sequential circuit if and only if £ a-dominates y and y a-
dominates z. It is obvious that the equivalence relationship
in a single gate remains valid in a Speed-Independent cir-
cuit. Unfortunately, a c-equivalent pair of faults might not
be a-equivalent in a Speed-Independent circuit, since the
circuit under each fault might have different hazard condi-
tions that lead to different undetermined states. Therefore,
a test for one fault in a c-equivalent pair might be invalid
for the other. For the same reason, as well as due to self-
hiding and delayed reconvergence [13], a c-dominant and
c-dominated pair of faults might not be an a-dominant and
a-dominated pair. Therefore, SPIN-SIM collapses conser-
vatively, i.e. only g-equivalent faults.

Although efficient parallel fauit simulation techniques
have been devised for synchronous circuits [14], similar
techniques for asynchronous circuit are yet to be developed.
The main reason is that 13-valued algebra requires more bits
to represent a value, and, more importantly, that the basic
gate functions in 13-valued algebra deviate from common
bitwise fogic operators. Therefore, simifar to Fsimac [6],
SPIN-SIM performs fault simulation serially.

6 Experimental Results

SPIN-SIM has been developed in C, based on the sim-

. ulation engine of HOPE [14]. The input circuit netlist is

in ISCAS89 format and the stuck-at fault list can be defined
through a file or generated automatically by the tool. We ex-
perimented with SPIN-SIM on a set of Speed-Independent
circuits synthesized by Petrify [15]. Complex gates like
Muller C-elements are handled as described in section 4.4.
In each benchmark, a reset input is assumed to be con-
nected to every memory element to appropriately initialize
the circuit. Experiments were performed on a workstation
with dual Xeon 1.7GHz processors and 1 gigabyte of RAM.
For each benchmark, we fault simulated ten thousand ran-
dom test vectors generated through the method described in
[16]. A fault is reported detected only if the generated test
patterns are guaranteed to detect it assuming any possible
combination of gate delays. This, however, does not imply
that we are limited to patterns that will never cause undeter-
mined states or oscillations in the circuit. In some cases a
circuit state may be undetermined or in oscillation after ap-
plying a pattern, but the faulty circuit may still be detected
because at least one output will be stable and will have a
value different than the expected good circuit response. In
order to demonstrate the efficiency of SPIN-SIM, we com-
pare our results to those of Eichelberger’s method, which
we implemented as in [4], except that we adopted a 13-
valued algebra during the simulation. For each method and
each circuit we repeated the experiment 20 times and we
report the average of the obtained values.

_ y [l Exchoforger's method
seqd 0 SPIN_SIM]

0 LR 02 03 04 05 06 a7
Averags GPU 6mp (8}

Figure 9. Simulation CPU Time

We first compare in Figure 9 the time that each method
spent on logic simulation of the test vectors on the good
circuit. For some circuits, such as chul50 and dff, SPIN-
SIM spends about 45% more CPU time than FEichel-
berger’s method. This additional computational effort is
mainly spent to maintain time stamps during gate evalu-
ation, through which SPIN-SIM provides improved accu-
racy. For some circuits, such as master-read, ram-read-
sbuf, and seg4, SPIN-SIM spends only about 10% more
CPU time than Eichelberger’s method. Finally, for some
circuits such as mr/, SPIN-SIM spends less CPU time than
Eichelberger’s method. This happens mainly because in
some cases the conservativeness of Eichelberger’s method
leads to undetermined states which may cause additional
simuylation iterations. Overall, SPIN-SIM spends around
21% more CPU time than Eichelberger’s method, Yet,
the accuracy of simulation is significantly improved. To
demonstrate this, Figure 10 shows the number of undeter-
mined states for each circuit during the simulation by each
of the two methods. Evidently, the techniques employed
in SPIN-SIM result in a simulation where circuit states are
resolved much better than in Eichelberger’s method, even
when the latter employs a 13-valued algebra.

By overcoming the conservativeness of Eicheiberger’s
method, SPIN-5IM also achieves a significant improvement
in fault coverage. Table 4 illustrates the fault simulation re-
sults of both SPIN-SIM and Eichelberger’s method. The
number of stuck-at faults in each circuit before and after
fault collapsing is listed in the second and third column re-
spectively, along with the fault collapsing rate in the fourth
column. Although we only collapsed g-equivalent faults,
the fault collapsing rate is still considerable, averaging at
38.7%. The fifth and sixth columns provide the average
number of detected faults and the average fault coverage
of the randomly generated vectors for each circuit using

converia
chy 150 ————
chu133 Mk

o FEE

1
2 1000

. : . . : L .
2000 23000 4000 5000 6000 T000 B000
Number 6f Undetecmined states

Figure 10. Number of Undetermined States

Eichelberger’s simulation method. An average fault cov-
erage of 75.6% is achieved across all circuits. Similarly,
the eighth and ninth columns list the average number of de-
tected faults and the average fault coverage of the same ran-
domly generated vectors for each circuit using SPIN-SIM.
Overall, SPIN-SIM achieves an average fault coverage of
97.1% across all benchmark circuits, which means an aver-
age improvement of 21.5% over Eichelberger’s method.

In the seventh and tenth column of Table 4, we also list
the average CPU time needed by each method to fault sim-
ulate the ten thousand random test vectors on each bench-
mark circuit. For several circuits, such as chu/ 50 and rpdfi,
SPIN-SIM spends 14-70% more CPU time, although both
methods are equally effective in terms of fault coverage.
This is attributed to the higher computational complexity of
SPIN-SIM that keeps time-stamps and other information to
increase simulation accuracy. However, SPIN-SIM spends
significantly less CPU time, even up to tens of times less
in some cases, on circuits such as ebergen and mrl. At the
same time, it provides a much better fault coverage, since
it alleviates the conservativeness of Eichelberger’s method.
Interestingly, this improved accuracy is the exact reason for
the CPU time savings. Fichelberger’s method is unable to
detect a considerable number of faults and simulates each
of them for every test vector, while SPIN-SIM detects many
of them in eatly stages and drops them from the fault list,
Thus, SPIN-SIM performs fewer simulations and saves a lot
of CPU time. The normalized CPU time savings for these
experiments were 33.9%.

7 Conclusion

Logic simulation of Speed-Independent circuits requires
consideration of hazard conditions caused by changes of
feedback lines before the circuit stabilizes. In addition, fault

Paper 21.1

605

Eichelberger’s method SPIN-SIM

Circuit No, of No. of faults Collapsing | Average No. of | Average fault [CPUtime { Average No. of | Average fault | CPU time

Name Faults | Aftercollapsing Rate (%) Detected faults | Coverage(%) | (seconds) | Detected fauks ‘| Coverape(%) | (seconds)
alloc-outbound 10 41 41.4 41 100 0.012 41 100 0.009
chul33 54- 32 407 31 96.9 0.261 31 96.9 0.365
chul50 56 34 393 33 971 0.247 33 97.1 0418
cenverta 54 37 315 21 56.8 1.478 34 91.9 0.656
-dff 44 28 36.4 6 214 1.313 24 857 0.772
ebergen 74 46 37.8 22 478 3.250 44 957 0.747
half 22 15 318 6 400 0.563 15 100 0.006
hazard 48 33 31.2 29 87.9 0.562 32 97.0 0.383
master-read 144 86 40.3 56 65.1 5.135 84 977 1119
mp-forward-pkt 60 34 433 34 100 0.007 34 100 ¢.008
mrl 152 93 388 10 10.8 31.184 87 935 2.320
nak-pa 82 48 41.5 48 100 0.016 48 100 0.008
nowick 56 28 50.0 28 100 0.007 28 100 0.067
ram-read-sbuf 90 boss 389 55 106 0.063 55 100 0.011
rev-setup 40 25 375 25 100 0.006 25 100 0.007
rpdit 62 34 45.2 4 100 0.006 34 100 0.007
sbuf-ram-write 110 69 31.3 69 100 0.042 69 100 0.029
sbuf-send-cd 94 59 37.2 35 59.3 2485 56 94.9 0.962
seqd 9% 63 344 34 54.0 4263 60 952 1.044

Average 38.7 75.6 97.1

Table 4. Fault Simulation Results

simulation of Speed-Independent circuits necessitates that
faults be detected through signals that are in a stable state.
. To address these issues, we developed SPIN-SIM, a jogic
and fault simulation algorithm for stuck-at faults in Speed-
Independent circuits by extending Eichelberger’s method.
In addition to adopting a 13-valued algebra, SPIN-SIM
maintains the relative order of causal signal transitions in
the circuit, unfolds time frames carefully and handles com-
plex gates through a pseudo-gate replacement technique.
Experimental results indicate that SPIN-SIM achieves much
higher logic and fault simulation accuracy, yet incurs only a
slight increase in computation time, if any at all.
References :

[1T S. Banerjee, S. T. Chakradhar, and R. K. Roy, “Synchronous
test generation model for asynchronous circuits,” in Pro-
ceedings of the 9th International Conference on VLSI De-
sign, 1996, pp. 178-85.

M. A. Breuer, “The effects of races, delays, and delay faults
on test generation,” IEEE Transactions on Computers, vol.
C-23, no. 10, pp. 1078-1092, 1974,

0. Roig, §. Cortadella, M. A. Peiia, and E. Pastor, “Au-
tornatic generation of synchronous test patterns for asyn-
chronous circuits,” in Proceedings of the 34th Design Au-
tomation Conference, 1997, pp. 620-625.

E. B. Eichelberger, “Hazard detection in combinaticnal and
sequential switching circuits,” IBM Journal of Research and

Development, vol. 9, ne. 2, pp. 90-99, 1965.

T. J. Chakraborty, V. D. Agrawal, and M. L. Bushneli, “De-
lay fault models and test generation for random logic se-
quential circuits,” in Proceedings of the 29th Design Au-
tomation Conference, 1992, pp. 165-172.

S. Sur-Kolay, M. Roncken, K Stevens, P. P. Chaudhuri, and
R. Roy, “Fsimac: A fault simulator for asynchronous se-

{21

K]

—

(4]

5]

(6

—

Paper 21.1 |
606

{7

[8

[9

{10

[Tt

(12

(13

[14

[15

[16)

quential circuits,” in Proceedings of the 9th Astan Test Sym-
posium, 2000, pp. 114-119.

] S. Chakraborty, D. Dill, and K. Yun, “Min-max timing anal-
ysis and an application to asynchronous circuits,” Proceed-
ings of the IEEE, vol. 87, no. 2, pp. 332-346, 1999.

] W. A. Clark, “Macromodular computer systems,” in Pro-
ceedings of the Spring Joint Computer Conference, AFIPS,
1967, vol. 30, pp. 335-336.

} C.J. Myers and T. Meng, *“‘Synthesis of timed asynchronous
circuits,” IEEE Transactions on VLSI Systems, vol. 1, no. 2,
pp. 106-119, 1993.

1 D. Muller and W. Bartky, “A theory of asynchronous cir-
cuits,” In Annals of Computing Laboratory of Hardward
University, pp. 204-243, 1959.

1 C.J. Myers, Asynchronous Circuit Design, John Wiley and
Sons, Inc,, New York, 2001.

1 8. H. Unger, Asynchronous Sequencial Switching Circuits,
Wiley-Interscience, New York, 1969,

] I. E. Chen, C. L. Lee, and W. J. Shen, “Single-fault fault-
cotlapsing analysis in sequential logic circuits,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 10, no. 12, pp. 1559-1568, 1991.

] H. K. Lee and D. S. Ha, “Hope: An efficient parallel fault
simuylator for synchronous sequential circuits,” JIEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
ard Systems, vol. 15, no. 9, pp. 1048-1058, 1996.

| J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,

and A. Yakovlev, “Petrify: a tool for manipulating con-

current specifications and synthesis of asynchronous con-
trollers,” [EICE Transactions on information and Systems,

vol. E80-D, no. 3, pp. 315-325, 1997

F. Shi and Y. Makris, “Fault simulation and random test

generation for speed-independent circuits,” in Proceedings

of the 2004 Great Lakes Symposium on VLSI, 2004, pp. 127-

130.

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

