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Hazard Detection in  Combinational  and  Sequential 
Switching Circuits* 

Abstract: This paper is concerned  with a unified approach to the  detection of hazards in  both  combinational  and  sequential 
circuits through the use  of ternary algebra. First, hazards in a combinational network  resulting from the simultaneous  chang- 
ing of two or more inputs are discussed. A technique  is  described that will detect hazards resulting from both single-  and 
multiple-input  changes. The various types of hazards connected  with  gate-type  sequential circuits are also  discussed,  and a 
general  technique is described that will  detect  any  type of hazard or race condition that could result in  an incorrect terminal 
state. This technique  could be easily  implemented in a computer  program  which  would  be capable of detecting hazards in 
circuits  containing  hundreds of logic  blocks. 

Introduction 

Whenever the  input signals of a combinational or se- 
quential switching circuit are changed, the  output signals 
are predicted by the  truth  table  or flow table to behave  in 
a  certain  manner. If it  is possible for  the  output signals 
to behave in a different manner  than predicted, the circuit 
is said to contain a hazard for  that  input transition. 
The object of this  paper is to present a new technique 
for determining whether or  not a switching circuit contains 
a hazard. 

This technique is unique in  that: 

1. It can be used to evaluate  transitions involving the 
simultaneous changing of two or  more  input signals. 

2. The  same technique can be used for  both combina- 
tional  and sequential switching circuits. 

3. It can be easily implemented in a computer  program 
which would be  capable of analyzing logic networks 
containing more  than 2,000 logic gates. 

The most significant application of this technique is in 
evaluating the response of large sequential switching 
circuits to given input sequences (see Fig. l), taking into 
account any malfunctioning due to hazards, races, or 
oscillations. 

Techniques for detecting and eliminating hazards in 
combinational  networks  have been described by Huffman’ 
and McCluskey.’ These techniques make use of Boolean 
algebra and  are restricted to hazards resulting from single 
input  variable changes. It has been shown by other 
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that a suitable ternary algebra can also be 
used to solve this problem. 

In this  paper the problem of detecting and eliminating 
hazards  in  combinational  networks is extended to hazards 
resulting from  the simultaneous changing of two  or  more 
input signals. It is shown that  two types of hazards can 
be associated with  multiple input changes. The first type, 
called a logic hazard, is similar to and includes static 
hazards. The second type, called a function hazard, is 
inherent  in the Boolean function and  cannot be eliminated 
by modifying the logic network. 

A procedure is described for obtaining  a  ternary  function 
from a  binary switching circuit, and  some basic properties 
of this  ternary  function are defined. It is shown that  both 
logic hazards and function hazards  can be detected from 
the ternary  function. These techniques are then  applied to  

Figure 1 Typical  sequential  switching  circuit illustrating the 
key problem: to determine the circuit response to a given 
input sequence,  accounting for “hazards,” “races,” and  oscil- 
lations. 
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the detection of hazards  in sequential switching circuits. 
A general procedure is given for determining whether a 
particular input change to a sequential circuit can result 
in an indeterminant final state. 

Assumptions 

Although the techniques described here are applicable to 
contact networks as well as gate-type networks, only the 
gate-type networks are considered in detail. 

It is assumed that each logic gate (whose single output 
is a binary function of its n inputs) can be approximated 
by an ideal (no delay) logic gate which has delay elements 
associated with each input. It is further assumed that 
each of these input delay elements can have any value 
between zero and some maximum, dm,,. 

It should be noted that these input delay elements could 
possibly have different  values for every transition; we 
assume only that  the delay will never exceed the upper 
bound dm,,x. 

Multiple input-change  hazards 

In this section we consider the problem of determining 
whether or  not a combinational (loop-free) network can 
have a  spurious hazard-pulse on its output when two or 
more  inputs are changed at the same time.  We are con- 
cerned only with hazards for which the  output before 
the input change is equal to the output after the input 
change and such that during  the  input change a  spurious 
output pulse  may occur. (The problem of determining 
“dynamic” hazards’.’ is not considered, since it will  be 
seen that they may  be ignored in determining hazards in 
sequential circuits.) 

Since the term static hazard has been  defined in terms 
of single-input changes: it is not used for multiple-input 
changes even though the output character of the hazard 
is the same. Instead, the term M-hazard is used. 

Definition I .  A combinational logic network contains an 
M-hazard for an  input change involving the changing of 
one  or more  input variables if and only if (1) the  output 
before the change is  equal to the output after the change 
and (2 )  during the change a spurious pulse may appear 
on  the output. 

It should be noted that it is possible for a network to 
contain an ”hazard for  an input change and  not generate 
a spurious output pulse for that  input change. However, 
it is always possible to make it produce a spurious output 
pulse by inserting delays in certain branches of the network. 

There are two different types of “hazards. The first 
type, called a function hazard, is illustrated in  Table 1. 
For  the transition  from cell a to cell c it is possible to  
temporarily enter cell b if the y change slightly precedes 
the x change. Since a 0 output is specified for cell b it must 
be possible for  a  spurious 0 pulse to be present at f for 
the input change WZJ to *x)?. 

Consider the p-variable transition from input state A to 
input  state B, where 

A = ( ~ 1 ,  * . I  a,, aP+l ,  * * .  u J ,  

B = (iil, * si,, ap+1, * * * a,,), 

and ai represents some value (1 or 0) for  input xi. 

Dejhition 2. A Boolean function, f, contains a function 
hazard for the input change A to B if and only if 

(1) f(A) = f(B> and 

(2)  there exist both 1’s and 0’s specified for f within 
the 2’ cells  of the sub-cube (up+l, - - an). 

It is evident that if a function, f, contains a function 
hazard  for the input change A to B, then there must be 
some set of values for  the changing input variables x1 . x, 
for which f is not  equal to f(A) or f(B). Consequently, it 
must be possible for  the delays in the network to be such 
that these input changes reach the output in a sequence 
which causes a spurious hazard pulse to be generated. 
Thus the following theorem is true: 

Theorem 1. If a Boolean function, f, contains a function 
hazard for the  input change A to B, then it is impossible 
to construct a logic gate network realizing f such that 
the possibility of a  hazard pulse occurring for this transi- 
tion is eliminated. 

The second type of “hazard, called a logic hazard, is 
closely related to static  hazards in  that  both can always 
be eliminated by properly designing the logic network. In 
general, if a p-variable transition does not involve a func- 
tion  hazard but may nevertheless result in a  hazard pulse 
on  the  output of the logic network, the network is said 
to contain  a p-variable logic hazard for this transition. 

Definition 3. A combinational logic network contains 
a p-variable logic hazard for the p-variable input change 
A to B if and only if 

(1) !(A) = f(@, 
(2) all of the 2” values  specified for in the sub-cube 

(3) during the input change A to B a spurious hazard 
(aDc1, - a,) are  the same, and 

pulse  may be present on the output. 

Table 1 Example of function hazard. 
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Condition (2) for a p-variable logic hazard is equivalent 
to stating that  the input change does not involve a func- 
tion hazard. It is also noted  that if p = 1, conditions (1) 
and (2) are identical and Definition 3 reduces to the 
definition for a static hazard. Thus a p-variable logic 
hazard is a static hazard if p = 1. 

The relationship between "hazards, function  hazards, 
and logic hazards  still requires some  explanation. If a 
p-variable transition can result in  an  output  hazard pulse, 
the transition involves an "hazard. If all the 2" values 
specified for f in  the sub-cube are  the same, the "hazard 
is a logic hazard; if not,  the "hazard is a function 
hazard. If the p-variable  transition involves a function 
hazard, it cannot also involve a p-variable logic hazard. 
However it may involve a q-variable logic hazard (q < p )  
for  one of the q-variable sub-transitions  contained within 
the p-variable transition. 

It is also evident from Definition 3 that if a p-variable 
transition involves a p-variable logic hazard, it may also 
involve or be the result of one  or  more q-variable logic 
hazards (q < p). In terms of static hazards (q = 1) it 
means that a network  may contain a p-variable logic 
hazard (p > 1) because it contains a static hazard for 
one of the changing input variables. 

However, it is possible for logic networks to be free 
of static hazards and still contain logic hazards. An 
example of such a circuit is shown in Fig. 2. It is evident 

Figure 2 Example of a network containing logic hazards 
but no static hazards; (a) map of function: (b) circuit 
realization. 
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from the  map of the function that  the circuit realization 
is free of static  hazards. However, consider the  transition 
from cell a to cell d. It is evident from Fig. 2b that a 0-pulse 
will appear  at  the  output of the network if z and S both 
change to 0 before z and w both change to 1 .  Thus  the 
network  contains a logic hazard  for the  input change from 
cell a to cell d even though  it does not  contain a static 
hazard. The transitions d to a, c to b, and b to c also 
involve logic hazards. 

The logic hazard in  this  network  (Fig. 2b) can  be 
eliminated by adding an AND gate  corresponding to the 
product term Zjj. Since ng is the only prime implicant5 of 
F which is not contained in  the two-level realization, the 
question might be asked  as to whether or  not all prime 
implicants  must always be included in  the two-level 
solution to eliminate all logic hazards.  This is indeed the 
case, as  shown by the theorem which follows. 

Theorem 2. A sum-of-products  realization of F (assuming 
no product terms with  complementary literals) will be 
free of all logic hazards if and only if the realization 
contains  all the prime implicants of F. 

Proof. The absence of complementary  literals within a 
product term eliminates the possibility of a 0-1-0 logic 
hazard pulse. In  order  to eliminate all possibility of a 
1-0-1 logic hazard pulse, it is necessary and sufficient that 
at  least one of the product  terms  be 1 for  the  entire transi- 
tion. 

a. Assume the solution  contains all prime implicants. 
Assume there  also exists some  p-variable logic hazard. 
Then there  must  be a corresponding p-variable transition 
(a,, . . up, a,,,, an) to (al, - .  a,, up+,, . . an) which 
does not contain a function  hazard. Thus F = 1 if the 
literals a, are all 1, and some  subset of these 
literals must  be a prime implicant with a corresponding 
product term in the solution.  But  this would prevent the 
hazard from occurring, so no logic hazard  can exist if 
the solution  contains  all  prime implicants. 

b. Assume that some prime implicant (a,, . a,) is not 
included in  the realization. Consider the transition 
(a,, . . a,, . . . a,) to (al, ' .  - a,, . a*). The 
only possible product  term which can belong to  the 
solution and be 1 for this transition is (aa, . . a*), so the 
transition  must involve a logic hazard. Thus all  prime 
implicants are required to eliminate  all logic hazards. 

The  dual of Theorem 2 concerning product-of-sums 
realization is, of course,  also true. 

Hazard detection by ternary algebra 

The problem of using ternary  algebra to detect and 
eliminate  static  hazards  in  combinational switching circuits 
has been considered extensively by Yoeli and  Rinon? In 
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this section we relate the  actual switching circuit to a 
ternary function, and show that  the resulting ternary 
function can be used to detect both function hazards  and 
logic hazards. A technique for generating the ternary 
function from  the binary switching circuit is described 
and some basic properties of the resulting ternary  function 
are  stated  and proved. 

The relevance of a third value to describe the transient 
behavior of a gate-type switching network can be seen 
from Fig. 3. The f curve  represents the gate  response for 
the minimum and maximum  gate delay as a result of the 
input x.  First consider the  input x ,  which is changing 
from 0 to 1 (- to +). As long as x is below some voltage, 
uo, the  input is assumed to be a 0, and  as long as it is 
above  some voltage, u l ,  it is assumed to be a 1. During 
the time the input is between uo and u1 it is indeterminate 
and may be considered to be either 1 or 0. In fact if a 
signal is between ug and u1 it can simultaneously affect 
one logic gate  as a 1 and  another as a 0, depending  upon 
the electrical characteristics of the  two gates. A third 
value, designated as 5 will be used to represent a signal 
which may be either 1 or 0. It can  be seen from Fig. 3 that 
the  ternary signal, x* ,  represents the  actual continuous 
signal, x ,  very  well. 

The  ternary signal f*, corresponding to  the gate re- 
sponse f, has a $ value for a longer time  period than x * .  
This is due to both  the transition  time and  the possible 
variation  in  gate delay. It is noted that f l  = f4 since it is 

Figure 3 Ternary approximation  to  continuous  signals. 
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assumed that  the minimum delay through a logic gate is 
zero. 

Obtaining the ternary functions of a logic gate 

The ternary  function G*, of a logic gate that realizes the 
binary  function G, can be determined easily by using the 
fact that  the value 3 represents a signal that  can be  either 
1 or 0. Thus G* can be  determined by changing  back and 
forth between 1 and 0 those  gate  inputs  corresponding to 
values of 3 and then  noting whether the gate output, G, 
changes or remains fixed at  a 1 or 0. If G remains fixed 
at  a 1 (0) then G* = 1 (0), and if G changes then G* = i. 
Hypothesis. G* (i, . . . 2 ,  a,+l, * a,) = 1 (0) if and only 
if it is impossible to change the gate output G from a 1 (0) 
by changing inputs x], . . x, when inputs x,,,, . . . x, are 
fixed at  aPc l ,  * e -  a,, respectively. G* (3, 9 .  $, ap+l,  
. . . a,) = 3 if and only if it is not  equal to 1 or 0. 

If it is assumed that  the individual logic gates do  not 
contain logic hazards (which is true for all types of logic 
gates known to  the  author) then G* can  be  determined  by 
examining the  map of the gate  function G. 

Table 2 shows the  ternary  and binary  functions for  the 
EXCLUSIVE-OR gate. The  four G* entries  corresponding to 
x y  = 00, 10, 01, and 11 are  the same  as the G entries. 
The G* entry for cell j is determined by the G entries in 
cells a and b since cell j corresponds to x = +(1 or 0), 
and y = 0. The entries in cells a and b differ, so the entry 
in cell j must be 3. (If both entries in cells a and b had 
been 1, then the entry  in cell j would have been 1.) The 
entry  in cell k is determined by examining all four entries 
for G .  Since some are 1 and some are 0, the entry for cell 
k is $. 

In general, if p of the  inputs to  an n-input gate are $, 
the  ternary output, G*, can be determined by examining 
the corresponding 2' entries  in the binary truth  table  for G. 
If all  entries are 1 (0) then G* = 1 (0) and if some  entries are 
1 and some are 0, then G* = $. 

Table 2 Binary and ternary functions for EXCLUSIVE OR. 
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Table 3 Ternary functions for AND and OR gates. Table 4 Possible  combinations for G* ( C )  and G* ( D )  . 
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The ternary functions for AND and OR gates are shown 
in Table 3. The AND and OR correspond respectively to 
minimum and maximum functions. 

Two lemmas concerning the characteristics of ternary 
gate functions will now be stated and proved. 

Lemma I .  If one  or  more  ternary gate inputs are changed 
from 1 to 3, or 0 to 3, the ternary  gate output will either 
remain unchanged or change to 3. 
Lemma 2. If one or more  ternary  gate  inputs  are changed 
from 3 to 1 or 0, the  gate output will either remain un- 
changed or change from + to 1 or 0. 

Proof. Consider the  two  ternary  input-states C and D 
where 

c =  (+, ... 1 
2 ,  a,,,, * .  * a,, apc1, * . . a,) 

2 ,  ;, % + l ,  . . . a,,) D =  (L .............. - 

and ai = 1 or 0. 

Lemma 1 corresponds to a  transition  from  input state C 
to input state D ,  and Lemma 2 corresponds to a  transition 
from D to C. By hypothesis, G* ( D )  = 1 (0) if and only if 
the gate output  cannot be changed by varying inputs 
xl, . . x, when x,,,, . . . x, equals a,,,, . . . a,, respectively. 
Therefore G* ( D )  = 1 (0) implies that G* (C) = 1 (0) since 
x,,,, . x, = a,,,, . . . a, for  input-state C also. This 
restriction eliminates four of the nine possible combina- 
tions of values for G* (C) and G* (D) as shown in Table 4. 
It is evident from  Table 4 that  an  input change from C to 
D only results in G* remaining unchanged or changing 
from 0 to 3 or 1 to 3. And an input change from D to C 
can only result in G* remaining unchanged or changing 
from 3 to 0 or 3 to 1. 

Ternary function characteristics 

The ternary  function of a  combinational logic network is 
determined by the ternary functions of the logic gates 

94 in the  network. That is, for  any  ternary input  state  the 

corresponding ternary output is uniquely determined by 
evaluating the ternary output of each logic gate in the 
network,  starting with those gates whose inputs  are also 
network inputs. Since the ternary  functions for  the logic 
gates are determined in the manner described in  the 
previous section, one may now prove certain facts about 
the resulting network  ternary functions. 

One characteristic that will be quite useful later is that 
if one  or more  inputs to a combinational  network are 
changed from 1 to 3 or 0 to 3, the network output can 
either remain unchanged, or change to 3, but it cannot 
change from 1 to 0, from 0 to 1, or from 4 to either 1 or 0. 
This  fact, which is now formally  stated and proved, is an 
extension of Theorem 1 of Yoeli and R i n ~ n . ~  

Theorem 3. If one or more  ternary  inputs to a com- 
binational logic network changes from 1 to i or 0 to i, 
then the network output either remains unchanged or 
changes to 3. 
Proof. Consider one of the logic gates G ,  whose inputs 
are also network inputs. All inputs to G must either be 
unchanged or changed to 5, so by Lemma 1, the  output 
of G must  also be either unchanged or changed to 5. Thus 
the  inputs and  outputs of every gate in the network must 
either be unchanged or changed to 4. Since the network 
output is also a gate output  the theorem is proved. 

Theorem 4. If one  or more  ternary inputs  to a com- 
binational logic network changes from i to 1 or 3 to 0, 
then the network output either remains unchanged or 
changes from 3 to 1 or 3 to 0. 

Proof. The theorem is proved using Lemma 2 and  the 
same  argument as for Theorem 3. 

Another useful characteristic of a network ternary 
function is that if the network output f can change in 
any way during an  input change, then the ternary  function, 
f*, must equal 3, if the changing inputs are assigned 
values of +. 
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Figure 4 Hazard detection by ternary evaluation. (a) Map 
of functions; (b)  Evaluating input changes for hazards. 

Theorem 5. The  output, f ,  of a combinational logic 
network  may change as a result of changing inputs 
x,, - * x, (when inputs x,+ ,, * * x, = a,+ ,, * a,) if and 
only if f* (+, - 3, a,,,, a%) = 3, 
Proof. Consider those gates in the network whose inputs 
are also network inputs. If all network inputs  that may be 
changing are assigned the value of 3, then  those  gate 
outputs, G, may be changing if and only if G* = 3 (by 
hypothesis). If the  ternary  gate  outputs  for all gates are 
determined, then all gate  inputs  and  outputs  that may be 
changing will have the value of 3. Since the network 
output f is  also a gate  output, then f may  be changing if 
and only if f* = 4. 

Hazard detection 

In this  section a theorem is stated  and proved which 
provides the basis for a technique for determining whether 
or not a network  contains a hazard  for a particular input 
change. 

Consider the transition from  input  state A to input 
state B where 

A = (a, * * .  up, & + I ,  a=), 
B = (a ,  - * .  a,, U P + l ,  a,), 

2 ,  a,+,, - - *  4 .  A / B  = ($, . . . 1 
Theorem 6. A combinational logic network  contains an 
“hazard for  the  input change A to B if and only if 

(1) f* ( A )  = f*  (B)  # 3 and 

(2) f* ( A / B )  = 3. 

Proof. By Definition 1, condition (1) must be  true. 
Since f* ( A )  = f* (B)  an ”hazard will exist if and only 
if the network output can  change  during the  input change 
A to B. But by Theorem 5 this can occur if and only if 
f *  (A /B)  = 3. 

In Fig. 4 a logic network is analyzed to determine 
whether or not it contains a hazard  for  the  input change 
f ~ f j  to w x j .  This is accomplished by determining f*  (@@), 
f *  ($, 3, y), and f* (w, x, J )  by evaluating the ternary 
functions of each logic gate. It is evident from  the resulting 
values obtained for f T  and f*, that  both  outputs contain a 
hazard for this  transition. From the maps of the functions 
f l  and fz it is evident that f, contains  a logic hazard  and fi 
contains a function hazard.  The  hazard  in f, could be 
corrected by changing the logic network but  the  hazard 
in f2  cannot be eliminated without  changing the function. 
(It is noted that  both types of hazards  are detected by the 
same technique of evaluating the  ternary  function of 
the network for  the transition.) 

Hazard detection in sequential circuits 

The problem of determining whether or  not a sequential 
circuit will respond to an  input change in  the manner 
predicted by the flow table or transition table  has been 
given considerable attention in the  At least  three 
types of problems have been considered: 

Static hazards. It has been shown that static hazards  in 
the combinational logic generating the feedback signals 
can cause the circuit to malfunction and should,  in 
general, be eliminated. 

Critical races. When two  or  more feedback signals are 
changing  together, a race is said to exist. If the  order in 
which these changes occur can affect the final state of 
the circuit the race is said to be critical. Critical races 
should  be avoided. 

Essential hazards. Unger’ has defined an essential hazard 
in  terms of a flow table  and  has proved that, if a flow table 
contains an essential hazard, its circuit realization  must 
contain at  least one delay element for  it  to  operate reliably. 
In  terms of circuit operation  the essential hazard is 
basically a critical race between an  input signal  change 
and a feedback signal change. The delay is needed to 
make  the  input signal always “win” the race. 

Although the treatments of these three types of problems 
have been of outstanding significance in  the theory of 
sequential  circuit design, they do  not offer a complete or 
easy solution to  the problem of determining whether or not 
a given sequential circuit will respond reliably to a given 
input-state change. The object of this section is to describe 
an easy procedure for solving this problem. 
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0 Transition  analysis using ternary techniques 

The basic problem of determining the transient  response 
of a gate-type sequential  circuit  with no feedback delay 
elements can  be divided into two  parts. The first part is 
to determine  all the feedback signals that may be changing 
as a  result of the  input change. The second part is to 
determine whether or not these feedback signals will 
eventually stabilize in some predetermined  state. It will be 
shown that  both of these  problems can be solved by a 
ternary evaluation of the logic. 

The first part of the problem can  be solved in the 
following way. Consider the model  shown  in Fig. 5. The 
first step is to determine which of the Y signals can be 
changing as a result of the specified x variable changes. 
The second step is to determine whether any additional 
Y signals may be changing as a result of both  the x variable 
changes and  the y variable changes. This second step is 
repeated  until no additional Y signal changes are deter- 
mined. These steps may be accomplished as follows: 

Procedure  A-Determining all changing Y signals. With 
the changing x variables equal  to 3 and all other x and y 
variables as originally specified, evaluate the Y t  functions 
to determine if one or  more have changed from 1 or 0 
to $. If one  or  more Y$ functions have changed  from 
1 or 0 to i, change the corresponding y i  variables from 1 or 
0 to 3 and repeat the process until no additional changes in 
the Y: functions are determined. 

At the end of Procedure  A  all  feedback signals, Y,, that 
may experience some  type of change  during  this  transition 
will be  indicated by Y$ functions equal to 3. 

The second half of the problem is to determine which of 
the changing feedback signals will eventually stabilize at  
a 1 or 0 as a result of the changing x variables stabilizing 
at their new values of 1 or 0. This is done  as follows. 

Procedure  B-Determining which Y signals  stabilize. With 
the changing x variables equal  to their new values (1 or 0), 
and all  other x and y variables equal  to their values at  the 
end of Procedure A, evaluate  all Y ;  functions. If one or 
more of these Y: functions changes from 3 to 1 or 0, 
change the corresponding y i  variable from 3 to 1 or 0 and 

Figure 5 Model of sequential circuit. 

repeat the process until no  additional changes  in the 
YT functions are determined. 

It is evident from Theorem 5 that if it is possible for 
one of the feedback signals, Y,, to be changed by the 
changing of various x and y variables, then a ternary 
evaluation of the network will indicate Y*, = 3. Thus  the 
iterative process of Procedure  A will detect all feedback 
signals that could possibly change  as  a  result of the  input 
change. It is also evident from Theorem 5 that if in the 
process of executing Procedure €3 it is determined that 
Ya = 1 (0), then it must  not be possible for  the Y, feedback 
signal to be changed from a 1 (0) by the changing y vari- 
ables. Thus  the following theorem is true. 

Theorem 7. If Y*, = 1 (0) after applying Procedure  A and 
Procedure B to a  sequential  circuit for a given input-state 
change starting  in a given internal state,  then  the Y ,  
feedback signal must stabilize at  1 (0) for this  transition 
regardless of the values of the (finite) delays associated 
with the logic gates. 

Although  Procedures  A and B are difficult to explain 
they are very easy to perform since they are basically a 
ternary simulation of the logic. An example of this tech- 
nique is shown in Fig. 6. In this case the problem is to 
determine whether or  not changing x1 and xz from 0 to 1 
can  result in  an indeterminate final internal  state. This is 
done by repeatedly  determining the  ternary functions YT 
and Y ;  for each new set of values for  the variables xl, x2, 
y l ,  and ya.  

Figure 6 Transition analysis from logic  network, using Pro- 
cedures A and B. (a) Logic diagram; (b) Analysis table. 
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Line 1 in Fig. 6b represents the initial state of the circuit. 
Lines 2 and 3 correspond to Procedure A and lines 4 and 5 
correspond to Procedure B. The final value for Y: Y ;  is 
31, so this  transition results in an indeterminate value 
for the Y, feedback signal. 

Procedures A and B as illustrated in Fig. 6 represent the 
solution to the key problem described in Fig. 1. To 
determine the response of a sequential circuit to a given 
input sequence, taking into account  hazards, races, and 
oscillations, it is only necessary to insert between each 
input combination  a new-input combination with 3 values 
corresponding to changing variables, and then perform a 
ternary simulation of the sequential circuit. This  solution 
to  the problem is illustrated in Fig. 7. 

Ternary simulation of sequential circuits 

Although the  ternary simulation technique of Procedure  A 
and Procedure  B were developed to determine whether or 
not a sequential circuit would respond in a  determinate 
way to a given input change, such a ternary  simulation is 
a very powerful tool in evaluating transitions in very 
large logic networks. 

In performing binary simulations of large logic networks 
the following problems exist: 

(1) It is necessary to detect oscillations. 

( 2 )  Feedback lines must somehow be identified. 

(3) For n feedback lines as many as 2" evaluations of the 
network may be required. 

(4) Hazards and races are not normally detected. 

In using a  ternary simulation as defined in Procedure A 
and Procedure B, the following is true. 

(1) Oscillations are detected automatically. 

(2) Feedback lines need not be identified. 

Figure 7 Solution to key problem of Fig. 1. 

(3) For n feedback lines, at most only 2n evaluations are 
required. 

(4) Hazards and races are automatically detected. 

(5)  During Procedure A,  any logic gate whose output value 
is 3 need not be further considered, since its output 
value cannot possibly change (Theorem 3). 

(6) During  Procedure B, any logic gate whose output value 
is not 3 need not be further considered since its output 
value cannot possibly change (Theorem 4). 

Although Procedure A and procedure  B are described 
in terms of feedback signals, Yi, these signals are  not 
handled  any differently than  the  output signals of all 
other logic gates in  the network. Thus feedback lines need 
not be identified. Conditions ( 5 )  and (6) can greatly reduce 
the number of logic gates that must be evaluated for  any 
transition. 

The following algorithm can be  easily programmed to 
perform Procedures A and B in evaluating the effect of 
an  input change on a sequential circuit. 

Algorithm for  transition  analysis 

(1) With the changing input signals equal to 3, place all 
logic gates that  are fed by these signals and have a 
present output  that is not 3 on the "A-list." 

(2) Remove one of the logic gates from the A-list and 
evaluate its output. (i) If its new output is 3, place all 
logic gates that  are fed by it  and have a present output 
that is not + on the A-list. (ii) If its new output is not 
3, do nothing. 

(3) Repeat step (2) until the A-list is empty. 

(4) With the changing input signals equal to their final 
value (1 or 0), place all logic gates that  are fed by 
these signals and have a present output  equal  to 3 on 
the B-list. 

( 5 )  Remove one of the logic gates from  the B-list and 
evaluate its output. (i) If its new output is not 3, place 
all logic blocks that  are fed by it  and have a present 
output of 4 on  the B-list.  (ii) If its new output is 3, do 
nothing. 

(6) Repeat step ( 5 )  until the B-list  is empty. 

Manual technique for  ternary  evaluation 

In  looking  for  a better manual technique for evaluating 
the Y* functions, the first thought is to form the ternary 
truth table or maps of the Y* functions. This is only 
practical for very small problems since there are 3" entries 
for an n-variable ternary function. If the combinational 
logic generating the Y function is assumed to be free of 
all logic hazards (which is always possible) then only 97 
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Table 5 Transition analysis from transition  table using Pro- 
cedures A and B; ( a )  Transition  table; (b) Analysis table. 

Transition analysis of sequential circuits containing delay 
elements 

The ternary analysis  technique will  now  be extended to 
include  sequential  circuits  containing  delay  elements.  This 
can  be done by considering the delay  element inputs as 
“special” outputs of the sequential circuit, and by con- 
sidering the delay  element outputs as “special” inputs to 
the sequential  circuit. 

To determine the response of the sequential  circuit to 
an input change, the transition analysis  is  performed in 
the usual  manner  (Procedures A and B) with all delay 
element output signals  held at their initial values. If one 
or more  delay  element inputs change  during this analysis, 

(0 )  
the signal  changes are then applied to the circuit at the 
corresponding  delay  element output terminals and the 
transition analysis  is  repeated. 

It is  possible that this process  will not terminate if the 
x Y1 Yz y;  y; transition involves an oscillation through the delay 

1 0 0 0 0 0 elements.  Consequently  some  technique  must  be used to 

2 -  l o  0 O 2  
recognize an oscillatory condition and terminate the 
ternary simulation. To be  completely  rigorous all feedback 
lines  would  have to be  identified and monitored to de- 
termine if the circuit  is  oscillating.  Since this is difficult 
to accomplish, a much  easier  technique  would  be to 

trarily decide that these  signals are oscillating if they 

oscillating  signal  is  detected in this way, it is set to a 
value of $ and the process  is  continued. It is evident that 

easy to perform. 

1 - 
2 

l o -  3 2  
- 1 -  1 -  

- 1 -  1 -  

1 
2 2 2 

4 2 2 l 1  monitor just the delay  element output signals and arbi- 

5 l 2  - l 1 -  2 change  more than a certain number of times.  Once an 

f b) this technique will terminate rather quickly and is fairly 

function hazards can  cause the Y* function to change to 
a value of 8 as a result of certain x and y variable  changes. 
This  allows the Y* functions to be  evaluated by  examining 
the transition table entries for the Y functions. 

The example in Table 5 shows  how a transition can be 
analyzed by Procedures A and B by using a binary transi- 
tion table.  Line 1 of the analysis table corresponds to the 
initial stable state; lines 2 and 3 correspond to Procedure A 
and lines 3 and 4 to Procedure B. In line 2 the YT and 
Y$ values are obtained by examining the Y ,  and Y, entries 
in the transition table for y ,y ,  = 00. Since both Y ,  entries 
are 0, YT = 0, and since  one Y, entry is 1 and the other is 
0, Y t  = 4. For line 3 all Y ,  and Y, entries in the transition 
table corresponding to y ,  = 0 are considered.  Since Y,  
and Yz both have 1 and 0 entries, YT = Y t  = $. For line 4 
all entries  corresponding to x = 1 are considered and for 
line 5, all entries  corresponding to xy, = 11. The final 
value of YT Y$ = $1 indicates that the Y, signal is 
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Conclusions 

It has  been  shown that there are two  types of hazards 
associated  with the changing of two or more input signals 
in a combinational network. The first  type,  called a logic 
hazard, is  similar to a static hazard and can only  be 
eliminated  in a sum-of-products  realization, by including 
all prime  implicants. The second  type,  called a function 
hazard, cannot be  eliminated by modifying the logic 
network. A technique  using ternary algebra has been 
described for detecting both types of hazards.  This 
technique  has been extended to sequential  circuits and 
a general  procedure has been  established for detecting 
whether or not the feedback  signals will stabilize after a 
given transition. 
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