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Abstract—The various modes of failure of asynchronous se-
quential logic circuits due to timing problems are considered.
These are hazards, critical races and metastable states. It is
shown that there is a mechanism common to all forms of hazards
and to metastable states. A similar mechanism, with added com-
plications, is shown to characterize critical races. Means for de-
feating various types of hazards and critical races through the use
of one-sided delay constraints are introduced. A method is de-
scribed for determining from a flow table situations in which
metastable states may be entered. A circuit technique is presented
for extending a previously known technique for defeating metas-
tability problems in self-timed systems. It is shown that the use of
simulation for verifying the correctness of a circuit with given
bounds on the branch delays cannot be relied upon to expose all
timing problems. An example is presented that refutes a plausible
conjecture that replacing pure delays with inertial delays can
never introduce, but only eliminate glitches.

Index Terms—Asynchronous, critical race, delays, dynamic
hazards, essential hazards, inertial delays, metastability, pure
delays, sequential logic, timing problems, timing simulation.

I. INTRODUCTION

C OMBINATIONAL logic circuits can operate correctly in the
sense that their steady state outputs are correct, while
generating spurious pulses, often termed glitches, when the
input states change. If, depending on the values of relative
delays along various paths, such behavior is possible, then we
say that there are combinational hazards in the design. A haz-
ard is manifested, in the operation of a physical instance of
such a circuit, if a glitch actually occurs. A particular circuit
with hazards may consistently manifest them, or occasionally
the hazards may be manifested (depending perhaps on variable
factors such as temperature or power supply voltages that can
cause delay magnitudes to fluctuate), or the delays may be so
related that, for the input state changes that occur in practice,
the hazards are never manifested. In some situations these
transients are of no consequence, as is the case for some cir-
cuits embedded in synchronous systems. But often they can
lead to significant malfunctions, for example where the combi-
national logic generates signals controlling internal variables
of sequential circuits, in which case the transient errors may be
converted into steady-state errors.

Combinational hazards are classified as either static or dy-
namic, depending upon whether the output is specified to remain
constant after the input change, or to change, respectively. A
static 1-hazard is one where the output both before and after the
input change is supposed to remain constant at 1 and a negative
going pulse may be generated. Static 0-hazards are analogously

Manuscript received Sept. 15, 1993; revised June 5, 1994,

The author is with the Computer Science Department, Columbia Univer-
sity, New York NY 10027; e-mail: unger@cs.columbia.edu.

IEEECS Log Number C95048.

defined where the output is supposed to remain constant at 0. A
dynamic hazard is one where a glitch may appear prior to an
output change from 0 to 1 or from 1 to 0.

It is well known [8], [26] that combinational logic functions
can always be realized with circuits that have no hazards for
single-input-change (SIC) operation. Stated in another way,
combinational hazards for SIC operation can always be elimi-
nated. When more than one input may be changed simultane-
ously, i.e., for multiple-input-change (MIC) operation, certain
hazards, called function hazards, are inevitable [6]. If there is a
hazard in a circuit that is not a function hazard (i.e., the func-
tion can be realized without this hazard), then it is a character-
istic of the logic design, and is referred to as a /ogic hazard.

Where it is not possible or not desirable to eliminate a haz-
ard by means of logic design, it may be possible to defear it,
that is to prevent it from being manifested. This can be done
by ensuring that the delays along certain critical paths are not
so related as to cause the glitches to occur. Another way to
deal with hazards is to allow them to be manifested, but to
filter them out through the use of inertial delays of sufficient
magnitude to suppress the glitches. Coping with them in this
way is usually considered to be a last resort since it may be
costly and may significantly slow down circuit operation.

In many cases, defeating hazards is not feasible because it
may necessitate guaranteeing that the delays along two (or
more) different paths be constrained to differ by no more than
some very small amount. This is generally not achievable. On
the other hand it is generally possible to enforce one-sided
constraints, i.e., to ensure that the total delay along one path is
bounded below by the maximum delay along another path. In
some cases, particularly where only certain input changes are
possible, one-sided constraints may be sufficient.

Other types of timing malfunctions are endemic to sequen-
tial circuits. If a sequential function is realized by a circuit with
more than one internal variable, and if, for certain situations,
an internal state change entails the simultaneous change of
more than one state variable, then this is called a race condi-
tion. If the stable state ultimately reached depends on the out-
come of the race, then it is referred to as a critical race. Gen-
erally we would consider critical races as being design defects,
since it is difficult to control path delays so as to ensure par-
ticular outcomes of races. It is always possible to eliminate
critical races by appropriate choices of state assignments.
“Fixing” races by means of one-sided constraints, on path de-
lay values, is sometimes an acceptable option.

Another class of timing problems in sequential circuits are
those arising from situations where, if circuit delays are such
that an internal state change resulting from an input change is
perceived somewhere in the circuit as having occurred before
the precipitating input change, then the system generates an
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output glitch or goes to the wrong internal state. When such
behavior is inherent in the function being realized, we say that
the function has an essential hazard. If the resulting malfunc-
tion is an output glitch, then it is a transient essential hazard. If
the system might wind up in the wrong stable state, then the
problem is designated as a steady state essential hazard. Both
types of essential hazards can always be defeated by one-sided
delay constraints. In particular, delays in the internal variable
branches (y-branches) will always do the job [26].

Normally, we expect that, except during very brief,
bounded, time intervals, each of the internal variables of a
sequential circuit has one of two values (usually designated as
0 or 1). However, under certain conditions, any nontrivial se-
quential circuit can enter a mode where one or more of its in-
ternal variables takes on a value “in between” 0 and 1, possi-
bly fluctuating in this range, for an indefinite period of time. A
system in this condition is said to be in a metastable state
(MSS). It has been shown that there is no way to eliminate the
possibility of this occurring (although the probability can be
made arbitrarily small), and that there is no way to put an up-
per bound on the interval during which the metastable state
persists.

Suppose that, in some logic circuit, a signal (input, output,
or internal) undergoes two consecutive changes. Then we
might refer to this pair of changes as constituting a pulse. (It is
a positive pulse if the first change is 0 — 1, and is negative if
the first change is 1 — 0.) The width of the pulse is the time
interval between the changes. If this interval is short, we would
say we have here a short pulse. In any real circuit, there exists
a time value such that if the width of a short pulse is below that
value, the pulse will definitely be ignored, due to the inertial
properties of real systems. If the width is increased from this
value, the pulse is marginally recognized, in the sense that it
may or may not have an effect at different gate inputs. Finally,
if the pulse width exceeds some larger value, then it will
definitely be recognized by the circuit. A pulse whose width is
in the marginal range, is referred to as a runt pulse. (Pulse
amplitude is also at factor here. Runthood is in general a prop-
erty of both width and amplitude, the basic idea being that a
runt pulse is a pulse whose existence is marginal.) As is shown
later, runt pulses are related to metastability.

All of these timing problems are particularly important in
unclocked, or self-timed, systems where, especially on control
wires, all transitions, at any time, may be considered signifi-
cant. In such systems, even those termed “delay insensitive,” it
is necessary to pay attention to delays along certain paths. This
is because, even in the absence of essential hazards (discussed
below), a circuit module must indicate to its environment when
it is ready for input changes. Such signals are meaningless if
there are arbitrarily large delays on certain internal paths. Re-
lated to this is the concept of isochronic forks, discussed by
Martin [14], and by Brzozowski [3]. Of course, where un-
clocked systems use “delay bundling” (see for example the
work of Sutherland [24]) attention must be paid to delay val-
ues in virtually all paths. Hence, the methods presented in this
paper for coping with various timing problems by controlling
relative delays along certain circuit paths does not constitute
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the introduction of an otherwise unnecessary type of constraint
on the design of such systems.

An objective of this paper is to show how a particular cir-
cuit feature, namely the possibility of a gate receiving contra-
dictory signals simultaneously on different inputs, is common
to all of the timing problems mentioned above. It is also shown
that the various problems may be usefully viewed from differ-
ent vantage points: boolean logic expressions, Karnaugh maps,
flow tables, and logic circuit diagrams. This is helpful in en-
hancing our understanding of the mechanisms involved, identi-
fying problem transitions, and devising means to eliminate or
defeat problems. Techniques are presented for defeating any
dynamic hazard and many critical races with one-sided delay
constraints. A simple procedure is described for determining
by inspection of a flow table if a particular input transition can
lead to metastability. A variation on a previously known circuit
technique for filtering out the effects of metastability is pre-
sented which can cope with a broader class of problems. It is
shown that timing simulators cannot be relied upon to test for
the presence of timing problems. Finally, it is demonstrated
that replacing pure delays with inertial delays can, under cer-
tain circumstances, actually introduce timing problems not
previously present.

The systems discussed here are assumed to be constructed
of AND, OR, and INVERTER gates. Extensions of the results
to cover systems, including NAND and NOR gates, are
straightforward. Delays, with given upper and lower bounds,
are associated with all wires. (Gate delays may be absorbed in
the delays of wires at the outputs.) In order to simplify the dis-
cussions, it is assumed that each delay is pure, and that the
delays for rising and falling signals are the same. It is not diffi-
cult to extend the results to models with mixed pure and iner-
tial delays and with different delay values depending upon the
direction of a value change. Where multiple-input-changes
(MICs) are discussed, it is assumed that all of the input vari-
ables involved change simultaneously. Variations from simul-
taneity can easily be taken into account by delays in the wires
leading from the inputs.

A basic introduction to asynchronous sequential circuits con-
sistent with the approach taken in this paper is in [28] , and a
more detailed treatment of hazards and critical races can be
found in [26]. The origins of the theory of combinational haz-
ards are mainly in [8], [15], [6] (multiple-input change static
hazards), [26], [1], [2] (multiple-input change dynamic hazards).
The basic work on critical races and state assignments free of
them is in [7], [12], [25]. More recent approaches to some of
these problems are in [11], [18]. Methods for evading the prob-
lem by using locally generated clock pulses were introduced in
{51, [27]. A more sophisticated approach is irr [17]. The origins
of the basic ideas pertaining to metastability are in [4], [9], [19],
[22], [13]. More recent work on this topic is in [10], [20].

Static and dynamic combinational hazards are treated in the
next two sections. In Sections [V and V two types of essential
hazards are shown to be associated with sequential functions that
cannot be eliminated, but which can be defeated. They are
shown to be related to static combinational hazards. In Sec-
tion VI it is shown that sequential dynamic hazards also exist,
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but that these are not inherent in the functions. Metastability is
treated in Section VII, where it is shown that situations where it
can be initiated by either runt pulse inputs or the internal genera-
tion of runt pulses following multiple input changes can easily be
identified from the flow table point of view. It is also shown
there that the effects of metastability can be prevented from
reaching outputs by a circuit filter. Critical races are examined
from a circuit as well as flow table point of view in Section VIII.
The resemblance, with a twist, between critical races and essen-
tial hazards is pointed out, and a technique for using one-sided
delay constraints that goes beyond “fixing” races is presented
that allows the use of some state assignments with critical races.
A consequence of the technique for defeating dynamic hazards is
shown in Section IX to provide a counterexample to the idea that
if a circuit works properly with some delay element assigned
either of two specific values, then it will also work for all inter-
mediate values. Finally, it is shown in Section X that pure delays
are not always more troublesome than inertial delays with re-
spect to timing problems.

II. STATIC COMBINATIONAL HAZARDS

Assume we restrict ourselves for the moment to logic cir-
cuits composed only of AND, OR and INVERTER gates. It is
not difficult to show that the basic model for static hazard gen-
eration is the configuration shown in Fig. 1a, for 1-hazards,
with the dual shown in Fig. 1b, for 0-hazards. (Note that a
NAND-gate could replace the OR-gate, and that a NOR-gate
could replace the AND-gate.)

— T -2

(a) 1-hazard

x——&& z

(b) 0-hazard

Fig. 1. Basic models for static hazards.

In the case of a 1-hazard, for example, if the delay through
the lower path to the OR-gate (Fig. 1a) were sufficiently long
relative to the delay through the inverter,in a particular physi-
cal circuit, then no hazard would be manifested for a change of
X from 1 to 0. But then, for a change of X from 0 to 1 the haz-
ard would definitely be manifested. The hazard would not be
manifested for either change if the delays are so related that
the opposite changing signals arrive almost simultaneously. An
intermediate situation would be if the time interval between the
signal arrivals is marginal, in which case a runt pulse might be
produced. This point will be referred to again later in the dis-
cussion of metastable states.

EXAMPLE 1. Consider the logic function specified in the
4-variable Karnaugh map shown as Fig. 2. A sum-of-
products (SOP) expression for this function is:

Z=AB+AC+BC+BCD
This can be factored to yield:
Z=(A+B)(A+C)+BCD
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Fig. 2. Karnaugh map of function.

The circuit shown as Fig. 3 corresponds to this expression.
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Fig. 3. Realization of Fig. 2 function.

Examining the circuit in the light of the preceding discussion,
note that, from the A-input, there are two paths to AND-gate-7,
one with one inverter, and the other with no inverters. Both paths
are sensitized when B = 0 and C = 0. Thus, under these con-
straints, when A changes, there is a 0-hazard at the output of
gate-7. However, if D = 1, this output does not propagate to the
output Z, since Z will be held at 1 by the 1-input from gate-6.
But if D = 0, the output of Z is same as that of gate-7; that is
there can be a negative glitch at the circuit output. Thus, we have
a 0-hazard when A changes while B=C =D =0.

An essentially equivalent process can be carried out on (2),
which mirrors the circuit. Observing the appearance of both A
and A in the expression, we attempt to fix the other variables
so as to reduce the expression to AA. This can be done by
setting B = 0 to convert the first parenthesized subexpression
to A, and then, setting C = 0 converts the second parenthesized
subexpression to_ E All that remains is to set D = 0 thereby
eliminating the BCD term.

A third way to arrive at the same result is a bit different.
Multiply out the product in (2), a hazard-preserving operation,
and do not eliminate the resulting AA term (that would not be
hazard-preserving). The result is:

Z=AB+AC+BC+AA+BCD 3)

Setting B = C = D = 0 reduces (3) to AA again revealing the
0-hazard.

Now consider variable B. There are two paths from B con-
verging at final OR-gate-8, one path with a single inverter on
it, and the other with no inverters. Both paths are sensitized if
A=0,C=0,and D = 1. This corresponds to a 1-hazard at the
output. The same conclusion can be reached from (2) by not-
ing that setting A = C = 0 and D = 1 reduces that expression to



UNGER: HAZARDS, CRITICAL RACES, AND METASTABILITY

B+B. A different way to see this, using (3), is to note that the
consensus term, between AB and BCD, namely ACD, is
missing from the expression. Thus, within the cube defined by
ACD there is a hazardous transition. Finally, an examination

of the K-map of Fig. 2 shows that none of the chosen subcubes
covers the transition under discussion (the missing cube is of

course ACD), confirming again that there is a 1-hazard for

transitions between 0001 and 0101. The hazard can be elimi-
nated by adding to the circuit a path that corresponds to
ACD.

Note that the same techniques used to identify the 1-hazard
could be used on the 0-hazard, by complementing the map,
expressions, and circuit. (Complementing the circuit would
mean swapping AND-gates and OR-gates and complementing
all inputs.) There is also a 1-hazard for transitions between
1001 and 1011. It can be detected using the same techniques
illustrated for the 1-hazard between 0001 and 0101.

Consider next a multiple input change. Suppose that with A
and B both fixed at 0, C and D are both changed from 0 to 1.
Paths from C (with one inverter) and from D (with no invert-
ers) converge at AND-gate-6. With B set at 0, we have the
conditions for a positive glitch at the output of gate-6. With
A =B =0, the output of gate-4 is 0, which forces the output of
gate-7 and hence the lower input to gate-8 to be 0, so that the
glitch will be propagated to the output Z. Thus we have an
MIC hazard for transitions between 0000 and 0011. Note that,
with A = B = 0, (2) reduces to CD. This term (corresponding
to an AND-gate) has its two inputs changing in opposite direc-
tions when C and D both change in the same direction. An
examination of this transition on the K-map of Fig. 2, shows
that, between the initial and final states of this transition, both
of which are 0-points of the function, there is a minimal-length
path that passes through the point 0001, where Z = 1. This is
the condition for a function 0-hazard.

There is no way to eliminate the function hazard. But, as
noted above, it can be handled in one of two ways. One is
simply to place an inertial delay element at the output of gate-6
or gate-8. If its magnitude exceeds that of the maximum pos-
sible width of the glitch, which is the maximum difference in
the delays along the two critical paths, then the spurious pulse
will be filtered out. Suppose that instead of this approach,
which delays the circuit output, we attempt to defeat the haz-
ard, i.e., to prevent the glitch from being generated. This might
be done by ensuring that, for the 0000 — 0011 transition, the
signal from C, which would hold the gate-6 output at 0, arrives
before the signal from D, which would turn on the output of
gate-6. This could be done by inserting a sufficiently large
delay element (pure or inertial) in the path from D to gate-6.
But now observe what would happen for the inverse transition,
i.e., 0011 — 0000. Again, the effect of the C-change would
reach gate-6 before the effect of the D-change. The result is
that the output of inverter-2 goes to 1 before the signal from D
goes to 0 so that the hazard is definitely manifested. Thus this
approach is useful only where the input sequences are re-
stricted so that such inverse pairs of transitions do not occur.
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For some technologies there may be a way around this
problem. Suppose that for the current example, inverter-2 re-
sponds with relatively little delay to a change in C from 0 to 1
(i.e., the inverter output falls quickly) while taking much
longer to respond to an 1 — 0 change in C (i.e., the inverter
output rises slowly). This indeed corresponds to the behavior
of an NMOS inverter. (Differences in logic gate thresholds can
also produce similar effects.) Then, if the delay in the path
from D to gate-6, for signal changes in both directions, is con-
strained to be between the two delay values for the path from
C, then it may be possible to defeat the hazard for both transi-
tions. This approach, which entails a two-sided delay con-
straint, is applicable to all kinds of static hazards.

III. DYNAMIC COMBINATIONAL HAZARDS

For input changes that cause the output of an OR-gate to
change from 0 to 1, a dynamic hazard can be generated at (as
opposed to being propagated to) the output of this gate, only if
a positive glitch occurs at one of its inputs and then terminates
before the arrival at another input to the OR-gate of a signal
changing monotonically from 0 to 1. Such a situation is de-
picted in Fig. 4. If gy and g,, and m are simultaneously turned
on, then complementary input changes occur at the inputs to
the AND-gate, which, as shown in Fig.1b, is the basic mecha-
nism for producing a glitch at the output of the AND-gate (the
signal labelled G). Note that g; turns on the glitch and g, turns
G off. The 1-hazard is manifested if the effect of g, is felt at
the AND-gate before the effect of go. The monotonically in-
creasing signal is m. Thus, if the signal from m arrives at the
OR-gate after the G signal at the input to the OR-gate has
gone on and then off, we would have a spurious pulse at Z
preceding the steady-state change of Z from 0 to 1.

o | |,

s

m

Fig. 4. Basic model for dynamic hazards.

Assume now that there is a MIC involving m, go, and g;.
The dynamic hazard would be manifested if the path delays in
the circuit are such as to cause events to occur in the order
specified above. That is, if the order of the three input changes
was perceived at the the inputs to the OR-gate as having been
g1, & (required to produce a glitch at G), and then m.

1t will now be shown that, unlike the case of static hazards,
all dynamic hazards (both logic and function hazards) can be
defeated for changes in both directions, by one-sided delay
constraints. (There are actually two different sets of constraints
that can be used in each case.) Suppose that the path delays
from g, g;, and m to the OR-gate inputs are respectively do,
d,, and d,,. Then there are two ways to defeat the dynamic haz-
ard for the case where Z is to change from 0 to 1 (i.e., for the
MIC in which all three inputs go on). One way is to prevent
the glitch at G from occurring. This can be done by making
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d, > do. The second way is to make the glitch overlap the
turning on of m (i.e., forcing the effect of the m going on to be
felt while the glitch is still on). This will occur if do > dp.

Now consider the reverse transition, i.e., where all three input
variables are switched off. Now the generation of the glitch at G
is prevented if do > d;, which constitutes one constraint for de-
feating the dynamic hazard. The dynamic hazard can also be
defeated by allowing the G glitch, but overlapping it with the m-
signal (i.e., by ensuring that the effect of m going off is delayed
until the effect of g, going off is perceived by the OR-gate). This
is achieved by imposing the constraint d,, > do.

Now observe that if dy > d,, du, (i.€., do > d; and do > dn),
then the dynamic hazard is defeated for transitions in both di-
rections. The same is true if dy < d;, dp.

The simplest example of such a hazard is illustrated in
Fig. 5, a SIC dynamic hazard. Here all three of the basic inputs
are derived from the single input-variable X. Corresponding to
this circuit is the logic expression: Z = XX +X. The first X

symbol corresponds to g, the second X to go, the product XX
to G, and the third X to m. The branch delays are denoted as a
(which includes the inverter delay), b, c, and d. The dynamic
hazards for changes of X in either direction are both defeated
by the constraintsa+d>b+d,anda + d > c, or alternatively
bya+d<b+d,anda+d<c.

x—L]
E—

c

& |d

Fig. 5. SIC dynamic hazard.

Consider the circuit of Fig. 3 (used above to illustrate static
hazards). There is a 0 — 1 MIC dynamic logic hazard for the

transition 1101 — 1011, i.e., for the input state change BLCT
when A = D = 1. For this situation, m = C, g, =B, g, = C,
G = BC (the output of gate 6). The hazard and the reverse
hazard can both be defeated by constraining the go path delay
to either exceed or be less than the delays in the gy and m
paths. For example, we could require the delays in the path
from C through gates 2 and 6 to the input of gate 8 (this is the
go path) to exceed the delays in the path from C through gates
5 and 7 to the input of gate 8 (this is the m path) and the delays
in the path from B through gates 1 and 6 to the input of gate 8
(this is the g; path). Alternatively, we could alter the above
constraints by replacing the phrase “to exceed” by the phrase
“be less than.”

The circuit (not shown) corresponding to Z = ABC+ABC
illustrates a dynamic function hazard for input changes be-
tween 000 and 111. The G signal is generated at the output of
the ABC gate, and the m signal is generated at the output of
the ABC gate. Both A and B produce g, signals, C produces
the only g, signal, and A, B, and C all contribute to m. If we
delay the paths from both A and B to the ABC gate by an
amount larger than the other delays, then, during the
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000 — 111 transition, that gate will not turn off the glitch until
after the m signal has turned on Z, which defeats the hazard for
that transition. For the reverse transition, the ABC gate will
not see the A and B signals go on until after it sees the C sig-
nal go off, so that no glitch is produced, thereby defeating the
reverse hazard as well.

A similar argument shows that minimizing the delays from
A and B through the ABC gate to the input of the final OR-
gate will also defeat both hazards. As a practical matter, when
this route is chosen, the action taken would be to increase the
delays in either or both of the other relevant paths. In fact, the
best strategy might be to choose the solution that entails the
least cost in terms of delay padding.

The above discussion is easily extended to cover circuits
terminating in AND-gates by simply using dual arguments. of
course NAND and NOR gates are also included in the discus-
sions of AND and OR gates, respectively (the outputs are
simply complemented).

In some cases there may be several OR-gate inputs at which
G-signals may appear, and perhaps several inputs at which
m-signals appear. Sufficient conditions for defeating the dy-
namic hazards in such cases are easily specified by, for exam-
ple, constraining d, values for all the G-signals to exceed all d;
values and all d,, values. Weaker sets of constraints may be
found in some cases by more careful analyses taking into ac-
count various glitch overlaps.

The results are extendable in a straightforward manner to
cases where the delays for rising and falling signals are differ-
ent, and it makes no difference whether the circuit delays are
pure or inertial. In a particular circuit with several distinctly
different dynamic hazards, there may be contradictions among
the delay constraints required to defeat certain subsets of these
hazards.

The importance of the above result follows from the fact
that, in many cases involving MIC operation, it has been
shown, by Bredeson [2], that not all dynamic logic hazards can
be eliminated. That is, for some functions, while any particular
dynamic hazard can be eliminated by a redesign of the logic
circuit, the new circuit will have some other MIC hazard. In
fact, the function described in Fig. 2 and realized by the circuit
of Fig. 3 is an example of such a function. This is an example
in which there are a number of potential dynamic logic hazards
in the function. It is possible to eliminate some, but not all
(without introducing static logic hazards) by logic design using
Bredeson’s method, and then to defeat the rest by the method
described above. It is not clear whether this can be done for all
functions. In practical cases it is important to understand that,
due to input constraints, transitions corresponding to many of
the MIC hazards may never occur, so that some hazards need
not be dealt with at all. This issue is treated, from the point of
view of eliminating (as opposed to defeating) hazards in
2-stage logic circuits, by Nowick and Dill [18].

IV. SEQUENTIAL CIRCUITS:
TRANSIENT ESSENTIAL HAZARDS

Consider next those hazards that are inherent to sequential
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circuits. To begin with, let us examine those hazards that are
inherent in certain sequential functions. That is, they cannot be
eliminated, although they can be defeated by suitably con-
straining relative delays along certain paths. The subsequent
discussion is restricted to single-output-change (SOC-no out-
put signal is specified to change more than once as a result of a
single change in any input signal) sequential functions and
operations are assumed to be SIC.

An example of such a hazard is embedded in the sequential
function described by the flow table of Fig. 6a. With the given
encoding of the rows in terms of the single internal variable y,
it is simple to obtain the K-maps of Fig. 6b for Y and Z. From
these the logic expressions below are easily generated:

Y =Ay+B, Z=ABy

The detailed logic circuit diagram corresponding to the
above expressions is shown in Fig. 6c. Clearly there are no
critical races or combination logic hazards (for SIC operation).

AB A A
00 01 1mn 10 y
1[@0 [20 [20 [Q0 |o 11
21,0 |@o 0 141 1y 111y
B z B Y
(a) Function description K gh maps
A
B Do & F—2z
A
a1 6
(c) Circuit realization
il

(d) Reduced circuit for A=1, y=0, B: 0->1

s—f>7 &

Fig. 6. Transient essential hazard.

But now consider carefully (referring to Fig.6a) what might
happen when B is turned on with the system initially in the
state 1-10. According to the flow table specification, the first
event is a state change to 1-11, corresponding to a lateral move
in the flow table to the first row of the 11-column. The output
remains at 0. Since the next-state entry is 2, the next specified
event is a change in the internal state to row-2, which brings
the system to state 2-11, a stable state. Note that in all three of
the states involved in this transition, the output, Z, is specified
to remain fixed at 0.

In terms of a general block diagram that represents any cir-
cuit realizing the function, the above process begins with a
change at the B-input, which propagates through the logic
block to the Z- and Y-terminals (in general, several Y-
variables might be involved). Next, the change in the Y-
variable(s) causes a change in the corresponding y-variable(s)
at the input end of the logic. The subsequent y-change(s) then
propagate through the logic again to the Z- and Y-terminals.
Suppose that, due to a relatively long delay in the path from
the B-input to the Z-output, the signal from the y-terminal
reaches the Z-terminal before the signal from B. Then it would
appear at the Z-terminal as though the internal state change
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had occurred before the input change that precipitated it. From
the point of view of the flow table, it is as though the vertical
transition occurred before the horizontal transition, i.e., that
the sequence of states was 1-10, 2-10, 2-11. But if this is the
way things look from the Z-terminal, the output would change
to 1 for a brief interval during the transition, corresponding to
the difference in arrival times at Z of the signals from B and
from y. This constitutes a spurious pulse, or glitch at Z. The
possibility of such a malfunction is referred to as a transient
essential hazard. In the current example, the hazard would be
manifested if the total path delay (see Fig. 6¢) from B to the
input of the AND-gate via the inverter exceeds the delay in the
path from B to the input of the AND-gate via the OR-gate.
This type of hazard is mentioned in [26], but is not treated in
detail. Before analyzing this situation further, a formal defini-
tion of a transient essential hazard is presented below.

First define Z(r, c) as the output for the total state r-c, i.e.,
the state corresponding to row-r, column-c. If X is an input
variable, and if the stable state reached after a single change in
X with the system initially in stable state r-c is r'-c’, and if the
stable state reached after a second change in X is r'-c, and
1" # r (" might be equal to ') then a fransient essential hazard
exists if Z(r, ¢) = Z(r', ¢') # Z(r", c). This is equivalent to say-
ing that a transient essential hazard exists if, for some stable
state s, and for some input variable X, the output Z is specified
to remain unchanged when X changes once with the system
initially in s, but Z is specified to change if X is changed a
second time.

No change in the state assignment or the logic design can
eliminate the possibility of a malfunction if the path delays are
such as to reverse the apparent ordering of the input and inter-
nal state changes as seen at the Z-terminal. But simply insert-
ing a sufficiently large delay between the Y and y terminals
does defeat the hazard by ensuring that no such misperception
can occur anywhere in the circuit.

Now let us examine the situation more closely from the cir-
cuit point of view (Fig. 6¢, which is arranged to clarify the
subsequent discussion). Focusing on the part of the circuit that
generates Z, note that there are two paths from B to the inputs
of the rightmost AND-gate. One path includes an inverter, and
the other does not. If we fix A at 1 (which is its value in the
scenario under consideration), and fix the lower input to the
OR-gate—which comes from y—at 0 (which it might very well
be during all but the very end of the scenario) then the circuit
reduces to that of Fig. 6d. This is precisely the model for the
static 1-hazard shown in Fig. 2b. (Of course if the nature of the
transient essential hazard was to produce a negative glitch,
then the dual circuit, Fig.1a, for a static 0-hazard would apply.)

The problem is also evident from an examination of the ex-
pression for Z (i.e., ABy). The A variable is fixed at 1, reduc-
ing the expression to By, in which the B-term goes on while
the y-term goes off.

From the point of view of the K-map description of the
Z-function (Fig. 6b), what is happening is that a transition is
occurring from the point 100 to 111. For this MIC transition,
there is a function 0-hazard. Even though there is only a single
input change to the overall sequential circuit, the internal state



760

transition introduces a second variable change, namely y. It is
no coincidence that the combinational hazard is a function
hazard, since, as the previous arguments have shown, the order
in which the variables change determines whether or not a
pulse is produced, which is in accordance with the definition
of a function hazard.

V. SEQUENTIAL CIRCUITS:
STEADY-STATE ESSENTIAL HAZARDS

A mechanism very similar to that described in the previous
section is responsible for a related type of hazard that can
bring a circuit to the wrong stable state after certain transitions.
The problem is illustrated in Fig. 7. A very simple sequential
function is specified by the flow table in Fig. 7a, where a race-
free state assignment is shown. Using this assignment, K-maps
for Y, and Y, are produced in Fig. 7b (the output Z is not a
factor in this situation). Logic expressions are:

Yi=Ry2+y1, Ya=X+y2, Z=y)
X

3 (b) K-maps L
a) Function 2[3.0{@0| 0 1
@ 30,181 11 yz: yo
11
—T N 4
Y1 YZ
glitch generated here
X b & e
{c) circuit drawn to
expose hazard —I_ + Y,

Fig. 7. Example of steady-state essential hazard.

A circuit realization in standard form is shown in Fig. 7c.
There are no race conditions (therefore no critical races) and
all logic expressions are free of hazards for SIC operation.

Consider now what might happen when X is turned on with
the system initially in total state 1-0. According to the flow
table, the total state should change from 1-0 to 1-1 (an unstable
state), and then the internal-state should change, bringing the
system to 2-1. That is, following the input-state change, there
is an internal-state change. With the given state assignment,
following the X-change, y, should change. But suppose now
that at the Y,-terminal the X-change is perceived as having
occurred first. Then the system would appear to be in state 2-0,
where Y, is supposed to change to 1. The result would be a
pulse at the Y,-terminal, which could cause the system to end
up in state 3-1, the wrong stable state.

The logic circuit has been drawn in Fig. 7c to clarify the
situation. From this diagram, it is clear that there are two paths
from X to Y;. One of these is through the inverter and the
AND-gate, while the other is through the Y, OR-gate and the
AND-gate. With y, initially 0, the lower OR-gate acts as a
wire, and we have again the situation of complementary inputs
being fed to an AND-gate, the condition for generating a tran-
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sient 1-pulse. The situation is very similar to that shown in
Fig. 6d for the transient essential hazard, except that in this
case the glitch is fed to the feedback circuit generating Y,
instead of directly to the output. Thus, the glitch affects not
just the output, but also the internal stable state. Looking at the
expression for Y, the problem clearly reveals itself. With
y, = 0, we have Y, = Xy,, so that, when X and y, both go on,
the components of the AND-expression change in opposite
directions, thus opening the way for a spurious pulse to be
generated.

From the circuit point of view, the mechanisms for static
combinational hazards and for both transient and steady-state
essential hazards are the same: Signals changing in opposite
directions reach inputs of a gate at about the same time.

This problem is inherent in the sequential function being
realized. Such a steady-state essential hazard exists for any
transition in a SOC sequential function involving a change in
one input variable X if, starting in some stable state, a single
change in X is specified to bring the system to a different sta-
ble state than the one specified after three changes of X. It has
been shown [26] that there is no way to eliminate steady-state
essential hazards by manipulating the state assignment or the
circuit logic. The only solution is to defeat the hazard by con-
trolling the relative delays along the critical paths. As in the
case of transient essential hazards, this can always be accom-
plished by a delay between the Y and y nodes of the
y-variable(s) that are supposed to change in the course of the
transition. This ensures that the precipitating input change will
be perceived everywhere as having occurred before any result-
ing internal variable changes.

V1. SEQUENTIAL CIRCUITS: DYNAMIC HAZARDS

Consider next the flow table of Fig. 8. There are no essen-
tial hazards in the function described. It is a simple matter to
derive hazard-free SOP expressions for the internal variable
and for the output. These are:

Y = ABC+Ay, Z=ABy+ACy.

ABC
000 001 011 010 110 11
1{D.,0
2010

1 101 100
,010,9D,9CD,0f 2, 0[CD,0KCD,0
,01,01.00.10,110.002,1

— o

Fig. 8. Flow table with state assignment illustrating a sequential dynamic hazard.

There are three paths from C to Z: A direct path with one
inverter, corresponding to the C in the ACy term of the Z
expression, and two uninverted paths through Y, both through
the C in the ABC term of the Y expression, and then via the
appearances of y in each of the two terms of the Z expression.
These constitute a dynamic hazard, since they are all sensitized
with A = B = 1 and y initially 0. The transition involved is the
one starting in state 1-110 of the flow table, with C changing
from 0 to 1. If the path to the y-input to the AND-gate realiz-

ing Aay has the shortest delay of the three paths, then Z goes
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on. If the next event is that the change in C turns off the C in
the ACy term, then Z goes off again, and remains off until the
change in y gets through to turn on Z via the ABy term. What
has happened is that turning on C turns on Y, but the change in
y is received first by the ACy AND-gate, which sees the sys-
tem in 2-110 and therefore goes on. This same gate then sees
the C-change, thereby perceiving the system to be in 2-111,
and hence goes off. Last of all, the ABy gate sees the system in
internal state 2 (i.e., it sees y go on) and therefore it goes on.

Unlike the essential hazards of the previous two sections,
this hazard can be eliminated. It is a logic hazard, not a func-
tion hazard. All that is necessary in this case is to factor the
Z expression to obtain

Z=Ay(B+C).

Since B is fixed at 1 throughout the events of interest, the
parenthesized term (B+ C) is also fixed at 1, and so Z goes on
(and remains on) as soon as the AND-gate in the Z-circuit re-
ceives the y-signal.

While any particular dynamic sequential hazard can be
eliminated, for a given state assignment, which fixes the logic
functions to be realized, it is not always possible to eliminate
all dynamic logic hazards (as pointed out in Section III above).
The Bredeson method can be used to eliminate hazards to the
maximum extent possible.

There is always the option of defeating, rather than eliminat-
ing dynamic sequential hazards. This can always be done by
simply delaying the appropriate y-variables so that the events
following an input change are perceived everywhere in the
correct order (i.e., the input changes are seen to occur before
the internal state changes that they initiate). The other ap-
proach ‘described in Section 1III, biasing the various path de-
lays, can also be used.

There are no “essential” dynamic hazards. Since the
mechanism for SIC operation of SOC functions is such that the
total number of total states involved in a transition (including
the initial and final states) is at most 3, there is no way such an
output sequence as 0101 to occur as a result of false percep-
tions of the ordering of states.

VII. METASTABILITY: DETECTION AND DEFEAT

The flow table of Fig. 8 will be used to illustrate a discus-
sion of metastability. Suppose the initial total state is 1-101,
and that input B is switched on. Then the immediate transition
is to 1-111, followed by an internal state change leading to the
stable state 2-111. If B is then turned off, the system goes to
the stable state 2-101. The assumption thus far is that B is held
at the 1-value long enough for state 2-111 to be reached before
it is switched back to 0. Requiring that input changes be con-
strained to occur only when the system is in a stable state is
called the fundamental mode assumption. But what if this
constraint is violated and the 1-pulse at the B-terminal is
shorter than required to complete the transition?

First suppose that the pulse is very short. Then the inertial
delays in the wiring and in the gates may be sufficient to filter
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out the pulse altogether, so that the system simply remains in
state 1-101, with no detectable change in the output. It is as
though nothing at all happened.

If, however, the pulse width falls into some narrow range
between these two cases, then something rather different can
happen. If the B-signal goes off while the y signal is some-
where near the midpoint between 0 and 1, it may remain in this
vicinity for an indefinite period of time before eventually go-
ing to either 0 or 1. This “in between” state is called a metas-
table state.

The kind of signal on B described in the example is precisely
what was described earlier as a “runt pulse.” One of the ways in
which a sequential circuit can get into a metastable state (MSS)
is if a runt pulse is applied to an input terminal X when the sys-
tem is in a stable state such that changing X twice is supposed to
bring the system to a stable state other than the initial one. Thus,
in our example, a runt pulse on A when the system is in 1-000
could not bring the system to a MSS. But a (negative) runt pulse
on A with the system in 2-100 might do so.

It is also possible for a circuit to get into a MSS as a result of
a multiple input change. What may happen here is that the se-
quential circuit generates a runt pulse internally, which then be-
haves as did the runt pulse in the previous case. In the Fig. 8
example, suppose that starting in 1-110, B and C are both
changed. If the circuit delays were so balanced that, at the vari-
ous gates involved, it appeared that the changes were simultane-
ous (regardless of whether or not they actually did change at
exactly the same time), then the state changes to 1-101, another
stable state. If it appeared as though B changed first, then the
system would go to state 1-100 (a stable state) and then to 1-101,
i.e., the effect would be the same. But suppose that C appeared
to change first. Then the system would visit state 1-111, an un-
stable state. If the apparent difference between the times of the
changes were sufficiently large, then the system would remain in
the 111 input state long enough for y to change. This would send
the system to 2-111, and then when the effect of the B-change
got through, the system would move to state 2-101, another sta-
ble state. Thus, depending on the path delays and the actual time
of the input changes, the system could end up in either 1-101 or
2-101. The key is the relative arrival times of the B and C signals
at the terminals of the AND-gate generating the ABC term in the
expression for Y presented above in connection with Fig. 8. The
A-input to that gate is constant at 1, while the B and C inputs are
changing in opposite directions. The result may range from a
constant 0 output to a relatively long 1-pulse at the output. If the
output is a runt pulse of an appropriate width, then the system
can enter a MSS.

The situation in which a MIC can lead to a MSS can be de-
fined as follows. A MSS may be entered if, starting at some
stable state, a MIC is applied such that, depending on the order
in which the individual variable changes appear to arrive, one
of several different final stable states are reached. In our ex-
ample table, in addition to the case just described, a MSS may
be reached if the initial state is 1-011 and A and C are both
changed, or if all three inputs are simultaneously changed with
the system initially in 1-010. But it is not possible to enter a
MSS if, starting in 1-100, B and C are both changed. No MIC
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change can bring the system to a MSS when the initial state is
in row-2 of the flow table. The mechanism for generating the
MSS is once again the arrival at the inputs to a gate, of signals
changing in opposite directions, while the constant inputs are
all of types that do not desensitize the gate (i.e., Os for ORs
and NORs, and 1s for ANDs and NANDs). The immediate
result may be the generation of a runt pulse, which, if it gets
into a feedback loop, produces a MSS. Note that all of the
y-variables for a circuit realizing a SOC function are in feed-
back loops with an even number of inversions [26].

It has been pointed out above that hazards and critical races
can produce runt pulses that, if fed to feedback circuits can
also produce metastability.

It is well known that, where multiple input changes are pro-
duced from independent sources, there is no way to prevent
metastable states from being entered. Careful design can
minimize the probability of such occurrences, but there is no
way to reduce to 0 the probability of a MSS persisting beyond
any finite interval. This is a most annoying problem in syn-
chronous systems, where, if the MSS persists for an interval of
the order of a clock period, the results can be serious. One
solution for synchronous systems that is applicable where the
clock source can be controlled, is the “pausable clock” method
of Pechoucek [19], whereby the clock pulses are temporarily
stopped as long as a detecting circuit indicates that the system
is in a metastable state.

Another technique relying on a metastability detector has
been applied to specific circuits (principally arbiters) [23],
[22], [21], [14]. The output of the device is filtered to prevent
it from changing while the device is in a MSS. This is a satis-
factory solution for self-timed systems, since there is no dan-
ger of missing a clock pulse. What follows is a discussion of
this technique and a generalization that can be applied to any
sequential circuit in a self-timed system.

Fig. 9a depicts an arrangement used by Martin [14] in
which the output of an arbiter is filtered to protect against me-
tastability. (In Martin's circuit a similar filter with inverter is
also attached to Q to produce the second output of the arbiter.)
In this situation, the MSS can be entered only when the system
is initially in a stable state in which P = Q = 1. This would be
the case if inputs A and B are both at 0. Under this condition,
R is clamped at ground potential (0 volts, which corresponds
to logic value 0) as the NMOS transistor is active. This of
course, as a result of the action of the output inverter, makes
Z = 1. If a transition is made to a state where P=1and Q=0
(i.e., if B becomes 1), then no change occurs in the output. If
instead A is set to 1, with B remaining at 0, then P will change
to 0, with Q remaining at 1. Under this condition the NMOS
transistor is cut off and the PMOS transistor is turned on,
which causes R to rise to the value of Q. Hence Z switches to
0. If, from the initial condition P = Q = 1, both A and B are
turned on simultaneously, then we have the possibility of the
circuit going into a MSS. This would mean that the voltages at
P and Q might both decrease by almost equal amounts and
then either remain at some intermediate value between 0 and
Vi, the high voltage corresponding to logic value 1, or oscil-
late in phase within this range. Eventually, the situation would
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be resolved either with P returning to 1 and Q falling to 0, or
vice versa. In either event, we would not wish the output Z to
reflect this condition by fluctuating. The desirable situation is
that Z remain at its original value of 1 until resolution occurs,
and then it should either remain at 1 or change to 0, depending
upon the outcome. This in fact is what happens with the given
circuit. As long as Vp, the voltage at P, remains greater than
V.., the threshold voltage for the NMOS transistor, that transis-
tor will continue to hold R at 0. If V; falls below V,,, then the
NMOS transistor is cut off. If in addition, Vg, rises to at least
Ve (the threshold voltage for the PMOS transistor) above Ve,
then the PMOS transistor goes on and R will rise to the value
of Vq. At this point the system may be assumed to be leaving
the MSS with P headed toward 0 and Q toward 1. Thus R will
soon go to 1 and hence Z will switch to 0.

_[>o__z

(c) Where P Q prior to entering the MSS

Fig. 9. Filters for defeating metastable states.

Thus this circuit filters the P signal to obtain a version at Z
that is “clean” even if metastability should occur. The Z signal
is, at worst, delayed by the occurrence of a MSS.

(A dual of the filter can be applied to circuits where the P
and Q signals are both 0 prior to the onset of metastability.
such a circuit is shown in Fig. 9b. It resembles a circuit em-
bedded in the Q-flop resolver [21]. Earlier versions of this
general idea, implemented in NMOS technology, are by Stucki
[23] and Seitz [22].)

This scheme and its dual are intended for, and work well for
situations where metastability begins with P = Q = 1. It does
not work for other situations. For example, suppose that,
starting with P=0, Q =1, with A=B =1 (so R =1 and
Z = 0), a runt pulse is fed to input A, and that this results in a
MSS that is resolved by P returning to 0 and Q to 1. Then it is
likely that, during metastability, Vp will spend time above V,,
which would cause Vg to be pulled down toward 0 and there-
fore a glitch would appear at Z.

The following variation complements the other schemes in
that it can be used whenever metastability begins with P # Q.
Since any asynchronous sequential function can be realized
with its y-variables (i.e., internal variables) generated by cross
coupled NAND- or NOR-gates (as shown in parts a and b of
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Fig. 9) with P # Q in all stable states, this makes it possible to
deal with metastability problems in the realizations of all asyn-
chronous functions.

The circuit is shown in Fig. 9c. First assume that P = 0 and
Q =1, with A = B = 0. The PMOS transistor p will be on,
holding R at the value of Q, namely 1, so we have Z = 0.
Similarly, with P = 1 and Q = 0, also with A = B = 0, the
NMOS transistor n will be on, so that R is again connected to
Q, making Z = 1. Hence in the two stable states (we assume
that A and B are never both equal to 1), Z = P as desired. Now
suppose that with A, B, and P all initially 0 (and Q = 1) Vg is
increased (possibly by a runt pulse). This causes Vp to rise and
Vq to fall. Vg (initially equal to V44 less the diode threshold
voltage) does not change as long as Vp is less than Vo + Vg
since transistor n is cut off and diode-2 prevents current flow
out of the node R capacitance through transistor-p. It is rea-
sonable to assume, on the basis of various studies of metasta-
bility [10], [20], that once the values of Vp and Vq have
changed to the point where Vp > Vg + V,, then either there
will be no metastability or the MSS will have terminated, and
P will quickly become 1 and Q will become 0. Transistor-n
will be turned on, allowing Vi to fall to the diode threshold
voltage as V, falls to 0. If metastability does occur, then while
it lasts, [Vp - V| will remain below the threshold values of
both p and n, so that both transistors will remain cut off, leav-
ing Vg essentially constant at its initial value. A similar analy-
sis can be made of the situation where, in the initial state, P = 1
and Q = 0. Thus, as long as we do not allow the input state A =
B =1, this circuit should operate properly, preventing the con-
sequences of metastability from reaching the output Z. Note
that care must be taken in specifying the electrical parameters
of the filter elements. It appears to be feasible to specify di-
odes on CMOS chips although this does not seem to be a
common practice. In any event, connecting the gate terminal of
an NMOS transistor to the drain terminal produces the anode
of a satisfactory diode, where the cathode is the source termi-
nal. (A similar arrangement can of course be made with a
PMOS transistor.) The operation of this filter, using such di-
odes, has been verified by means of a SPICE simulation

An example of the application of this approach is the design
of a D-latch, shown in Fig. 10. Even if the setup or hold time
constraints for this latch are violated, which might lead to me-
tastability, no spurious output signals will occur at the
Q-output. The only effect of getting into a MSS is a delay at
the output of uncertain duration. This does not solve the prob-
lem for synchronous systems, but it does essentially defang
metastability for self-timed systems.

D
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Fig. 10. D-latch with MSS filter.
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VHI. CRITICAL RACES

Consider the flow table of Fig. 11 (outputs are not shown as
they play no role in this discussion). If, starting in state 1-00, B
is turned on, then both state variables become unstable, i.e.,
both Y, and Y, change (in this case to 1). If y; changes first,
then the state becomes 4-01. Since this is a stable state, the
excitation for Y, reverts to 0. If the delay in the y,-branch is
inertial, then the y,-change is aborted and the system remains
in 4-01. If the delay in that branch is pure, then, eventually y,
does change. But then, since Y, was 0 during the time that the
system was in 4-01, y, reverts later to 0, and so we have oscil-
latory behavior between states 3-01 and 4-01. It is also possi-
ble for a runt pulse to be generated, which might take the sys-
tem into a metastable state. All of these outcomes must be re-
garded as faulty behavior.

The situation is characterized as a race condition, since sev-
eral y-variables are simultaneously changing values. It is a
critical race, because the outcome is dependent on which
y-variable “wins the race,” i.e., changes first. As was just
shown, if y, wins, then malfunctioning results. If y, wins, then
the system goes to state 2-01, where the excitations on both Ys
remain unchanged at 1, so that the correct final destination,
state 3-01, will be reached. If the race ends in a draw, then the
system goes directly to the correct final state.

AB

0l 11 10 ¥, Y,
1IfOT3]JO®J3]00
21@13]110@{01
3]12 (@14 |0O(11
111 |@|@| D10

Fig. 11. Flow table with state assignment illustrating critical races.

Clearly this is an undesirable situation. There are many
ways to generate state assignments for the flow table that are
free of critical races [26]. Since these may entail an increase in
circuit complexity, we might first explore the possibilities of
defeating the critical race for the given assignment. Several
approaches are possible. First, we might impose a one-sided
delay constraint, requiring that the delays in the y;-branch ex-
ceed those in the y,-branch so as to ensure that the system
takes the path through 2-01, which leads to the correct stable
state. Or, we could change the next-state entry im 1-01 from 3
to 2, so that the logic circuitry is altered to take the system to
2-01 first. This makes the transition a two-step process. The
penalty is some slowdown in operation since there is now no
overlap of the time it takes to change the two state variables;
they change in strictly sequential order. Because the problem
for the transition discussed above is solvable by either of the
two methods outlined above, without changing the state as-
signment, such a critical race is said to be removable. As is
shown next, not all critical races can be handled so easily.

Still referring to Fig. 11, suppose that, again starting in state
1-00, A is turned on instead of B. Then, once more, both
y-variables become unstable. We have another race condition,
and it is certainly critical, since, if y, wins, the situation is



764

identical to the one considered previously: the system may fail
in one of three ways. But now, even if y, wins the race, the
situation is essentially the same, since the intermediate state is
2-10, another stable state. Only if both y-variables change si-
multaneously would the system go to 3-10, the specified final
state. Neither of the solutions suggested for the previous ex-
ample are applicable. This critical race is not removable. Of
course, the overall problem is solvable, namely by changing
the state assignment to one that is free of critical races, but in
this case it would be necessary to use three state variables.

It is interesting to consider these situations from a circuit
point of view. Logic expressions corresponding to the given
state assignment are:

Y, = AB+Ay, +By; +ABY,, Y, = Ay, +By, +ABY, +ABY,

For the removable critical race transition, where A is fixed at
0, these reduce to:

Y, =8B,

During this process, while Y is a function of y,, Y, is inde-
pendent of y,. The corresponding reduced circuit is shown in
Fig. 12. (Delay elements are shown between each Y;-signal
and the corresponding y;-signal. These do not necessarily rep-
resent actual elements, but may simply designate inherent
wiring delays.) Observe that y; changing to 1 blocks y, from
changing to 1. Delaying the change of y, sufficiently gives y,
time to change and “lock up” the change via the feedback path
through the OR-gate.

Note the resemblance to the corresponding circuit for a
steady-state essential hazard (Fig. 7d). In both circuits there
are two paths from the input variable to an AND-gate, one
direct and uncomplemented, and the other, through a
y-variable and complemented. The output of the AND-gate
feeds a second state variable. In the essential hazard case, mal-
functioning occurs (i.e., the hazard is manifested) if a pulse is
generated at the output of the AND-gate. In the removable
critical race case, the absence of a sufficiently long pulse at the
output of the AND-gate causes malfunctioning, since the sec-
ond y-variable is supposed to be turned on and stay on. As
indicated above, by making the delay between Y, and y, suf-
ficiently long, an adequate 1-pulse can be produced by the
AND-gate thereby ensuring correct operation. In both cases, if
the logic controlling the second state variable reacts to the
change in the first y-variable before reacting to the input
change that caused that change, then improper behavior results
(a spurious y-change in the case of the essential hazard, and a
failure to change in the case of the critical race). Delaying the
change in the first y-variable by a sufficiently large amount is
thus a remedy in both cases.

The situation is a bit more complex with respect to nonre-
movable critical races. For the second critical race discussed
above, B remains fixed at 0 and A changes from 0 to 1. The
logic expressions are reducible to:

Y, = yp +BY;

Y, = Ay +Ay, = A(V1+72): Y, =y, +Ay,
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Fig. 12. Reduced circuit for a removable critical race situation.

The corresponding reduced circuit is shown in Fig. 13. Here
we see that, as in the case of Fig. 12, there is an inverted and an
uninverted path from the input A to AND-gate-5 in the circuit
generating Y, the former path passing through y;. But there is
also feedback from y, to the circuit generating Y), and there are
two paths from A to AND-gate-1 in the Y, circuit: one direct and
uncomplemented, the other complemented via y,.

A &Y1148l
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+ + jY,NY2
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N

Fig. 13. Reduced circuit for a nonremovable critical race situation.

As in the previous case, y; changing to 1 blocks y; from
changing to 1. But now, the converse is also true, i.e., y, chang-
ing to 1 blocks y, from changing to 1. Therefore, delaying the y,
change, which solved the problem for the removable critical
race, will not work here because it does not solve the converse
problem; once y, goes on, it prevents y from turning on.

However, this analysis does point to a solution. What mat-
ters is not when each of the y-signals actually changes, but
when the circuit generating the other y sees the effect of the
change. Thus, if the news of the y, change is prevented from
reaching the y, circuit until y, has already changed and that
change has been locked up, and, conversely, if the news of the
y, change is prevented from reaching the y, circuit until the
y;-change has already been locked up, then correct operation
will be ensured. The key is to delay not the generation of the
y-signals, but the propagation of those signals to the other y-
signal involved in the race. No effort need be made to “fix” the
race, only to delay the reporting of the results to specific
points. In the current example (referring to the logic expres-
sions for Y; and Y,) a delayed version of y, can be used to
produce the Y, term in the Y; expression, and a delayed ver-
sion of y, would be used to produce the y; term in the Y, ex-
pression. Specifically, in terms of the circuit , y, will become
stable at the correct value if the delay in the path from A
through AND-gate-1, delay-2 to the input of OR-gate-3 is less
than the delay in the path from A through AND-gate-5, OR-
gate-6, delay-7, INVERTER-8, to the input of OR-gate-3. Let-
ting d; represent the delay in branch i, and assuming wiring
delays are included with the associated gate delays, this leads
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to the constraint:
d1+ d2<d5+ d6+ d7+ ds or

dg> (d;— ds) + (d,~ d7) ~ d @

In a similar manner, y, is guaranteed to stabilize at the
specified value if the delay from A on the path through gate-5,
gate-6, and delay-7 to the input of gate-6 is less than the delay
from A through gate-1, delay-2, INVERTER-4, and gate-5 to
the input of gate-6. This generates:

d5+ d6+ d7<dl+d2+ d4+ d5 or

dy>(dg— dy) + (d7— dy) )
(Note that the cancelling out of the ds terms would not occur if
we were distinguishing between the delays in transmitting sig-
nal changes of opposite polarities.) The right hand sides of “)
and (5) specify how much we must delay the y, signal to Y,
and the y, signal to Y,, respectively. Clearly there is no con-
flict between these constraints, as d, appears only in (5) and ds
appears only in (4).

Returning to the flow matrix (Fig. 11) the process can be
examined from another viewpoint. Starting in state 1-10, both
Y, and Y, change to 1. If y, changes first, the danger is that Y,
will see that change, i.e., see the system in 4-10. Since Y,=0
in 4-10, the change in y, is thereby blocked. But, if Y, sees the
y2 change occur first, it sees the system in 2-10, where Y, = 1,
so that there is no problem. Similarly, if Y, sees the transition
as going from 1-10 to 4-10 (i.e., if it sees y, change first), it
too will continue to stay at the correct value and the overall
operation will be as specified.

Unfortunately, this method does not work for all critical
race situations. The flow table in Fig. 14 is a modified version
of the Fig. 11 table in that the next-state entry in state 2-01 is 4
instead of 3.

AB
00_01 11 10,7,
1IfOT3TDT 300
2/Q1 4|1 ]®o1
32 (@4 |B(11
1 |@|l@|dD|10

Fig. 14. A case where not all critical races can be defeated.

Now there are rwo critical races in the 01 column: from 1 to
3 and from 2 to 4. Consider the first of these, where y; and y,
are both supposed to change from 0 to 1. The technique pre-
sented above fails because in both of the intermediate states,
Y, = 0. We could however defeat this race by delaying the Yi
and Y, signals to Y, (with respect to the y, and y, signals) in
the reduced expression for the 01-column shown below:

Yi=1, Y, =V Vo +yiy,

But, for the race from 2 to 4, different constraints are re-
quired, namely that the y, and ¥, signals be delayed. It does
not appear possible to defeat both races simultaneously with
one-sided delay constraints.

The above results can be generalized to races involving
more than two variables. A careful inspection of the flow ma-
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trix is necessary to determine if delaying the propagation of
y-signals to circuits generating other y-signals will ensure cor-
rect excitations for all transitions. This will always be the case
for flow table columns with only one unstable state, regardless
of how many y-variables are contestants in the race.

IX. SIMULATION AND TIMING PROBLEMS

Suppose a circuit has been designed that is believed to be
free of the kinds of problems addressed here. Before proceed-
ing to the fabrication stage, it is generally considered wise to
verify this by carrying out a series of tests with a simulator that
can deal with timing as well as logic. This would be done by
repeatedly applying to the simulated system a set of tests cal-
culated to check out its behavior in a reasonably thorough
manner. If the circuit is not too complex, the test set might be
designed to cause the execution of each transition in the flow
table describing the desired circuit behavior. Each repetition of
the test set would be carried out with a different combination
of values for the delays in the various branches. It is generally
assumed that upper and lower bounds are available for the
delays in each branch. How should the delay configurations be
chosen for each run through the test set?

Clearly, since each branch delay lies somewhere in a con-
tinuous range, it is not even theoretically possible to test for all
possible delay values in even one of the circuit branches. An
approach that seems plausible is to try all combinations of
branch delays in which either the maximum or minimum delay
is assigned to each branch. For a large circuit, this would be a
formidable task, since, if there are n branches, the test set
would have to be applied 2" times. (If we allow both pure and
inertial delays in our model for each branch or allow different
delay values depending on whether the branch output is in-
creasing or decreasing, then the exponent would have to be
multiplied by 2 or 4, compounding the problem significantly.)
It is obvious that this approach would be feasible only for cir-
cuits of modest size. But the situation is even worse than it
would appear from this analysis.

At first it might seem as though if a circuit worked properly
when, with all other delays fixed, d;, the delay in branch i were
din Or diy, then it would also work properly for any other value
of d; between d;, and djy. Thus if the above described series of
tests were actually carried out, we could be sure that the circuit
would have no timing problems as long as the branch delay
values were confined to the given ranges (and, of course, as-
suming that our general model was realistic). But consider now
the result presented in Section III above with respect to dy-
namic hazards. It was shown that a dynamic hazard (of any
subclass) could be defeated if the delays along a particular
path, p,, either exceeded the delays in each of two other paths,
p2 and p;, or was exceeded by the delays in each of these other
two paths. Suppose now that the branch i is in p; and that,
when d; is in the neighborhood of its maximum value, the total
delay in p; exceeds the delays in both p, and ps, and that, when
d; is in the neighborhood of its minimum value, the total delay
in p, is less than the delays in both p, and p;. Then the circuit
would work properly with d; at either its maximum or mini-
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mum value, but the dynamic hazard would be manifested for
some range of values of d; contained within the bounds defined
by di, and djy that satisfied neither requirement. Thus, it is not
sufficient to simulate using only maximum and minimum val-
ues of branch delays.

An important consequence of this result is that, while simu-
lation may be a useful tool for checking out circuits, we cannot
rely on it to expose all timing problems. It is necessary to un-
derstand the various causes of timing failures and to take ex-
plicit steps to eliminate, defeat, or cope with all hazards, criti-
cal races or metastable state conditions. For each transition
associated with a problem condition, it is necessary to identify
various critical paths and to ensure that the total delays along
those paths are properly related to one another.

X. PURE AND INERTIAL DELAYS

It is assumed here that all signals are strictly binary, i.e.,
2-valued. A pure delay does nothing more to a signal than de-
lay it by the magnitude of the delay. It does not alter the wave
form. An ideal inertial delay of magnitude D does not respond
to any input change of duration less than D, and its response is
delayed by D. Thus, an inertial delay element suppresses posi-
tive or negative pulses whose widths are less than D, and oth-
erwise behaves in the same way as a pure delay. Neither type
of delay can be realized physically in an exact manner. Even
for close approximations to ideal inertial delays, trouble occurs
with pulses whose widths are close to the value of D. The out-
puts in such cases may be runt pulses. Assume for the purposes
of our present discussion, that such pulses do not occur.

In the preceding material dealing with the generation of
glitches associated with hazards of various types, the simplest
assumption about the circuit delays is that they are pure. If,
however, we assume that some or all of the delays are inertial,
then, while the mechanism for glitch generation would not be
changed, there would be situations in which glitches would be
filtered out by inertial delays in subsequent stages of logic.
One might be tempted to infer from this that replacing pure
delays with inertial delays can only eliminate malfunctions due
to hazards, never causing additional manifestations of hazards.
This inference is not valid.

The difficulty is that situations can exist in which glitches
can cancel out other glitches. If an inertial delay filters out a
glitch that cancels another glitch, the result can be an output
malfunction or a transition to an incorrect internal state. Such a
situation is illustrated in Fig. 15.

Assume delays: d; =9,d;=7,d;=5,d,=1,ds=5,ds = 1. If
the delays are all pure, then, following a change of X from 0 to 1
att =0, a 0-hazard is manifested at the output of the AND-gate
starting at t = 1 and ending at t = 5. That is, a 1-pulse of width 4
appears at the point p in the circuit at t = 1. It is delayed by
branch delay d;, so that it begins at t = 6 at the lowest input to
the OR-gate. If the signal q were fixed at 0, then a 1-hazard
would be manifested at point r, the output of the OR-gate in the
form of a negative pulse of width 2 beginning at t = 7. Observe
now that the 1-pulse at q overlaps the 0-pulse completely, so
that the signal at r remains fixed at 1, as does the circuit output Z.
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Fig. 15. Example of hazard cancellation.

Thus, if all the delays are pure, no hazard is manifested at the
circuit output.

But now suppose that d;, the branch delay between p and q,
is changed from a pure to an inertial delay (with the same
magnitude, namely 5). Then the glitch produced by the con-
flicting inputs to the AND-gate, which is of width 4, is filtered
out by d;. The g-input to the OR-gate remains fixed at 0, and
so the 1-hazard produced by the OR-gate is manifested at r as
a 0-pulse of width 2. It is transmitted to Z with a delay of one
unit of time.

Thus, changing a pure delay in the circuit to an inertial de-
lay introduces an output glitch that was not previously present.
(Note that the result would have been the same if all of the
delays were made inertial.) It follows then that, for an overall
circuit, changing pure delays to inertial delays may sometimes
introduce faulty signals not previously generated.

XI. CONCLUSIONS

Timing problems in logic circuits are generally caused by
different input signals to a gate changing in opposite direc-
tions. Depending on path delay values, this may or may not
produce a pulse (positive or negative) at the gate output. In
some situations (hazards, both combinational and sequential),
such a pulse constitutes a faulty response. If transmitted to the
circuit output, this results in a transient error. Or such a spuri-
ous pulse might be captured in a feedback path associated with
a state variable, in which case the system might enter an incor-
rect state, thereby producing a steady-state error. The pulse
may be of a marginal nature (with respect to width and or
amplitude)}—i.e., a runt pulse. If such a pulse gets into a feed-
back path as mentioned above, the result can be that the system
becomes metastable for an uncertain time interval. In the case
of a critical race, several gates may have such conflicting in-
puts, each output entering a feedback path, and there may be
an overall feedback path involving all of them. Here faulty
behavior results if the pulses at the outputs of the gates receiv-
ing oppositely changing inputs are not sufficiently wide.

There exist sequential dynamic hazards, which are always
MIC logic hazards. They are not, as is the case for essential
hazards, inherent in the sequential functions being realized. A
method was presented above for defeating all types of dy-
namic hazards for transitions in both directions through the use
of one-sided delay constraints. It was further shown that for
many critical race situations, one-sided delay constraints can
prevent malfunctioning. This can sometimes simplify circuit
design by allowing the use of simpler state assignments.
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Asynchronous sequential circuits serve as building blocks
for synchronous systems as well as for self-timed systems. One
usually has methods for estimating upper and lower bounds on
branch delays (which include wiring as well as gate delays).
Since essential hazards are associated with almost all nontriv-
ial sequential functions, there is no escaping the need to con-
sider various critical path delays and, where necessary, to in-
sert extra delays in particular paths to ensure that certain con-
straints are satisfied. One-sided constraints on these added
delays specify that they must exceed certain sums and differ-
ences involving the upper and lower bounds on various branch
delays.

Since such constraints are inevitable, it is reasonable to
consider additional constraints of the same type that may be
traded off in return for reducing logic complexity. An example
would be the use described in Section VIII of delay constraints
that allow the use of state assignments with critical races. T| hey
may also be used sometimes to defeat logic hazards, rather
than to eliminate them, by adding logic elements. As shown in
Section III, the same approach can be used to defeat dynamic
hazards with delay constraints. Note that sometimes within
sequential circuits, input changes to a combinational logic cir-
cuit may be possible in only one direction (for example, in the
flow table of Fig. 8, a transition from 1-110 to 1-111 is possi-
ble, but there can be no transition in the reverse direction), so
that using delays to defeat static logic hazards is an option. In
some cases, although a transition may be possible in the re-
duced flow table, an inspection of the primitive flow table that
describes exactly what transitions are possible from any stable
state may indicate that in fact the transition cannot actually
occur.

A flow table inspection procedure was described here for
identifying situations in which multiple input changes can lead
to a MSS, and where a runt pulse input can lead to a MSS.
Although there is no way to prevent the occurrence of metas-
table states, the consequences in self-timed systems can be
reduced to the slowing down of the appearances of output
changes. This is accomplished by the insertion of output fil-
ters. Previous researchers have devised such filters that are
applicable under certain circumstances. A variation has been
presented here that makes it possible to gain the benefits of
such MSS filtering in the realizations of arbitrary sequential
functions.

Two plausible sounding conjectures about the effects of
delay elements have been shown to be invalid. First, although
the presence of inertial as opposed to pure delays tends to re-
duce the presence of spurious pulses, this is not always the
case, since a spurious pulse may on occasion cancel out an-
other such pulse of opposite polarity. Second, the fact that a
circuit has no timing problems for two given values of a par-
ticular branch delay does not always mean that there will be no
problems for all values of that delay between those values.
This latter point has fundamental implications with respect to
the possibility of using simulation to verify the absence of
timing faults. Rather than relying on simulation, it is better to
consider systematically each flow table transition that might
involve a critical race or hazard, or which might lead to metas-
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tability. Appropriate delay paths should be identified for each
case, and it should be determined if, on the basis of a worst
case analysis using given branch delay bounds, the addition of
added delays is necessary to satisfy the constraints that ensure
proper operation, or if the use of MSS filters is necessary.
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