
3/20/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

1 CE-653 - PTnet Theory and some Algorithms

http://inf-server.inf.uth.gr/courses/CE653/

20/3/2014

Contents

 Fundamental Definitions

 Net, Marking, etc.

 PTnet Classes

 Siphons/Deadlocks and Traps

 Handles

 S-Covers and T-Covers

 An Algorithm for S-Covering FCPTnets

20/3/20142 CE-653 - PTnet Theory and some Algorithms

3/20/2014

2

PTnet Definitions

20/3/2014CE-653 - PTnet Theory and some Algorithms3

 Definition [PTnet]:

 A Place Transition net (or PTnet) is a triple N = (S, T, F), where

 S is the set of places,

 T is the set of transitions (S ∩T = Ø)

 F ≤ (S x T) U (T x S) is the flow relation

 Elements of S U T are called nodes

 pre-set •x of x in (S U T) is given by

 •x = {y in S U T | (y, x) in F}

 post-set x• of x in (S U T) is given by

 x• = {y in S U T | (x, y) in F}

 A Marking M is a function M: SN

 A Marked PTnet <N, M0> is a PTnet with an initial marking

PTnet Definitions

20/3/2014CE-653 - PTnet Theory and some Algorithms4

 A transition t in T is enabled at marking M iff:

 For all p in •t: M(p) > 0

 When t fires at M a new marking M’ is produced:

 M’(p) = M(p) – F(p, t) + F(t, p) (F is characteristic function of F)

 M[t>M’ denotes that M’ is reachable from M by the

occurrence of transition t

 The set of markings reachable from the initial marking M0

by the occurrence of a sequence of transitions

σ = t1t2…tn =is denoted by R(N, M0)

3/20/2014

3

PTnet Definitions – Net Subclasses

20/3/2014CE-653 - PTnet Theory and some Algorithms5

 Definition [S-graph – State Machine]:

 A net N = (S, T, F) is called an S-graph or State Machine, iff each

transition has exactly one input place and one output place

 for all t in T: |•t| = 1 = |t•|

 Definition [T-graph – Signal Transition Graph]:

 A net N = (S, T, F) is called an T-graph or STG, iff each place has

exactly one input transition and one output transition

 for all s in S: |•s| = 1 = |s•|

 Definition [Free-Choice]:

 N is called free-choice iff all p in S such that |p•|>1,

•(p•) = p

 Definition [Asymmetric-Choice]:

 N is called asymmetric-choice (or simple net) iff for every two
places p1, p2, p1•∩ p2• ≠ Ø p1• ≤ p2• or p1• ≥ p2•

PTnet Definitions – Net Subclasses

20/3/2014CE-653 - PTnet Theory and some Algorithms6

3/20/2014

4

PTnet Definitions – Net Subclasses

20/3/2014CE-653 - PTnet Theory and some Algorithms7

 Definition [General PTnet]:

 N is called general PTnet iff for every two places
p1, p2, p1•∩ p2• ≠ Ø p1• ≤ p2• or p1• ≥ p2•

PTnet Definitions - Subnets

20/3/2014CE-653 - PTnet Theory and some Algorithms8

 Definition [S-Components and T-Components]:

 N’ = (S’, T’, F’) is a subnet of N = (S, T, F) iff
S’ ≤ S, T’ ≤ T and F’ = F ∩ ((S’ x T’) U (T’ x S’))

 N’ is an S-component (T-component) of N iff

N’ is a strongly connected S-graph (T-graph) and|
T’ = •S’∩S’• (S’ = •T’∩T’•).

 N’ is generated by a set X’ ≤ S ∩T iff:

S’ = (X’ ∩ S) U •(X’ ∩T) U (X’ ∩T)•

T’ = (X’ ∩T) U •(X’ ∩ S) U (X’ ∩ S)•

3/20/2014

5

PTnet Definitions – Behavioural Properties

20/3/2014CE-653 - PTnet Theory and some Algorithms9

 Definition [Bounded Net]:

 A marked net (N, M0) is bounded iff:

 for all p in S, there exists k in N, s.t. for all markings M
reachable from M0: M(p) ≤ k

 Definition [Structurally Bounded Net]:

 A net N is structurally bounded iff it is bounded for any initial
marking M0.

 Definition [Liveness]:

 A transition t in T is live in (N, M0) iff:

 For all M in R(N, M0) there exists M’ in R(N, M): M’ enables t.

 The marked net (N, M0) is live iff all t in T are live.

 N is structurally live iff there exists initial marking M0 such that
(N, M0) is live

PTnet Definitions – Graph Properties

20/3/2014CE-653 - PTnet Theory and some Algorithms10

 Definition [Path]:

 A path of a net N=(S, T, F) is an alternating sequence

π = (x0f0x1…fr-1xr) of elements X = S U T such that:

for all I, 0 ≤ i ≤ r – 1: fi = (xi, xi+1) in F

 A path is elementary iff all xi are distinct except x0 and xr

 A circuit is a path such that x0 = xr

 A circuit is elementary iff it is elementary as a path

 Definition[Alternating Circuit]

 Let N = (S, T, F) be a net. A circuit Γ of N (not necessarily

elementary) is an alternating circuit iff for all arcs in Γ of the

form (p, t) the equality •t = {p} holds

3/20/2014

6

PTnet Definitions - Subnets

20/3/2014CE-653 - PTnet Theory and some Algorithms11

 Definition [Well-formed Net]:

 A Net N is well-formed if there exists a marking M0 of N

such that (N, M0) is a live and bounded system

 Thus, the net is not necessarily live at the current

marking…

 Theorem [S-Components and Well-Formed Nets]:

 Well formed Nets are covered by S-Components

PTnet Definitions – Siphons and Traps

20/3/2014CE-653 - PTnet Theory and some Algorithms12

 Definition [Siphons (Deadlocks) and Traps]:

 Let N = (S, T, F) be a net.

 D ≤ S is a siphon (deadlock) iff D ≠ Ø and •D ≤ D•

 Θ ≤ S is a trap iff Θ ≠ Ø and Θ• ≤ •Θ

 A siphon (deadlock) or trap is minimal iff

there exists no deadlock or trap D’ such that D’ ≤ D

 A siphon (deadlock) or trap is strongly-connected iff

the subnet generated by D U •D is strongly connected

3/20/2014

7

PTnet Definitions – Siphons and Traps

20/3/2014CE-653 - PTnet Theory and some Algorithms13

 Theorem[Minimal Siphon for General PTnets]

 Let N = (S, T, F) be a net, D ≤ S a siphon of N and ND the subnet of N

generated by D U •D.

 D is minimal iff there exists a circuit Γ in ND (not necessarily elementary)

that passes through all places of D such that for every transition t in Γ
either:

 |•t ∩ D| = 1 (if net is FC) or

 |•t ∩ D| ≥ 2 and the places of (•t ∩ D) belong to an

alternating circuit DD

p1 p2

PTnet Definitions – Siphons and Traps

20/3/2014CE-653 - PTnet Theory and some Algorithms14

 The set {s1, s2} is a siphon; the set {s3, s4} is a trap

3/20/2014

8

PTnet Definitions – Graph Properties

20/3/2014CE-653 - PTnet Theory and some Algorithms15

 Definition [Handle]:

 Let N’ be a partial subnet of N.

 An elementary path π = (x0f0x1…fn-1xn) is a handle of N’

iff π ∩ N’ = {x0, xn}

…
x0 xn

N-N’ N’

PTnet Examples

20/3/2014CE-653 - PTnet Theory and some Algorithms16

3/20/2014

9

PTnet Examples - 1

20/3/2014CE-653 - PTnet Theory and some Algorithms17

s1 s2

t2

t1

t3 s3

t4

t5

s2

t1

t2

s1
t3

s4

s4

t4

B’, L
B, L’

B = 2

1. 2.

PTnet Examples - 2

20/3/2014CE-653 - PTnet Theory and some Algorithms18

B’, L’

4. 5.

B’, L

3/20/2014

10

PTnet Examples - 3

20/3/2014CE-653 - PTnet Theory and some Algorithms19

6.

B’, L’ B, L

7.

Minimal Siphons and S-Components

– Esparsa/Kemper Algorithm

20/3/2014CE-653 - PTnet Theory and some Algorithms20

3/20/2014

11

Get Handle Algorithm

20/3/2014CE-653 - PTnet Theory and some Algorithms21

 N is strongly-connected FC-Net with S, S’ ≤ P U T

 S ∩ S’ = Ø, p in S, t in S’, t is in •p, Outputs handle H = (x0, x1, …, xn-2, t, p) or 0

 Num(v) values:

 num(v) == -1 v in S, start point of handle, num(v) ==0 v in S’, not visited before

 num(v) > 0 v has been visited before and either (a) no handle was found or

(b) has been reached again. In both cases v cannot belong to the handle

Algorithm Get_Handle(S, S’, F, t, p) Algorithm handle-DFS(v)

// S ∩ S’ = ø, p in S, t in S’ and t is in •p //

i = 1; Stack = empty;

forall x in S’ num(x) = 0;

forall x in S num(x) = -1;

push(Stack, p);

if (handle-DFS(t) == 0)

{

return NULL;

printf(“No handle exists\n”);

}

else

{

return Stack; // Stack contains Handle //

}

num(v) = i; i = i + 1;

push(Stack, v);

forall (w in •v)

if (num(w) == -1) // start node of handle //

{

push(Stack, w);

return 1;

}

forall (w in •v)

if (num(w) == 0) // new non-start node //

if (dfs(w) == 1) return 1;

pop(Stack, v);

return 0;

Get Minimal Siphon (Deadlock) Algorithm

20/3/2014CE-653 - PTnet Theory and some Algorithms22

 N = (P, T, F) strongly-connected FC-Net with p in P

 D is minimal deadlock D ≤ P, containing P

 To be an S-Component, minimal deadlock D must satisfy:

 It is strongly connected

 For all t in D: |•t∩D| = |t•∩D| = 1

Algorithm Get_Minimal_Deadlock(P, T, F, p, D, Td)

Pc = {p}; Tc = 0; // current sets of Places and Transitions

while (there exists p’ in Pc, there exists t in •p’ and t not in Tc)

{

H = Get_Handle((Pc U Tc), (P U T)-(Pc U Tc), F, p’, t);

Pc = Pc U (H ∩ P); // discard multiple instances of places

Tc = Tc U (H ∩ T); // and transitions

}

D = Pc; Td = Tc;

return D, Tc; // return Deadlock places and transitions

3/20/2014

12

S-Covering - Example

20/3/2014CE-653 - PTnet Theory and some Algorithms23

 Original Net: s1 s2

s3 s4 s5 s6

s7 s8

t1 t2

t3 t4 t5 t6

t7

S-Covering – Example – S-Cover

20/3/2014CE-653 - PTnet Theory and some Algorithms24

s1

s3 s5

s7

t1 t2

t3 t4 t5

t7

s2

s4 s6

s8

t2

t4 t6

t7

t1

3/20/2014

13

S-Cover for non Well-formed Net

20/3/2014CE-653 - PTnet Theory and some Algorithms25

s0

t0

t1

s4

t2

t3

s1

s3

s0

t0

t1
s1

s0

t0

t1

s4

t2

t3

s1

s3

Minimal Siphons – Cordone et. al

(PIPE2) Algorithms

20/3/2014CE-653 - PTnet Theory and some Algorithms26

3/20/2014

14

Rules for Siphon Extraction/Minimisation

20/3/2014CE-653 - PTnet Theory and some Algorithms27

 Definition [PTnet Reduction Function RED]

 Let G = (P, T, F) be a PTnet and ~P ≤ P.

 The reduction function RED is defined as follows:

 ~G = red(G, ~P), where the reduced net ~G = (~P, ~T, ~F) is

defined by:

 ~T = {t in T | (•t U t•) ∩ ~P ≠Ø}

 ~F(p, t) = F(p, t), ~F(t, p) = F(t, p), forall p in ~P, t in ~T

 Rule 1 [place subset reduction]

 Let G = (P, T, F) be PTnet and ~P ≤ P

 Set of siphons of G contained in ~P is the same as

siphons of reduced net ~G = red(G, ~P)

Rules for Siphon Extraction/Minimisation

20/3/2014CE-653 - PTnet Theory and some Algorithms28

 Places with empty subset and places with all net

transitions as post-set are special cases!

 Rule 2 [empty subset places]

 Let G = (P, T, F) be PTnet and _P ≤ P such that •_P = Ø

 Then, minimal siphons of G are minimal siphons of

~G = red(G, P - _P), plus the individual places in _P

 Rule 3 [all net transitions in post-set places]

 Let G = (P, T, F) be a PTnet such that P• = T

 Then P is a siphon

3/20/2014

15

Rules for Siphon Extraction/Minimisation

20/3/2014CE-653 - PTnet Theory and some Algorithms29

 Places in post-set of transitions with empty pre-set
cannot belong to a siphon and can be eliminated

 If all transitions are in post-set of some place, T = P• then
P is a siphon (see Rule 3)

 Rule 4 [trap places elimination]

 Let G = (P, T, F) be a PTnet and let _T ≤ T be such that

 •_T = Ø. Then, if _P = _T•, G has same siphons as

 ~G = red(G, P - _P)

 Rule 5 [redundant places]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 If there exists _p in S: for all t in _p• either
(t• ∩ S) > {_p} or
(•t ∩ S) = Ø, then S – {_p} is also a siphon of G

Rules for Siphon Extraction/Minimisation

20/3/2014CE-653 - PTnet Theory and some Algorithms30

 Rule 6 [Siphon Minimality]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 S is minimal for G, iff all reduced nets:

 ~Gp = red(G, S-{p}) for all p in S do not contain siphons

 Rule 7 [Siphon Decomposition into Smaller Siphons]

 Let G = (P, T, F) be a PTnet and ~P = {p1, p2, …, pn} ≤ P

 The set of Siphons of G NOT containing ~P is the Union

where Si is the set of siphons of the reduced net:

~Gi = red(G, P – {pi}), i.e. containing the n places except i.

n

i iS1

3/20/2014

16

Find a Siphon - Algorithm

20/3/2014CE-653 - PTnet Theory and some Algorithms31

 ~P is a set of places (one or more) which should be

contained in the siphon

 Elimination based on Rule 4 (trap places)

Algorithm Find_Siphon(G, ~P, P)

while (1)

{

if ((exists p in P ∩ ~P) && (exists t in •p such that t not in P•))

{

S = Ø; // Rule 4 //

return;

}

if ((exists p in P - ~P) && (exists t in •p such that t not in P•))

G = red(G, P – {p}); // modifies local P and G//

else

{

S = P;

return;

}

}

Algorithm Find_Min_Siphon(G, ~S, ~P, P)

while (exists p in (P - ~P) ∩ ~S such that (•t ∩ ~S) < {p} or

(t• ∩ ~S) = Ø) // Rule 5 //

~S = ~S – {p};

while (1) {

if (~S < P) G = red(G, ~S); Pnew = P - ~P;

if (Pnew == Ø)

{

S = S~;

return; // found minimal siphon //

}

forall (p in Pnew) // find smaller siphons of Pnew //

{

Gp = red(G, P – {p}); Pnew = Pnew – p;

Sp = Find_Siphon(Gp, ~P, P);

if (Sp != Ø)

{

~S = Sp;

break; // found smaller siphon – to outer loop //

}

}

}

Find a Minimal Siphon - Algorithn

20/3/2014CE-653 - PTnet Theory and some Algorithms32

 Computes one minimal siphon S ≤ ~S and containing ~P

3/20/2014

17

Algorithm Find_All_Min_Siphons(G, ~P, P)

SS = Ø; // Minimal Siphon Set //

while ((~P == Ø) && (exists p in P such that •p = Ø)) {

S = {p}; SS = SS U {S}; G = red(G, P – {p}); // Rule 2 //

}

~S = Find_Siphon(G, ~P, P);

if (~S == Ø) return;

S = Find_Min_Siphon(G, ~S, ~P, P);

SS = SS U S;

Pnew = S - ~P; Pold = Ø;

if (Pnew == Ø) return;

forall (p in Pnew) {

Gp = red(G, P – {p});

SSp = Find_All_Min_Siphons(Gp, ~P U Pold, P); // Rule 7 //

SS = SS U SSp;

Pnew = Pnew – {p}; Pold = Pold U {p};

}

Find all Minimal Siphons - Algorithn

20/3/2014CE-653 - PTnet Theory and some Algorithms33

 Find_All_Min_Siphons(G, Ø) returns all minimal siphons of G

 Worst-case complexity is O(2n)

 Due to Recursive call for Rule 7

