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Abstract— Asynchronous sequential circuit or protocol design
requires formal verification to ensure correct behavior under
all operating conditions. However, most asynchronous circuits
or protocols cannot be proven conformant to a specification
without adding timing assumptions. Relative Timing (RT) is
an approach to model and verify circuits and protocols that
require timing assumptions to operate correctly. The process of
creating path-based RT constraints has previously been done
by hand with the aid of a formal verification engine. This
time consuming and error prone method vastly restricts the
application of RT and the capability to implement circuits
and protocols. This paper describes an algorithm for automatic
generation of RT constraints based on signal traces generated
from a formal verification (FV) engine that supports relative
timing constraints. This algorithm has been implemented in a
CAD tool called Automatic Relative Timing Identifier based on
Signal Traces (ARTIST) which has been embedded into the FV
engine. A set of asynchronous and clocked designs and protocols
have been verified and proven to be hazard-free with the RT
constraints generated by ARTIST which would have taken
months to perform by hand. A comparison of RT constraints
between hand-generated and ARTIST generated constraints is
also described in terms of efficiency and quality.

I. INTRODUCTION

Timing is an inherent quality and correctness aspect of
circuit and protocol design, whether the designs are clocked
or asynchronous. Furthermore, very few, if any, designs
operate entirely independently of timing – even if the designs
and protocols are “delay-insensitive” [1]. Unfortunately, the
ability to reason about joint behavior and timing in sequential
systems and protocols is a complicated task, often resulting
in memory or state space complexity that consists of double
exponentials.

Several approaches have been taken to mitigate this
complexity. In the world of asynchronous design, delay-
insensitive (DI) protocols and circuits have been used to
avoid timing problems. Theoretically these systems operate
correctly with arbitrary wire and device delays. In practice,
creating DI systems results in circuits much larger, slower,
and power hungry than similar timed circuits [2]. Even
worse, it is not possible to design complex systems without
some timing (resulting in the quasi delay-insensitive (QDI)
model).

A second approach has been to specify the upper and
lower bound on delay between signal events becoming
enabled and firing [3], [4], be it a device, wire, or protocol
signal. This timing approach results in high state, memory,

or computation complexity so significant effort has been
made to reduce the complexity of such joint behavior and
metric timed verification systems. Another problem with this
approach is that it requires the designer to estimate the
min-max delay in a reasonable range such that it meets
the accurate delay extracted from post-layout parameters.
Further, the impact that a change to the delay of a single
component has on the correct behavior of a system as a whole
cannot be known by an engineer, making design changes
(ECO’s) nearly impossible to perform without re-running
verification.

Another approach has been to apply a unit delay model
to the devices and wires [5]. This can result in a provably
correct system. Sutherland showed that transistor sizing of a
circuit can be constrained to yield unit delays to solve this
problem [6]. This technique simplifies pre-layout verification
but over-constrains the circuits and reduces their potential
benefits.

A final method, which we endorse, is to use path based
relative timing (RT) constraints [7]. This method constrains
the overall delay of two paths from a common point of
divergence (POD) to a common point of convergence (POC)
to have a specified order of arrival. Unlike the other methods,
necessary timing assumptions are made explicit when using
relative timing. Such a method is simple for engineers to
visualize and understand, and RT is commonly used as part
of the performance and timing validation CAD tool flow.
Thus an RT-based method allows the designer and CAD
tools to specify and reason about timing constraints. Changes
(ECO’s) are simple to apply if relative path slack information
is available. Verification may not need to be repeated, and
only paths that pass through the changed components need to
have their timing re-evaluated. The rest of this work assumes
that circuit and protocol timing is represented as POD to
POC relative timing constraints that can be expressed as:
pod 7→ poc0 ≺ poc1 where poc0 ≺ poc1 means that poc0
occurs before poc1.

Normally a designer will start with a formal specification
of a sequential protocol as a petri-net [8] or process language
such as CSP [9], [10] or CCS (Calculus for Communicating
Systems) [11]. This specification will be synthesized into
a circuit realization. Unfortunately, unbounded delay verifi-
cation of the circuit against the specification nearly always
fails. This is because technology mapping into library gates



introduced hazards, inverters introduce skew and hazards
between a signal and its complement, or the synthesis engine
made timing assumptions to optimize the design. For such
designs, a set of relative timing constraints can be applied
that result in conformance between the implementation and
specification.

Timing constraint generation is currently performed by
hand with the aid of a verification engine. This hand gener-
ation is very time consuming and requires excellent knowl-
edge of the protocol, circuit, and relative timing constraint
specifications. Some protocols can take up to four or five
hours to create a sufficient set of RT constraints – even for an
expert verification engineer. Thus some automated algorithm
to generate the relative timing constraints is imperative. One
such algorithm is presented here.

The first algorithm for automatic generation of RT con-
straints was proposed by Kim et. al. [12]. This algorithm
created state sets where failure transitions are enabled to
fire. Transitions which exit the state set are required to fire
before the transition that produced the error, thus avoiding
the timing violation. The Kim algorithm can produce efficient
POC constraint sets. However, this algorithm has a few
weaknesses. First, the transition sets are generated from
local regions of the complete flat graph of the system,
which has lost any hierarchical and modular information.
The algorithm reported here is based on the hierarchical
behavior of local processes and signal sets that directly affect
the failure. Second, path based constraints are not generated
since the point of divergence is unknown. Without path-
based POD/POC constraints, the pre- and post-layout timing
cannot be validated through industry standard CAD [13].
This relegates the primary use of that tool to verifying that
it may be possible to apply timing to correctly design the
circuit. Finally, this algorithm does not support multi-cycle
constraints or other more complicated dependencies between
signal sets, which is supported through the unrolling and
backtracking used here.

The paper is organized as follows. Section II introduces the
verification engine, defines computation interference and the
basic notions used throughout the paper. Section III describes
the formal algorithm of both finding relative orderings and
POD backtracking. Section IV gives a simple example to
show how the algorithm works. Section V makes a com-
parison between ARTIST generated constraints and hand
generated constraints in terms of efficiency and quality.

II. FV AND COMPUTATION INTERFERENCE

A. Formal Verification Engine

This work is applied to a semi-modular1 [14], [15] veri-
fication engine that directly supports several variants of rel-
ative timing, including the preferred path-based constraints.
The engine used in this work is an explicit state verification
engine using a labeled transition system [16].

1Such systems do not allow enabled output transitions to be disabled as
this could create a glitch in the circuit.

A binary relation L C ⊆P×P over agents is a logic conforma-
tion between implementation I and specification S if (I,S)∈L C
then ∀ α ∈ Act and ∀ β ∈A ∪{τ} (outputs and τ) and ∀ γ ∈A
(inputs)

(i) Whenever S α→S′ then

∃ I′ such that I α̂⇒I′ and (I′,S′) ∈L C

(ii) Whenever I
β→I′ then

∃ S′ such that S
β̂⇒S′ and (I′,S′) ∈L C

(iii) Whenever I
γ→I′ and S

γ⇒ then
∃ S′ such that S

γ⇒S′ and (I′,S′) ∈L C

Fig. 1. Bisimilar Logic Conformance Relationship

Definition 1 A labeled transition system, (S, T , { t−→ : t ∈ T
}), consists of a set S of states, a set T of transition labels
and a transition relation t−→ ⊆ S × S for each t ∈ T.

Definition 2 The labels (or actions) in labeled transition
systems are defined as follows,

• Input action set names a ∈ A (the set of names A are
inputs I )

• Output action set conames a ∈ A (the set of conames
A are outputs O). By convention, a = a.

• The set of actions or labels L = A ∪ A
• The invisible internal action τ (tau). τ /∈ L
• The actions of a system are: Act = L ∪ τ

• The sort(P) of an agent P is its complete set of observ-
able input and output actions.

The verification engine takes an implementation I, option-
ally a specification S, and a set of RT constraints C which
is initially empty. The specification and implementation
are modeled using the process language CCS [11]. The
implementation is composed of multiple agents (agents can
be logic gates or minimized specifications of protocols) using
the parallel composition operator, e.g. I = (P1 | P2 | . . . | Pn).

Hierarchical verification can be performed without a
specification. Some designs implement timed protocols. For
example, asynchronous burst-mode implementations are all
timed protocols since they require that the circuit stabilizes
before new inputs can be accepted [17], [18]. One can verify
the timing constraints of the protocol by composing the
minimized specifications in parallel. If one protocol module
is not in an accepting state when an input is driven by an
associated protocol, computation interference occurs. Thus at
the protocol level, relative timing constraints may be required
for proper implementation without the need for a system
level specification S.

However, the more common verification task to perform is
the conformance of an implementation I to its specification
S. The verification used here employs bisimulation semantics
[19], [20], [21] and is applied to the conformance relation
shown in Fig. 1 [16]. Conformance verification is employed
between I and S using the set of RT constraints C.

Verification is performed to prove behavioral and timing
correctness. If a failure occurs, a relative timing constraint
is generated (manually by the designer or automatically
with this algorithm) and added to the RT constraint set C.
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Fig. 2. C-Element implemented with NAND gates

This procedure is iterated until the verification succeeds or
the circuit is proven to not conform to the specification.
For example, the specification for the C-element circuit of
Fig. 2 is: CE = a.b.c.CE + b.a.c.CE. Starting with
an empty RT constraint set C, the circuit fails verification. An
verification engineer iterates through verification runs adding
the four constraints c+ 7→ bc- ≺ a-, c+ 7→ bc- ≺ b-, c+ 7→
ac- ≺ a-, and c+ 7→ ac- ≺ b-. At this point the verification
succeeds and the circuit conforms to the specification.

B. Computation Interference

Computation interference applies between processes in a
parallel composition. Each process specifies its local behav-
ior. The definition of a semi-modular [14] 2-input NAND
gate used in the C-element of Fig. 2 is shown in Fig. 3.

Computation interference is implemented in the verifi-
cation engine as an extension to the parallel composition
operator of CCS. CCS normally operates using handshake
communication where labels and colabels from two agents
composed in parallel interact to make autonomous commu-
nication event τ . Our extensions permit only a single process
Pi to drive any output α ∈A when agents are composed in
parallel, and require all inputs β ∈A to concurrently evolve
with the output α = β ∧ (P0 | P1 | . . . | Pn)

τ→(P′0 | P′1 | . . . | P′n)
where (i) Pi

α→P′i (ii) ∀Pj . β ∈ sort(Pj), Pj must be in a

state where Pj
β→ and Pj

β→P′j (iii) for all other processes Pk =
P′k [16]. This formalism models hardware implementations,
where a single gate will drive an output and that signal will
be concurrently observed (assuming zero wire delay2) by
all gates the output drives. Computation interference is now
defined as follows.

Definition 3 dynamic(Pi) is the set of actions that can occur
at agent Pi in the current state for the parallel composition
of agents (P0 | P1 | . . . | Pn), such that α ∈ dynamic(Pi) when

• Pi
α→∧α ∈A

• Pj
α→∧α ∈A ∧α ∈ sort(Pi)

Thus dynamic defines the set of actions or signals that
interact with process Pi and its composed agents in any
given state. The possible behaviors will be equivalent to the
corresponding state in the specification of the process (such

2Arbitrary wire delay is implemented by including wire fork processes
when multiple outputs are driven by a single gate.

agent NAND001 = a.NANDa01 + b.NAND0b1;
agent NANDa01 = a.NAND001 + b.NANDab1;
agent NAND0b1 = a.NANDab1 + b.NAND001;
agent NANDab1 = ’y.NANDab0;
agent NANDab0 = a.NAND0b0 + b.NANDa00;
agent NAND0b0 = b.NAND000 + ’y.NAND0b1;
agent NANDa00 = a.NAND000 + ’y.NANDa01;
agent NAND000 = a.NANDa00 + b.NAND0b0 + ’y.NAND001;

Fig. 3. Semi-modular CCS specification of a 2-input NAND gate with
inputs a, b and output y (written ’y in ASCII).

as the NAND gate of Fig. 3) where some inputs may be
removed because the environment will not provide the inputs,
and some inputs will be added. The extra inputs that are not
specified by the behavior of the process result in computation
interference.

Definition 4 Computation Interference occurs on signal
α in a parallel composition of agents (P0 | P1 | . . . | Pn) when
α ∈ dynamic(Pi)∧Pi 6

α→.

Computation interference occurs between two processes
composed in parallel when an output signal is enabled to be
driven by one process, and the corresponding input action can
not be accepted in the current state of a receiving process.
This error corresponds to an input “stalling” the transmission
of a signal. For example, if we have a system that uses a 2-
input NAND gate and the gate is in state NANDab1 where
both inputs a b and the output y are high, the only acceptable
action by this process is a transition on the output y. If
any input were accepted, it would disable the firing of the
output, thus violating the semi-modular constraint. Therefore
inputs are not allowed in this state, and if any input occurs,
a computation interference error results.

There are two main sources of computation interference
when applying relative timing verification to the circuit
realization of an asynchronous handshake protocol.

1) An input transition is trying to disable an output
transition.

2) A short circuit would occur in a dynamic gate by
turning on both pull-up and pull-down networks at the
same time.

III. AUTOMATING COMPUTATION INTERFERENCE
VERIFICATION

The flow through ARTIST is similar to the manual flow.
ARTIST is implemented as an embedded function call into
the RT formal verification engine. It takes an error trace or
action sequence and feeds the generated constraints back to
the verification engine iteratively until circuit implementation
conforms to the specification or it is proven that circuit
implementation will never conform to the specification due
to a defective implementation or incompatible timing con-
straints. Instead of analyzing the state graph of the circuit
[12], ARTIST focuses on the specific process of an agent at
the error position. It greatly reduces the complexity because
unrelated concurrent signals are ignored.



Require: Trace Status Table
Ensure: Return a set of RT Constraints

Find αci,αen,Pi and P−1
i

Find dynamic(Pi) and dynamic(P−1
i )

for all α ∈ dynamic(P−1
i ) ∧ α 6= αen do

Find POD signal β of α and αen ;
Add β 7→ α ≺ αen into RT ;

end for
for all α ∈ dynamic(Pi) ∧ α 6= αci do

Find POD signal β of α and αci ;
Add β 7→ α ≺ αci into RT ;

end for
return RT;

Fig. 4. Top level algorithm for computation interference

The primary task of the algorithm is to select the correct
signals and ordering constraints as the POC, and then back-
track to find their common causal point which is the POD.
Fig. 4 shows the top level algorithm for automatic generation
of RT constraints. First the information at the error point is
obtained based on the trace status tableau such as αci,αen,Pi
and P−1

i and their corresponding dynamic sets. Then relative
orderings are constructed by combining all the elements in
dynamic(P−1

i ) and αen at higher level and all the elements
in dynamic(Pi) and αci at lower level into pairs. The point of
divergence is found by backtracking the causalities of each
pair.

A. Relative Ordering

Forcing relative signal sequencing at a component or
process is achieved by delaying the occurrence of a signal.
Constrained signal sequences will prevent a system from
entering error states. This can be enforced locally in a design
where computation interference occurs.

All the possible signal sequences are provided by the
verification engine due to its unbounded device and wire
delay model used for verification. The processes or compo-
nents that are composed to form the implementation update
their semi-modular states incrementally based on the signal
execution trace from the verification engine. This allows us
to create a tableau and template graph. The set of enabled
transitions and current process states allow us to generate the
template graph of Fig. 5(a) that shows possible transitions of
a process where computation interference occurs.

• αci is the computation interference signal defined in
Def. 4.

• the horizontal bar directed from event αci indicates the
failure transition.

• Pi is the state where computation interference occurs.
• P−1

i
αen−−→ Pi where αen is the transition moves process

from P−1
i to Pi.

• dynamic(Pi) = ∪i=1...nαn−1∪αci.
• dynamic(P−1

i ) = ∪i=1...mαm−1∪αen.
Due to the unbounded delay used in verification, no

one can predict which event occurs before another among
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Fig. 5. State Graph

multiple concurrent events. Therefore ARTIST returns a set
of all combinations of event orderings for each error. Thus
any action in dynamic(Pi) can be constrained to fire before
αci to avoid computation interference. Likewise, any action
in dynamic(P−1

i ) can fire before αen to avoid computation
interference as well because Pi where computation interfer-
ence occurs becomes unreachable. There may exist more
candidate signal sequencing at the higher level beyond P−1

i
that could be used to remove computation interference, but
this algorithm only use the constraints at the level of Pi
and P−1

i . Higher level constraints reduce timing margins and
may over-constrain the design which could result in non-
conformance to the specification. Note that the constraints
returned are mutual exclusive and only one of them is used as
the feedback to the verification engine. If a weaker constraint
is selected, the cardinality of the final set of RT constraints
may be bigger. These constraints also allow choice of the best
constraint. The strong and weak aspect of RT constraints is
demonstrated in Section V-B.

To find the relative ordering, one must identify and label
signals such as αci, αen, and Pi, P−1

i , dynamic(Pi) and
dynamic(P−1

i ) based on their behavior. However, this in-
formation cannot be identified solely with an error signal
trace passed from the verification engine. Thus a tableau is
constructed to include all the necessary information which
reflects the changes of each gate’s status as the signal trace
grows incrementally.

Table I is a status tableau for the C-element circuit of
Fig. 2. The signal trace that results in the computation
interference error is listed on the bottom row. The signals
show the logic level of their transition as either a ‘+’ for
a rising transition or ‘−’ for a falling transition. The other
rows list a signal and the process that generates that signal.
Primary inputs are generated by the spec if provided or
are unconstrained. The other signals are process outputs; in
this case the outputs of gates A – D in Fig. 2. The full
signal set, consisting of primary inputs, primary outputs,
and internal signals, is listed in the first column. Subsequent
columns are numbered based on the depth of the signal
trace. Each of these columns represent all necessary signal
status information. This information includes the state of



TABLE I
AN EXAMPLE STATUS TABLE FOR A PARTICULAR ERROR TRACE IN

VERIFICATION OF C-ELEMENT. EACH CELL REPRESENTS STATE,
#TRANS, EN FLAG, CI FLAG, RESPECTIVELY.

0 1 2 3 4 5
a S00,0,T,F S01,1,F,F S02,1,F,F S02,1,F,F S00,1,T,F S01,2,F,F
b S00,0,T,F S01,0,T,F S02,1,F,F S02,1,F,F S00,1,T,F S01,1,T,F
ab A00,0,F,F A05,0,F,F A01,0,T,F A06,1,F,F A06,1,F,F A02,1,T,F
ac B00,0,F,F B05,0,F,F B05,0,F,F B05,0,F,F B01,0,T,F B01,0,T,T
bc C00,0,F,F C02,0,F,F C05,0,F,F C05,0,F,F C01,0,T,F C01,0,T,F
c D00,0,F,F D03,0,F,F D03,0,F,F D01,0,T,F D12,1,F,F D12,1,F,F
T init a+ b+ ab- c+ a-

the module, the number of transitions this signal has made,
whether the signal is enabled and ready to fire (EN flag),
and whether computation interference occurs on this signal
as a result of the trace (CI flag). Generation of this tableau
requires the trace information from the verification engine
as well as the behavior of the individual parallel processes
comprising the implementation.

All necessary information for the algorithm can be cal-
culated from the tableau. Computation interference occurs
in the module where the CI flag becomes asserted. This
identifies the process that defines the POC. The signal that
results in the violation is αci. It is normally the last signal
transition in the trace. The enabling signal αen is found by
observing the causality indicated by the signal enabled flag
(c+). Pi and P−1

i are associated with αen (B05 and B01 for
P−1

i and Pi respectively in this example). dynamic(Pi) and
dynamic(P−1

i ) can be derived by searching enabled inputs
and outputs of the agent at Pi and P−1

i .

B. POD Backtracking

The POD/POC pair specifies the paths in a race between
two events. Once the POC has been defined, the POD can be
identified. The algorithm defines the POD by backtracking
the causality of the two events selected in the POC identifi-
cation. In this case αci (a−) and αen (c+) are used. The
trace status tableau provides an easy way to identify the
causal relationship between signal transitions in the trace by
observing the EN flags of the signals. By default, ARTIST
returns the last common causal signal transition as the POD.
To facilitate pre- and post-layout timing validation of these
constraints, a feature that supports user-specified POD is
added.

IV. EXAMPLE

A simple example is used to demonstrate how the algo-
rithm works on a C-Element implemented with three 2-input
NAND and one 3-input NAND gates shown in Fig. 2.

A computation interference error trace {a, b, ab, c, a}
is returned from verification engine. Note that CCS equates
high and low logic levels when their behavior is identical,
as is the case with the specification. There is no separate
identity given to a signal logic level or high or low going
transition. While this reduces the state space and makes this
a more generic tool, it also makes it harder to equate to
circuit state. Thus logic levels are added to the trace in the

TABLE II
UNOPTIMIZED RT CONSTRAINTS AND CORRESPONDING TRACES

VERSUS HAND-GENERATED CONSTRAINTS FOR C-ELEMENT

ARTIST Generated Hand Generated
No. Trace RT Constraint No. RT Constraint
A1 a b ab c a c+ 7→ ac- ≺ a- H1 c+ 7→ ac- ≺ a-
A2 a b ab c b c+ 7→ bc- ≺ b- H2 c+ 7→ bc- ≺ b-
A3 a b ab c ac a ac ab c c+ 7→ bc- ≺ c- H3 c+ 7→ bc- ≺ a-
A4 a b ab c ac a ac ab bc c+ 7→ bc- ≺ ab+ H4 c+ 7→ ac- ≺ b-
A5 a b ab c bc b bc ab c c+ 7→ ac- ≺ c-
A6 a b ab c bc b bc ab ac c+ 7→ ac- ≺ ab+

bottommost row in Table I. The verification engine and the
rest of the tableau do not model logic levels. Instead, they
track the number of transitions each signal has made. Given
the initial signal state, the actual logic level can be easily
calculated.

In this trace the final signal a− results in a computation
interference error. This can be determined from state {B01,
0, T, T} for signal ac in the rightmost column of Table I.
Following are the algorithmic parameters derived from this
trace:

• POC: the gate with computation interference: ac
• αci = a− and αen = c+
• P−1

i = B05 (NANDa01 in Fig. 3)
• Pi = B01 (NANDab1 in Fig. 3)
• dynamic(P−1

i ) = {c+}
• dynamic(Pi) = {ac−, a−}
Fig. 5(b) shows the state graph of this trace example. The

only relative ordering to avoid computation interference in
this case is ac− ≺ a−.

Then backtracking is employed on the above two transi-
tions to find their POD by identifying causalities in the table,
which occur based on the signals that assert the EN flag.

• b+ ⇒ ab− ⇒ c+ ⇒ ac−
• b+ ⇒ ab− ⇒ c+ ⇒ a−
The full causal paths of the relative ordering signals are

listed above. The last common causal signal c+ is the POD.
The full causal path list is included in order to better support
timing driven synthesis, place and route, and validation
algorithms in tools such as Design Compiler and PrimeTime.
These algorithms work on DAGs and use a ‘clock’ pin
for timing references. For asynchronous circuits, one of the
handshake signals (such as req) will typically be defined as
the ‘clock’. If the user defines one of the primary inputs to
the module as the ‘clock’ pin, the algorithm will continue
backtracking to that pin rather than choose the nearest point
of divergence.

Iterating the above procedures creates the RT constraint
set, which is shown along with the corresponding traces in
Table II.

V. COMPARISON

The RT constraints for this example generated by hand
and by ARTIST are compared in terms of efficiency and
quality. The hand-generated RT constraints that are based on
designer’s intuition are shown in Table II in the rightmost
column.
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Fig. 6. Partial state graph to represent a particular trace

A. Efficiency

ARTIST greatly reduces the design and verification time.
A set of over 100 4-phase latch protocols created through
concurrency reduction [22] were verified by ARTIST. The
result of a few selected protocols from this set is listed in
Table III. The program was run on a workstation configured
with Intel R© XeonTM 3.20GHz CPU and 2GB memory. The
average number of RT constraints for a protocol generated
by ARTIST is 10 and the average runtime is 0.15 seconds.

B. Quality

The number of RT constraints is a primary quality metric.
It largely determines work load of pre- and post-layout
timing validation through static timing analysis engines. In
Table II the number of hand-generated RT constraints is 2
fewer than that of ARTIST.

The set of RT constraints generated by ARTIST can
be optimized into a smaller size by removing redundant
constraints. Take a close look at constraints A3 and A4
generated by ARTIST in Table II. Note that constraint A4
covers constraint A3. In Fig. 6, a partial state graph is drawn
to represent the special trace path of constraints A3 and
A4. For simplicity, all other states are omitted. Constraint
A3 truncates the subgraph from c− that is indicated by
the bottom ×. Constraint A4 makes subgraph from ab+
unreachable, which means that constraint A3 will never be
applied for state reduction. Likewise, constraint A5 can be
removed as well. Thus a total of 4 RT constraints from
ARTIST are sufficient make the implementation conform
to the specification - which has the same set size as hand-
generated constraints.

This redundancy occurred due to the iteration order of the
computation interference errors. The traces for RT constraints
A3 and A4 are the same except for αci. At that time, both
αci signals are enabled and can fire at either order. The
verification engine arbitrarily chooses one of them. This

nondeterminism motivates a future work on an optimization
algorithm to minimize the set of RT constraints. One can also
add a simple algorithm to test if any constraint is redundant.
After the implementation conforms to the specification, each
constraint can be removed and the model checking is per-
formed again.

The final set of RT constraints is {A1, A2, A4, A6}. Now
that we have the same number of RT constraints for both
ARTIST generated and hand generated, the working load
on timing validation is the same. A1 and A2 are the same
as H1 and H2. Fig. 6 allows one to compare constraints
A4 and H3. Constraint H3 c+ 7→ bc- ≺ a- cuts the graph
at a−, two transitions after the c+ transition. However, A4
doesn’t cut the graph until transition ac+. Thus the hand
generated constraint has less slack and this is stronger than
the automatically generated constraint from ARTIST. This
shows that there can be different sets of RT constraints
solutions, either stronger or weaker. Stronger constraints may
result in compact set of RT constraints but reduces slack and
may over-constrain the design and induce failure; weaker
constraints guarantees the correctness of the design under
RT constraints but increases the burden of pre- and post-
layout timing validation. Further investigation is required to
determine if there is a significant run-time difference for the
timing driven synthesis, place and route, and validation tools
for differing RT constraint set strengths.

VI. CONCLUSION

Formal verification is the core of template based asyn-
chronous design methodology. Relative timing is a method
of integrating the verification of timing constraints on an
untimed protocol or circuit implementation and converting
them into a format that can be used with traditional CAD
tools [13]. The manual generation of RT constraints is time
consuming and error-prone which reduces the wide adoption
of asynchronous design.

This paper presents an algorithm for the automatic gener-
ation of RT constraints. This algorithm supports RT con-
straints expressed as a point of divergence to point of
convergence pair. This representation explicitly represents
the causal paths in a race between two events. The algorithm
resolves all computation interference errors, which result
when a disabled input can fire. Over 100 asynchronous
controller have been verified by automatically generating
sets of RT constraints that guarantee the circuits function
correctly in both the behavior and timing domains.

This algorithm also supports the feature of allowing for
user-specified input signal for mapping ‘clock’ pin in pre-
and post-layout timing validation. A comparison has been
made between ARTIST generated and hand generated con-
straints in terms of efficiency and quality. It is obvious that
one push of the button of ARTIST is much more efficient
than hand generation which requires the verification engineer
to have good knowledge on the specific circuit implementa-
tion. In the result table, the average runtime for a single RT
constraint generated by ARTIST is 0.015 second which will
take hours or even days by hand. Currently ARTIST may



create more RT constraint than the hand generated sets, but
some of them can be merged based on redundancy and the
strength of the constraints.
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TABLE III
VERIFICATION RESULT FOR PROTOCOL, NUMBER OF RT CONSTRAINTS

GENERATED (UNOPTIMIZED) FROM ARTIST, NUMBER OF STATES OF

SPECIFICATION, AND FOR IMPLEMENTATION.

#Const- ARTIST FVEngine #Spec #Impl
No. Name raints Runtime Runtime States States
1 L2112 R2222 9 0.128 0.850 19 113
2 L3223 R0020 2 0.061 0.527 21 104
3 L2112 R2022 7 0.071 56.658 21 395
4 L3223 R2044 16 0.221 1.644 13 95
5 L2222 R2242 26 0.438 1.492 15 124
6 L1111 R0044 12 0.165 1.699 21 335
7 L2222 R0020 10 0.116 0.959 23 145
8 L2112 R2264 2 0.007 0.063 13 26
9 L2002 R2262 3 0.037 0.187 17 49

10 L1001 R2262 13 0.177 4.422 19 114
11 L3333 R0042 16 0.185 1.393 15 136
12 L3333 R0020 24 0.344 2.526 19 177
13 L3333 R0000 29 0.609 4.816 21 326
14 L3223 R2042 15 0.243 1.042 15 143
15 L3223 R2022 9 0.124 0.506 17 106
16 L3223 R0042 16 0.197 2.325 17 210
17 L3223 R0022 14 0.188 1.424 19 150
18 L3223 R0000 12 0.201 3.475 23 275
19 L3113 R2242 4 0.034 0.199 15 52
20 L3113 R2222 4 0.046 0.233 17 70
21 L3113 R2042 8 0.107 0.723 9 158
22 L3113 R0040 6 0.096 4.079 21 261
23 L3113 R0022 6 0.119 2.979 11 318
24 L3003 R2042 19 0.314 13.952 19 390
25 L3003 R0022 15 0.268 17.619 23 352
26 L2222 R2022 10 0.137 1.136 19 106
27 L2222 R0040 9 0.106 0.633 21 131
28 L2222 R0022 6 0.050 0.319 21 80
29 L2112 R2042 12 0.209 1.822 19 344
30 L2112 R0042 22 0.349 15.833 21 1251
31 L2112 R0020 21 0.227 18.869 25 426
32 L2002 R2022 12 0.158 3.119 23 351
33 L1111 R2042 9 0.131 2.993 21 280
34 L1111 R0022 4 0.060 0.583 25 136
35 L1001 R2042 4 0.048 0.452 23 291
36 L3333 R0044 2 0.015 0.138 13 52
37 L3113 R2044 3 0.028 0.289 15 68
38 L3113 R0044 1 0.010 0.112 17 65
39 L2002 R2222 4 0.070 0.464 21 85
40 L2222 R2222 5 0.032 0.223 17 106
41 L3113 R2022 10 0.126 1.667 19 220
42 L3113 R0042 7 0.100 4.465 19 272
43 L0000 R2242 25 0.931 44.525 23 1152
44 L0000 R2244 6 0.088 0.454 21 125
45 L0000 R2262 12 0.197 2.359 21 340
46 L0000 R4044 4 0.049 7.069 21 515
47 L0000 R4264 18 0.226 1.061 17 173
48 L1001 R2242 6 0.090 0.851 21 203
49 L1001 R2244 12 0.210 1.363 19 200
50 L1001 R4264 7 0.043 0.378 15 127
51 L1111 R2044 11 0.090 0.773 19 130
52 L1111 R2222 7 0.111 0.644 21 135
53 L1111 R2242 4 0.042 0.341 19 91
54 L1111 R2262 5 0.048 0.427 17 79
55 L1111 R2264 4 0.057 0.289 15 56
56 L2002 R2244 4 0.036 0.171 9 49
57 L2002 R2264 4 0.038 0.168 15 45
58 L2002 R4244 4 0.042 0.171 15 50
59 L2112 R2244 4 0.034 0.173 15 52
60 L2112 R2262 16 0.216 2.301 15 137
61 L2222 R0044 6 0.085 0.501 17 169
62 L2222 R2262 12 0.109 0.751 13 90

Average 10 0.150 3.930 18 207


