
E. B. Eichelberger

Hazard Detection in Combinational and Sequential
Switching Circuits*

Abstract: This paper is concerned with a unified approach to the detection of hazards in both combinational and sequential
circuits through the use of ternary algebra. First, hazards in a combinational network resulting from the simultaneous chang-
ing of two or more inputs are discussed. A technique is described that will detect hazards resulting from both single- and
multiple-input changes. The various types of hazards connected with gate-type sequential circuits are also discussed, and a
general technique is described that will detect any type of hazard or race condition that could result in an incorrect terminal
state. This technique could be easily implemented in a computer program which would be capable of detecting hazards in
circuits containing hundreds of logic blocks.

Introduction

Whenever the input signals of a combinational or se-
quential switching circuit are changed, the output signals
are predicted by the truth table or flow table to behave in
a certain manner. If it is possible for the output signals
to behave in a different manner than predicted, the circuit
is said to contain a hazard for that input transition.
The object of this paper is to present a new technique
for determining whether or not a switching circuit contains
a hazard.

This technique is unique in that:

1. It can be used to evaluate transitions involving the
simultaneous changing of two or more input signals.

2. The same technique can be used for both combina-
tional and sequential switching circuits.

3. It can be easily implemented in a computer program
which would be capable of analyzing logic networks
containing more than 2,000 logic gates.

The most significant application of this technique is in
evaluating the response of large sequential switching
circuits to given input sequences (see Fig. l), taking into
account any malfunctioning due to hazards, races, or
oscillations.

Techniques for detecting and eliminating hazards in
combinational networks have been described by Huffman’
and McCluskey.’ These techniques make use of Boolean
algebra and are restricted to hazards resulting from single
input variable changes. It has been shown by other

90 and Logical Design, Princeton University, November 8-14, 1964.
* Presented at the 5th Annual Symposium on Switching Circuit Theory

IBM JOURNAL MARCH 1965

that a suitable ternary algebra can also be
used to solve this problem.

In this paper the problem of detecting and eliminating
hazards in combinational networks is extended to hazards
resulting from the simultaneous changing of two or more
input signals. It is shown that two types of hazards can
be associated with multiple input changes. The first type,
called a logic hazard, is similar to and includes static
hazards. The second type, called a function hazard, is
inherent in the Boolean function and cannot be eliminated
by modifying the logic network.

A procedure is described for obtaining a ternary function
from a binary switching circuit, and some basic properties
of this ternary function are defined. It is shown that both
logic hazards and function hazards can be detected from
the ternary function. These techniques are then applied to

Figure 1 Typical sequential switching circuit illustrating the
key problem: to determine the circuit response to a given
input sequence, accounting for “hazards,” “races,” and oscil-
lations.

SEQUENTIAL
SWITCHING

CIRCUIT

- INPUT SEQUENCE
X , O l O O

x , o 1 0 1

x , o o 1 1

the detection of hazards in sequential switching circuits.
A general procedure is given for determining whether a
particular input change to a sequential circuit can result
in an indeterminant final state.

Assumptions

Although the techniques described here are applicable to
contact networks as well as gate-type networks, only the
gate-type networks are considered in detail.

It is assumed that each logic gate (whose single output
is a binary function of its n inputs) can be approximated
by an ideal (no delay) logic gate which has delay elements
associated with each input. It is further assumed that
each of these input delay elements can have any value
between zero and some maximum, dm,,.

It should be noted that these input delay elements could
possibly have different values for every transition; we
assume only that the delay will never exceed the upper
bound dm,,x.

Multiple input-change hazards

In this section we consider the problem of determining
whether or not a combinational (loop-free) network can
have a spurious hazard-pulse on its output when two or
more inputs are changed at the same time. We are con-
cerned only with hazards for which the output before
the input change is equal to the output after the input
change and such that during the input change a spurious
output pulse may occur. (The problem of determining
“dynamic” hazards’.’ is not considered, since it will be
seen that they may be ignored in determining hazards in
sequential circuits.)

Since the term static hazard has been defined in terms
of single-input changes: it is not used for multiple-input
changes even though the output character of the hazard
is the same. Instead, the term M-hazard is used.

Definition I . A combinational logic network contains an
M-hazard for an input change involving the changing of
one or more input variables if and only if (1) the output
before the change is equal to the output after the change
and (2) during the change a spurious pulse may appear
on the output.

It should be noted that it is possible for a network to
contain an ”hazard for an input change and not generate
a spurious output pulse for that input change. However,
it is always possible to make it produce a spurious output
pulse by inserting delays in certain branches of the network.

There are two different types of “hazards. The first
type, called a function hazard, is illustrated in Table 1.
For the transition from cell a to cell c it is possible to
temporarily enter cell b if the y change slightly precedes
the x change. Since a 0 output is specified for cell b it must
be possible for a spurious 0 pulse to be present at f for
the input change WZJ to *x)?.

Consider the p-variable transition from input state A to
input state B, where

A = (~ 1 , * . I a,, aP+l , * * . u J ,

B = (iil, * si,, ap+1, * * * a,,),

and ai represents some value (1 or 0) for input xi.

Dejhition 2. A Boolean function, f, contains a function
hazard for the input change A to B if and only if

(1) f(A) = f(B> and

(2) there exist both 1’s and 0’s specified for f within
the 2’ cells of the sub-cube (up+l, - - an).

It is evident that if a function, f, contains a function
hazard for the input change A to B, then there must be
some set of values for the changing input variables x1 . x,
for which f is not equal to f(A) or f(B). Consequently, it
must be possible for the delays in the network to be such
that these input changes reach the output in a sequence
which causes a spurious hazard pulse to be generated.
Thus the following theorem is true:

Theorem 1. If a Boolean function, f, contains a function
hazard for the input change A to B, then it is impossible
to construct a logic gate network realizing f such that
the possibility of a hazard pulse occurring for this transi-
tion is eliminated.

The second type of “hazard, called a logic hazard, is
closely related to static hazards in that both can always
be eliminated by properly designing the logic network. In
general, if a p-variable transition does not involve a func-
tion hazard but may nevertheless result in a hazard pulse
on the output of the logic network, the network is said
to contain a p-variable logic hazard for this transition.

Definition 3. A combinational logic network contains
a p-variable logic hazard for the p-variable input change
A to B if and only if

(1) !(A) = f(@,
(2) all of the 2” values specified for in the sub-cube

(3) during the input change A to B a spurious hazard
(aDc1, - a,) are the same, and

pulse may be present on the output.

Table 1 Example of function hazard.

x, Y
00 01 11 10 o m 1

Z

1

f

H A .Z ARD

91

DETECTION IN SWITCHING CIRCUITS

Condition (2) for a p-variable logic hazard is equivalent
to stating that the input change does not involve a func-
tion hazard. It is also noted that if p = 1, conditions (1)
and (2) are identical and Definition 3 reduces to the
definition for a static hazard. Thus a p-variable logic
hazard is a static hazard if p = 1.

The relationship between "hazards, function hazards,
and logic hazards still requires some explanation. If a
p-variable transition can result in an output hazard pulse,
the transition involves an "hazard. If all the 2" values
specified for f in the sub-cube are the same, the "hazard
is a logic hazard; if not, the "hazard is a function
hazard. If the p-variable transition involves a function
hazard, it cannot also involve a p-variable logic hazard.
However it may involve a q-variable logic hazard (q < p)
for one of the q-variable sub-transitions contained within
the p-variable transition.

It is also evident from Definition 3 that if a p-variable
transition involves a p-variable logic hazard, it may also
involve or be the result of one or more q-variable logic
hazards (q < p). In terms of static hazards (q = 1) it
means that a network may contain a p-variable logic
hazard (p > 1) because it contains a static hazard for
one of the changing input variables.

However, it is possible for logic networks to be free
of static hazards and still contain logic hazards. An
example of such a circuit is shown in Fig. 2. It is evident

Figure 2 Example of a network containing logic hazards
but no static hazards; (a) map of function: (b) circuit
realization.

W X

00 01 11 10

-
Y O

1

1-0
1-0

1-0

x 0 1
1-0

L

O F
0-1

0" 1 -
Y O

x 0 0- 1
0-1

from the map of the function that the circuit realization
is free of static hazards. However, consider the transition
from cell a to cell d. It is evident from Fig. 2b that a 0-pulse
will appear at the output of the network if z and S both
change to 0 before z and w both change to 1 . Thus the
network contains a logic hazard for the input change from
cell a to cell d even though it does not contain a static
hazard. The transitions d to a, c to b, and b to c also
involve logic hazards.

The logic hazard in this network (Fig. 2b) can be
eliminated by adding an AND gate corresponding to the
product term Zjj. Since ng is the only prime implicant5 of
F which is not contained in the two-level realization, the
question might be asked as to whether or not all prime
implicants must always be included in the two-level
solution to eliminate all logic hazards. This is indeed the
case, as shown by the theorem which follows.

Theorem 2. A sum-of-products realization of F (assuming
no product terms with complementary literals) will be
free of all logic hazards if and only if the realization
contains all the prime implicants of F.

Proof. The absence of complementary literals within a
product term eliminates the possibility of a 0-1-0 logic
hazard pulse. In order to eliminate all possibility of a
1-0-1 logic hazard pulse, it is necessary and sufficient that
at least one of the product terms be 1 for the entire transi-
tion.

a. Assume the solution contains all prime implicants.
Assume there also exists some p-variable logic hazard.
Then there must be a corresponding p-variable transition
(a,, . . up, a,,,, an) to (al, - . a,, up+,, . . an) which
does not contain a function hazard. Thus F = 1 if the
literals a, are all 1, and some subset of these
literals must be a prime implicant with a corresponding
product term in the solution. But this would prevent the
hazard from occurring, so no logic hazard can exist if
the solution contains all prime implicants.

b. Assume that some prime implicant (a,, . a,) is not
included in the realization. Consider the transition
(a,, . . a,, . . . a,) to (al, ' . - a,, . a*). The
only possible product term which can belong to the
solution and be 1 for this transition is (aa, . . a*), so the
transition must involve a logic hazard. Thus all prime
implicants are required to eliminate all logic hazards.

The dual of Theorem 2 concerning product-of-sums
realization is, of course, also true.

Hazard detection by ternary algebra

The problem of using ternary algebra to detect and
eliminate static hazards in combinational switching circuits
has been considered extensively by Yoeli and Rinon? In

E. B. EICHELBERGER

this section we relate the actual switching circuit to a
ternary function, and show that the resulting ternary
function can be used to detect both function hazards and
logic hazards. A technique for generating the ternary
function from the binary switching circuit is described
and some basic properties of the resulting ternary function
are stated and proved.

The relevance of a third value to describe the transient
behavior of a gate-type switching network can be seen
from Fig. 3. The f curve represents the gate response for
the minimum and maximum gate delay as a result of the
input x. First consider the input x , which is changing
from 0 to 1 (- to +). As long as x is below some voltage,
uo, the input is assumed to be a 0, and as long as it is
above some voltage, u l , it is assumed to be a 1. During
the time the input is between uo and u1 it is indeterminate
and may be considered to be either 1 or 0. In fact if a
signal is between ug and u1 it can simultaneously affect
one logic gate as a 1 and another as a 0, depending upon
the electrical characteristics of the two gates. A third
value, designated as 5 will be used to represent a signal
which may be either 1 or 0. It can be seen from Fig. 3 that
the ternary signal, x* , represents the actual continuous
signal, x , very well.

The ternary signal f*, corresponding to the gate re-
sponse f, has a $ value for a longer time period than x * .
This is due to both the transition time and the possible
variation in gate delay. It is noted that f l = f4 since it is

Figure 3 Ternary approximation to continuous signals.

YO O f

""""""""""- y -
I

\~ """"""_ i/ _"" 1-
I
I I

assumed that the minimum delay through a logic gate is
zero.

Obtaining the ternary functions of a logic gate

The ternary function G*, of a logic gate that realizes the
binary function G, can be determined easily by using the
fact that the value 3 represents a signal that can be either
1 or 0. Thus G* can be determined by changing back and
forth between 1 and 0 those gate inputs corresponding to
values of 3 and then noting whether the gate output, G,
changes or remains fixed at a 1 or 0. If G remains fixed
at a 1 (0) then G* = 1 (0), and if G changes then G* = i.
Hypothesis. G* (i, . . . 2 , a,+l, * a,) = 1 (0) if and only
if it is impossible to change the gate output G from a 1 (0)
by changing inputs x], . . x, when inputs x,,,, . . . x, are
fixed at aPc l , * e - a,, respectively. G* (3, 9 . $, ap+l,
. . . a,) = 3 if and only if it is not equal to 1 or 0.

If it is assumed that the individual logic gates do not
contain logic hazards (which is true for all types of logic
gates known to the author) then G* can be determined by
examining the map of the gate function G.

Table 2 shows the ternary and binary functions for the
EXCLUSIVE-OR gate. The four G* entries corresponding to
x y = 00, 10, 01, and 11 are the same as the G entries.
The G* entry for cell j is determined by the G entries in
cells a and b since cell j corresponds to x = +(1 or 0),
and y = 0. The entries in cells a and b differ, so the entry
in cell j must be 3. (If both entries in cells a and b had
been 1, then the entry in cell j would have been 1.) The
entry in cell k is determined by examining all four entries
for G . Since some are 1 and some are 0, the entry for cell
k is $.

In general, if p of the inputs to an n-input gate are $,
the ternary output, G*, can be determined by examining
the corresponding 2' entries in the binary truth table for G.
If all entries are 1 (0) then G* = 1 (0) and if some entries are
1 and some are 0, then G* = $.

Table 2 Binary and ternary functions for EXCLUSIVE OR.

Y

X

0 1

1

G

fa)

Y

X

1 0 7 1

93

HAZARD DETECTION IN SWITCHING CIRCUITS

Table 3 Ternary functions for AND and OR gates. Table 4 Possible combinations for G* (C) and G* (D) .

0

1
y T

1

X X

' I

AND OR

G' = MIN (x, y) G* = MAX (x, y)

G'. (C)

0

1

- l 1

I

The ternary functions for AND and OR gates are shown
in Table 3. The AND and OR correspond respectively to
minimum and maximum functions.

Two lemmas concerning the characteristics of ternary
gate functions will now be stated and proved.

Lemma I . If one or more ternary gate inputs are changed
from 1 to 3, or 0 to 3, the ternary gate output will either
remain unchanged or change to 3.
Lemma 2. If one or more ternary gate inputs are changed
from 3 to 1 or 0, the gate output will either remain un-
changed or change from + to 1 or 0.

Proof. Consider the two ternary input-states C and D
where

c = (+, ... 1
2 , a,,,, * . * a,, apc1, * . . a,)

2 , ;, % + l , . . . a,,) D = (L -

and ai = 1 or 0.

Lemma 1 corresponds to a transition from input state C
to input state D , and Lemma 2 corresponds to a transition
from D to C. By hypothesis, G* (D) = 1 (0) if and only if
the gate output cannot be changed by varying inputs
xl, . . x, when x,,,, . . . x, equals a,,,, . . . a,, respectively.
Therefore G* (D) = 1 (0) implies that G* (C) = 1 (0) since
x,,,, . x, = a,,,, . . . a, for input-state C also. This
restriction eliminates four of the nine possible combina-
tions of values for G* (C) and G* (D) as shown in Table 4.
It is evident from Table 4 that an input change from C to
D only results in G* remaining unchanged or changing
from 0 to 3 or 1 to 3. And an input change from D to C
can only result in G* remaining unchanged or changing
from 3 to 0 or 3 to 1.

Ternary function characteristics

The ternary function of a combinational logic network is
determined by the ternary functions of the logic gates

94 in the network. That is, for any ternary input state the

corresponding ternary output is uniquely determined by
evaluating the ternary output of each logic gate in the
network, starting with those gates whose inputs are also
network inputs. Since the ternary functions for the logic
gates are determined in the manner described in the
previous section, one may now prove certain facts about
the resulting network ternary functions.

One characteristic that will be quite useful later is that
if one or more inputs to a combinational network are
changed from 1 to 3 or 0 to 3, the network output can
either remain unchanged, or change to 3, but it cannot
change from 1 to 0, from 0 to 1, or from 4 to either 1 or 0.
This fact, which is now formally stated and proved, is an
extension of Theorem 1 of Yoeli and R i n ~ n . ~

Theorem 3. If one or more ternary inputs to a com-
binational logic network changes from 1 to i or 0 to i,
then the network output either remains unchanged or
changes to 3.
Proof. Consider one of the logic gates G , whose inputs
are also network inputs. All inputs to G must either be
unchanged or changed to 5, so by Lemma 1, the output
of G must also be either unchanged or changed to 5. Thus
the inputs and outputs of every gate in the network must
either be unchanged or changed to 4. Since the network
output is also a gate output the theorem is proved.

Theorem 4. If one or more ternary inputs to a com-
binational logic network changes from i to 1 or 3 to 0,
then the network output either remains unchanged or
changes from 3 to 1 or 3 to 0.

Proof. The theorem is proved using Lemma 2 and the
same argument as for Theorem 3.

Another useful characteristic of a network ternary
function is that if the network output f can change in
any way during an input change, then the ternary function,
f*, must equal 3, if the changing inputs are assigned
values of +.

E. B. EICHELBERGER

WY WX

110 01 11 10

I O I U I

0

Y

1

1 I

(6)

Figure 4 Hazard detection by ternary evaluation. (a) Map
of functions; (b) Evaluating input changes for hazards.

Theorem 5. The output, f , of a combinational logic
network may change as a result of changing inputs
x,, - * x, (when inputs x,+ ,, * * x, = a,+ ,, * a,) if and
only if f* (+, - 3, a,,,, a%) = 3,
Proof. Consider those gates in the network whose inputs
are also network inputs. If all network inputs that may be
changing are assigned the value of 3, then those gate
outputs, G, may be changing if and only if G* = 3 (by
hypothesis). If the ternary gate outputs for all gates are
determined, then all gate inputs and outputs that may be
changing will have the value of 3. Since the network
output f is also a gate output, then f may be changing if
and only if f* = 4.

Hazard detection

In this section a theorem is stated and proved which
provides the basis for a technique for determining whether
or not a network contains a hazard for a particular input
change.

Consider the transition from input state A to input
state B where

A = (a, * * . up, & + I , a=),
B = (a , - * . a,, U P + l , a,),

2 , a,+,, - - * 4 . A / B = ($, . . . 1
Theorem 6. A combinational logic network contains an
“hazard for the input change A to B if and only if

(1) f* (A) = f* (B) # 3 and

(2) f* (A / B) = 3.

Proof. By Definition 1, condition (1) must be true.
Since f* (A) = f* (B) an ”hazard will exist if and only
if the network output can change during the input change
A to B. But by Theorem 5 this can occur if and only if
f * (A /B) = 3.

In Fig. 4 a logic network is analyzed to determine
whether or not it contains a hazard for the input change
f ~ f j to w x j . This is accomplished by determining f* (@@),
f * ($, 3, y), and f* (w, x, J) by evaluating the ternary
functions of each logic gate. It is evident from the resulting
values obtained for f T and f*, that both outputs contain a
hazard for this transition. From the maps of the functions
f l and fz it is evident that f, contains a logic hazard and fi
contains a function hazard. The hazard in f, could be
corrected by changing the logic network but the hazard
in f2 cannot be eliminated without changing the function.
(It is noted that both types of hazards are detected by the
same technique of evaluating the ternary function of
the network for the transition.)

Hazard detection in sequential circuits

The problem of determining whether or not a sequential
circuit will respond to an input change in the manner
predicted by the flow table or transition table has been
given considerable attention in the At least three
types of problems have been considered:

Static hazards. It has been shown that static hazards in
the combinational logic generating the feedback signals
can cause the circuit to malfunction and should, in
general, be eliminated.

Critical races. When two or more feedback signals are
changing together, a race is said to exist. If the order in
which these changes occur can affect the final state of
the circuit the race is said to be critical. Critical races
should be avoided.

Essential hazards. Unger’ has defined an essential hazard
in terms of a flow table and has proved that, if a flow table
contains an essential hazard, its circuit realization must
contain at least one delay element for it to operate reliably.
In terms of circuit operation the essential hazard is
basically a critical race between an input signal change
and a feedback signal change. The delay is needed to
make the input signal always “win” the race.

Although the treatments of these three types of problems
have been of outstanding significance in the theory of
sequential circuit design, they do not offer a complete or
easy solution to the problem of determining whether or not
a given sequential circuit will respond reliably to a given
input-state change. The object of this section is to describe
an easy procedure for solving this problem.

HAZARD

95 I

DETECTION IN SWITCHING CIRCUITS I

0 Transition analysis using ternary techniques

The basic problem of determining the transient response
of a gate-type sequential circuit with no feedback delay
elements can be divided into two parts. The first part is
to determine all the feedback signals that may be changing
as a result of the input change. The second part is to
determine whether or not these feedback signals will
eventually stabilize in some predetermined state. It will be
shown that both of these problems can be solved by a
ternary evaluation of the logic.

The first part of the problem can be solved in the
following way. Consider the model shown in Fig. 5. The
first step is to determine which of the Y signals can be
changing as a result of the specified x variable changes.
The second step is to determine whether any additional
Y signals may be changing as a result of both the x variable
changes and the y variable changes. This second step is
repeated until no additional Y signal changes are deter-
mined. These steps may be accomplished as follows:

Procedure A-Determining all changing Y signals. With
the changing x variables equal to 3 and all other x and y
variables as originally specified, evaluate the Y t functions
to determine if one or more have changed from 1 or 0
to $. If one or more Y$ functions have changed from
1 or 0 to i, change the corresponding y i variables from 1 or
0 to 3 and repeat the process until no additional changes in
the Y: functions are determined.

At the end of Procedure A all feedback signals, Y,, that
may experience some type of change during this transition
will be indicated by Y$ functions equal to 3.

The second half of the problem is to determine which of
the changing feedback signals will eventually stabilize at
a 1 or 0 as a result of the changing x variables stabilizing
at their new values of 1 or 0. This is done as follows.

Procedure B-Determining which Y signals stabilize. With
the changing x variables equal to their new values (1 or 0),
and all other x and y variables equal to their values at the
end of Procedure A, evaluate all Y ; functions. If one or
more of these Y: functions changes from 3 to 1 or 0,
change the corresponding y i variable from 3 to 1 or 0 and

Figure 5 Model of sequential circuit.

repeat the process until no additional changes in the
YT functions are determined.

It is evident from Theorem 5 that if it is possible for
one of the feedback signals, Y,, to be changed by the
changing of various x and y variables, then a ternary
evaluation of the network will indicate Y*, = 3. Thus the
iterative process of Procedure A will detect all feedback
signals that could possibly change as a result of the input
change. It is also evident from Theorem 5 that if in the
process of executing Procedure €3 it is determined that
Ya = 1 (0), then it must not be possible for the Y, feedback
signal to be changed from a 1 (0) by the changing y vari-
ables. Thus the following theorem is true.

Theorem 7. If Y*, = 1 (0) after applying Procedure A and
Procedure B to a sequential circuit for a given input-state
change starting in a given internal state, then the Y ,
feedback signal must stabilize at 1 (0) for this transition
regardless of the values of the (finite) delays associated
with the logic gates.

Although Procedures A and B are difficult to explain
they are very easy to perform since they are basically a
ternary simulation of the logic. An example of this tech-
nique is shown in Fig. 6. In this case the problem is to
determine whether or not changing x1 and xz from 0 to 1
can result in an indeterminate final internal state. This is
done by repeatedly determining the ternary functions YT
and Y ; for each new set of values for the variables xl, x2,
y l , and ya.

Figure 6 Transition analysis from logic network, using Pro-
cedures A and B. (a) Logic diagram; (b) Analysis table.

I l

I '

96 L

E. B. EICHELBERGER

Line 1 in Fig. 6b represents the initial state of the circuit.
Lines 2 and 3 correspond to Procedure A and lines 4 and 5
correspond to Procedure B. The final value for Y: Y ; is
31, so this transition results in an indeterminate value
for the Y, feedback signal.

Procedures A and B as illustrated in Fig. 6 represent the
solution to the key problem described in Fig. 1. To
determine the response of a sequential circuit to a given
input sequence, taking into account hazards, races, and
oscillations, it is only necessary to insert between each
input combination a new-input combination with 3 values
corresponding to changing variables, and then perform a
ternary simulation of the sequential circuit. This solution
to the problem is illustrated in Fig. 7.

Ternary simulation of sequential circuits

Although the ternary simulation technique of Procedure A
and Procedure B were developed to determine whether or
not a sequential circuit would respond in a determinate
way to a given input change, such a ternary simulation is
a very powerful tool in evaluating transitions in very
large logic networks.

In performing binary simulations of large logic networks
the following problems exist:

(1) It is necessary to detect oscillations.

(2) Feedback lines must somehow be identified.

(3) For n feedback lines as many as 2" evaluations of the
network may be required.

(4) Hazards and races are not normally detected.

In using a ternary simulation as defined in Procedure A
and Procedure B, the following is true.

(1) Oscillations are detected automatically.

(2) Feedback lines need not be identified.

Figure 7 Solution to key problem of Fig. 1.

(3) For n feedback lines, at most only 2n evaluations are
required.

(4) Hazards and races are automatically detected.

(5) During Procedure A, any logic gate whose output value
is 3 need not be further considered, since its output
value cannot possibly change (Theorem 3).

(6) During Procedure B, any logic gate whose output value
is not 3 need not be further considered since its output
value cannot possibly change (Theorem 4).

Although Procedure A and procedure B are described
in terms of feedback signals, Yi, these signals are not
handled any differently than the output signals of all
other logic gates in the network. Thus feedback lines need
not be identified. Conditions (5) and (6) can greatly reduce
the number of logic gates that must be evaluated for any
transition.

The following algorithm can be easily programmed to
perform Procedures A and B in evaluating the effect of
an input change on a sequential circuit.

Algorithm for transition analysis

(1) With the changing input signals equal to 3, place all
logic gates that are fed by these signals and have a
present output that is not 3 on the "A-list."

(2) Remove one of the logic gates from the A-list and
evaluate its output. (i) If its new output is 3, place all
logic gates that are fed by it and have a present output
that is not + on the A-list. (ii) If its new output is not
3, do nothing.

(3) Repeat step (2) until the A-list is empty.

(4) With the changing input signals equal to their final
value (1 or 0), place all logic gates that are fed by
these signals and have a present output equal to 3 on
the B-list.

(5) Remove one of the logic gates from the B-list and
evaluate its output. (i) If its new output is not 3, place
all logic blocks that are fed by it and have a present
output of 4 on the B-list. (ii) If its new output is 3, do
nothing.

(6) Repeat step (5) until the B-list is empty.

Manual technique for ternary evaluation

In looking for a better manual technique for evaluating
the Y* functions, the first thought is to form the ternary
truth table or maps of the Y* functions. This is only
practical for very small problems since there are 3" entries
for an n-variable ternary function. If the combinational
logic generating the Y function is assumed to be free of
all logic hazards (which is always possible) then only 97

HAZARD DETECTION IN SWITCHING CIRCUITS

Table 5 Transition analysis from transition table using Pro-
cedures A and B; (a) Transition table; (b) Analysis table.

Transition analysis of sequential circuits containing delay
elements

The ternary analysis technique will now be extended to
include sequential circuits containing delay elements. This
can be done by considering the delay element inputs as
“special” outputs of the sequential circuit, and by con-
sidering the delay element outputs as “special” inputs to
the sequential circuit.

To determine the response of the sequential circuit to
an input change, the transition analysis is performed in
the usual manner (Procedures A and B) with all delay
element output signals held at their initial values. If one
or more delay element inputs change during this analysis,

(0)
the signal changes are then applied to the circuit at the
corresponding delay element output terminals and the
transition analysis is repeated.

It is possible that this process will not terminate if the
x Y1 Yz y; y; transition involves an oscillation through the delay

1 0 0 0 0 0 elements. Consequently some technique must be used to

2 - l o 0 O 2
recognize an oscillatory condition and terminate the
ternary simulation. To be completely rigorous all feedback
lines would have to be identified and monitored to de-
termine if the circuit is oscillating. Since this is difficult
to accomplish, a much easier technique would be to

trarily decide that these signals are oscillating if they

oscillating signal is detected in this way, it is set to a
value of $ and the process is continued. It is evident that

easy to perform.

1 -
2

l o - 3 2
- 1 - 1 -

- 1 - 1 -

1
2 2 2

4 2 2 l 1 monitor just the delay element output signals and arbi-

5 l 2 - l 1 - 2 change more than a certain number of times. Once an

f b) this technique will terminate rather quickly and is fairly

function hazards can cause the Y* function to change to
a value of 8 as a result of certain x and y variable changes.
This allows the Y* functions to be evaluated by examining
the transition table entries for the Y functions.

The example in Table 5 shows how a transition can be
analyzed by Procedures A and B by using a binary transi-
tion table. Line 1 of the analysis table corresponds to the
initial stable state; lines 2 and 3 correspond to Procedure A
and lines 3 and 4 to Procedure B. In line 2 the YT and
Y$ values are obtained by examining the Y , and Y, entries
in the transition table for y ,y , = 00. Since both Y , entries
are 0, YT = 0, and since one Y, entry is 1 and the other is
0, Y t = 4. For line 3 all Y , and Y, entries in the transition
table corresponding to y , = 0 are considered. Since Y,
and Yz both have 1 and 0 entries, YT = Y t = $. For line 4
all entries corresponding to x = 1 are considered and for
line 5, all entries corresponding to xy, = 11. The final
value of YT Y$ = $1 indicates that the Y, signal is

98 indeterminate for this transition.

E. B. EICHELBERGER

Conclusions

It has been shown that there are two types of hazards
associated with the changing of two or more input signals
in a combinational network. The first type, called a logic
hazard, is similar to a static hazard and can only be
eliminated in a sum-of-products realization, by including
all prime implicants. The second type, called a function
hazard, cannot be eliminated by modifying the logic
network. A technique using ternary algebra has been
described for detecting both types of hazards. This
technique has been extended to sequential circuits and
a general procedure has been established for detecting
whether or not the feedback signals will stabilize after a
given transition.

Acknowledgments

The author is indebted to M. P. Marcus for his lively
discussion and helpful suggestions during the preparation
of this paper and to J. S. Jephson, C. B. Stieglitz and
L. H. Tung who originally suggested the problem and
whose use of a “third value” to represent “don’t-know’’
conditions in logic simulation was very helpful in devel-

oping the techniques of transition analysis. The author is
also grateful to R. M. Karp for his suggestion on the
definition of logic hazards.

References and footnotes
1. D. A. Huffman, “The Design and Use of Hazard-Free

Switching Networks,” J. ACM 4, 47 (1957).
2. E. J. McCluskey, Jr., “Transients in Combinational Logic

Circuits,” from Redundancy Techniques for Computing
Systems, Spartan Book Co. 1962, pp. 9-46.

3. D. E. Muller, “Treatment of Transition Signals in Electronic
Switching Circuits by Algebraic Methods,” IRE Trans. on
Electronic Computers EC-8, 401 (1959).

4. M. Yoeli and S. Rinon, “Applications of Ternary Algebra to
the Study of Static Hazards,” J. ACM 11, 84 (1964).

5. A prime implicant of F is a set of literals, P, such that (1) if all
literals in Pare 1, then F = 1, and (2) if any literal is removed
from P, condition (1) no longer holds.

6. S. H. Caldwell, Switching Circuits and Logical Design, John
Wiley & Sons, New York, 1958.

7. D. A. Huffman, “The Synthesis of Sequential Switching
Circuits,” J. Franklin Inst. 257, 161, and 257, 215 (1954).

8. S. H. Unger, “Hazards and Delays in Asynchronous Se-
quential Switching Circuits,” IRE Trans. on Circuit Theory
CT-6, 12 (1959).

Received October 5 , 1964.
Revised manuscript receimd February IO, 1965.

99

HAZARD DETECTION IN SWITCHING CIRCUITS

