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PTnet Definitions
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 Definition [PTnet]:

 A Place Transition net (or PTnet) is a triple N = (S, T, F), where

 S is the set of places,

 T is the set of transitions (S ∩T = Ø)

 F ≤ (S x T) U (T x S) is the flow relation

 Elements of S U T are called nodes

 pre-set  •x of x in (S U T) is given by 

 •x = {y in S U T | (y, x) in F}

 post-set  x• of x in (S U T) is given by 

 x• = {y in S U T | (x, y) in F}

 A Marking M is a function M: SN

 A Marked PTnet <N, M0> is a PTnet with an initial marking

PTnet Definitions
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 A transition t in T is enabled at marking M iff:

 For all p in •t: M(p) > 0

 When t fires at M a new marking M’ is produced:

 M’(p) = M(p) – F(p, t) + F(t, p) (F is characteristic function of F)

 M[t>M’ denotes that M’ is reachable from M by the 

occurrence of transition t

 The set of markings reachable from the initial marking M0 

by the occurrence of a sequence of transitions 

σ = t1t2…tn =is denoted by R(N, M0)
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PTnet Definitions – Net Subclasses
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 Definition [S-graph – State Machine]:

 A net N = (S, T, F) is called an S-graph or State Machine, iff each 

transition has exactly one input place and one output place

 for all t in T: |•t| = 1 = |t•|

 Definition [T-graph – Signal Transition Graph]:

 A net N = (S, T, F) is called an T-graph or STG, iff each place has 

exactly one input transition and one output transition

 for all s in S: |•s| = 1 = |s•|

 Definition [Free-Choice]:

 N is called free-choice iff all p in S such that |p•|>1,

•(p•) = p

 Definition [Asymmetric-Choice]:

 N is called asymmetric-choice (or simple net) iff for every two
places p1, p2, p1•∩ p2• ≠ Ø  p1• ≤ p2• or p1• ≥ p2•

PTnet Definitions – Net Subclasses

20/3/2014CE-653 - PTnet Theory and some Algorithms6



3/20/2014

4

PTnet Definitions – Net Subclasses
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 Definition [General PTnet]:

 N is called general PTnet iff for every two places
p1, p2, p1•∩ p2• ≠ Ø  p1• ≤ p2• or p1• ≥ p2•

PTnet Definitions - Subnets
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 Definition [S-Components and T-Components]:

 N’ = (S’, T’, F’) is a subnet of N = (S, T, F) iff
S’ ≤ S, T’ ≤ T and F’ = F ∩ ((S’ x T’) U (T’ x S’))

 N’ is an S-component (T-component) of N iff

N’ is a strongly connected S-graph (T-graph) and|
T’ = •S’∩S’• (S’ = •T’∩T’•).

 N’ is generated by a set X’ ≤ S ∩T iff:

S’ = (X’ ∩ S) U •(X’ ∩T) U (X’ ∩T)•

T’ = (X’ ∩T) U •(X’ ∩ S) U (X’ ∩ S)•
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PTnet Definitions – Behavioural Properties
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 Definition [Bounded Net]:

 A marked net (N, M0) is bounded iff:

 for all p in S, there exists k in N, s.t. for all markings M 
reachable from M0: M(p) ≤ k

 Definition [Structurally Bounded Net]:

 A net N is structurally bounded iff it is bounded for any initial 
marking M0.

 Definition [Liveness]:

 A transition t in T is live in (N, M0) iff:

 For all M in R(N, M0) there exists M’ in R(N, M): M’ enables t.

 The marked net (N, M0) is live iff all t in T are live.

 N is structurally live iff there exists initial marking M0 such that 
(N, M0) is live

PTnet Definitions – Graph Properties
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 Definition [Path]:

 A path of a net N=(S, T, F) is an alternating sequence

π = (x0f0x1…fr-1xr) of elements X = S U T such that: 

for all I, 0 ≤ i ≤ r – 1: fi = (xi, xi+1) in F

 A path is elementary iff all xi are distinct except x0 and xr

 A circuit is a path such that x0 = xr

 A circuit is elementary iff it is elementary as a path

 Definition[Alternating Circuit]

 Let N = (S, T, F) be a net. A circuit Γ of N (not necessarily 

elementary) is an alternating circuit iff for all arcs in Γ of the 

form (p, t) the equality •t = {p} holds
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PTnet Definitions - Subnets
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 Definition [Well-formed Net]:

 A Net N is well-formed if there exists a marking M0 of N 

such that (N, M0) is a live and bounded system

 Thus, the net is not necessarily live at the current 

marking…

 Theorem [S-Components and Well-Formed Nets]:

 Well formed Nets are covered by S-Components

PTnet Definitions – Siphons and Traps
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 Definition [Siphons (Deadlocks) and Traps]:

 Let N = (S, T, F) be a net. 

 D ≤ S is a siphon (deadlock) iff D ≠ Ø and •D ≤ D•

 Θ ≤ S is a trap iff Θ ≠ Ø and Θ• ≤ •Θ

 A siphon (deadlock) or trap is minimal iff

there exists no deadlock or trap D’ such that D’ ≤ D

 A siphon (deadlock) or trap is strongly-connected iff

the subnet generated by D U •D is strongly connected
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PTnet Definitions – Siphons and Traps
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 Theorem[Minimal Siphon for General PTnets]

 Let N = (S, T, F) be a net, D ≤ S a siphon of N and ND the subnet of N 

generated by D U •D.

 D is minimal iff there exists a circuit Γ in ND (not necessarily elementary) 

that passes through all places of D such that for every transition t in Γ
either:

 |•t ∩ D| = 1 (if net is FC) or

 |•t ∩ D| ≥ 2 and the places of (•t ∩ D) belong to an 

alternating circuit DD

p1 p2

PTnet Definitions – Siphons and Traps
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 The set {s1, s2} is a siphon; the set {s3, s4} is a trap
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PTnet Definitions – Graph Properties
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 Definition [Handle]:

 Let N’ be a partial subnet of N. 

 An elementary path π = (x0f0x1…fn-1xn) is a handle of N’

iff π ∩ N’ = {x0, xn}

…
x0 xn

N-N’ N’

PTnet Examples
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PTnet Examples - 1
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B = 2

1. 2.

PTnet Examples - 2
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PTnet Examples - 3
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6.

B’, L’ B, L

7.

Minimal Siphons and S-Components 

– Esparsa/Kemper Algorithm

20/3/2014CE-653 - PTnet Theory and some Algorithms20
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Get Handle Algorithm
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 N is strongly-connected FC-Net with S, S’ ≤ P U T

 S ∩ S’ = Ø, p in S, t in S’, t is in •p, Outputs handle H = (x0, x1, …, xn-2, t, p) or 0

 Num(v) values:

 num(v) == -1  v in S, start point of handle, num(v) ==0   v in S’, not visited before

 num(v) > 0  v has been visited before and either (a) no handle was found or

(b) has been reached again. In both cases v cannot belong to the handle

Algorithm Get_Handle(S, S’, F, t, p) Algorithm handle-DFS(v)

// S ∩ S’ = ø, p in S, t in S’ and t is in •p //

i = 1; Stack = empty; 

forall x in S’ num(x) = 0; 

forall x in S num(x) = -1; 

push(Stack, p);

if (handle-DFS(t) == 0)

{

return NULL;

printf(“No handle exists\n”);

}

else

{

return Stack; // Stack contains Handle //

}

num(v) = i; i = i + 1;

push(Stack, v);

forall (w in •v)

if (num(w) == -1) // start node of handle //

{

push(Stack, w);

return 1;

}

forall (w in •v)

if (num(w) == 0) // new non-start node //

if (dfs(w) == 1) return 1;

pop(Stack, v);

return 0;

Get Minimal Siphon (Deadlock) Algorithm
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 N = (P, T, F) strongly-connected FC-Net with p in P

 D is minimal deadlock D ≤ P, containing P

 To be an S-Component, minimal deadlock D must satisfy:

 It is strongly connected

 For all t in D: |•t∩D| = |t•∩D| = 1

Algorithm Get_Minimal_Deadlock(P, T, F, p, D, Td)

Pc = {p}; Tc = 0; // current sets of Places and Transitions

while (there exists p’ in Pc, there exists t in •p’ and t not in Tc)

{

H = Get_Handle((Pc U Tc), (P U T)-(Pc U Tc), F, p’, t);

Pc = Pc U (H ∩ P); // discard multiple instances of places 

Tc = Tc U (H ∩ T); // and transitions

}

D = Pc; Td = Tc;

return D, Tc; // return Deadlock places and transitions
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S-Covering - Example
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 Original Net: s1 s2

s3 s4 s5 s6

s7 s8

t1 t2

t3 t4 t5 t6

t7

S-Covering – Example – S-Cover
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S-Cover for non Well-formed Net
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Minimal Siphons – Cordone et. al 

(PIPE2) Algorithms
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Rules for Siphon Extraction/Minimisation
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 Definition [PTnet Reduction Function RED]

 Let G = (P, T, F) be a PTnet and ~P ≤ P.

 The reduction function RED is defined as follows:

 ~G = red(G, ~P), where the reduced net ~G = (~P, ~T, ~F) is

defined by:

 ~T = {t in T | (•t U t•) ∩ ~P ≠Ø}

 ~F(p, t) = F(p, t), ~F(t, p) = F(t, p), forall p in ~P, t in ~T

 Rule 1 [place subset reduction]

 Let G = (P, T, F) be PTnet and ~P ≤ P

 Set of siphons of G contained in ~P is the same as

siphons of reduced net ~G = red(G, ~P)

Rules for Siphon Extraction/Minimisation
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 Places with empty subset and places with all net 

transitions as post-set are special cases!

 Rule 2 [empty subset places]

 Let G = (P, T, F) be PTnet and _P ≤ P such that •_P = Ø

 Then, minimal siphons of G are minimal siphons of

~G = red(G, P - _P), plus the individual places in _P

 Rule 3 [all net transitions in post-set places]

 Let G = (P, T, F) be a PTnet such that P• = T

 Then P is a siphon
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Rules for Siphon Extraction/Minimisation
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 Places in post-set of transitions with empty pre-set 
cannot belong to a siphon and can be eliminated

 If all transitions are in post-set of some place, T = P• then 
P is a siphon (see Rule 3)

 Rule 4 [trap places elimination]

 Let G = (P, T, F) be a PTnet and let _T ≤ T be such that

 •_T = Ø. Then, if _P = _T•, G has same siphons as

 ~G = red(G, P - _P)

 Rule 5 [redundant places]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 If there exists _p in S: for all t in _p• either
(t• ∩ S) > {_p} or 
(•t ∩ S) = Ø, then S – {_p} is also a siphon of G

Rules for Siphon Extraction/Minimisation
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 Rule 6 [Siphon Minimality]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 S is minimal for G, iff all reduced nets:

 ~Gp = red(G, S-{p}) for all p in S do not contain siphons

 Rule 7 [Siphon Decomposition into Smaller Siphons]

 Let G = (P, T, F) be a PTnet and ~P = {p1, p2, …, pn} ≤ P

 The set of Siphons of G NOT containing ~P is the Union

where Si is the set of siphons of the reduced net:

~Gi = red(G, P – {pi}), i.e. containing the n places except i.


n

i iS1
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Find a Siphon - Algorithm
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 ~P is a set of places (one or more) which should be 

contained in the siphon

 Elimination based on Rule 4 (trap places)

Algorithm Find_Siphon(G, ~P, P)

while (1)

{

if ((exists p in P ∩ ~P) && (exists t in •p such that t not in P•))

{

S = Ø;                              // Rule 4 //

return;

}

if ((exists p in P - ~P) && (exists t in •p such that t not in P•))

G = red(G, P – {p});                // modifies local P and G//

else

{

S = P;

return;

}

}

Algorithm Find_Min_Siphon(G, ~S, ~P, P)

while (exists p in (P - ~P) ∩ ~S such that (•t ∩ ~S) < {p} or

(t• ∩ ~S) = Ø)     // Rule 5 //

~S = ~S – {p};

while (1) {

if (~S < P) G = red(G, ~S); Pnew = P - ~P;

if (Pnew == Ø)

{

S = S~;

return;                          // found minimal siphon //

}

forall (p in Pnew)                   // find smaller siphons of Pnew //

{

Gp = red(G, P – {p}); Pnew = Pnew – p;

Sp = Find_Siphon(Gp, ~P, P);

if (Sp != Ø) 

{ 

~S = Sp;   

break; // found smaller siphon – to outer loop //

}

}

}

Find a Minimal Siphon - Algorithn
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 Computes one minimal siphon S ≤ ~S and containing ~P



3/20/2014

17

Algorithm Find_All_Min_Siphons(G, ~P, P)

SS = Ø; // Minimal Siphon Set //

while ((~P == Ø) && (exists p in P such that •p = Ø)) {

S = {p}; SS = SS U {S}; G = red(G, P – {p});             // Rule 2 //

}

~S = Find_Siphon(G, ~P, P);

if (~S == Ø) return;

S = Find_Min_Siphon(G, ~S, ~P, P);

SS = SS U S;

Pnew = S - ~P; Pold = Ø;

if (Pnew == Ø) return;

forall (p in Pnew) {

Gp = red(G, P – {p});

SSp = Find_All_Min_Siphons(Gp, ~P U Pold, P);            // Rule 7 //

SS = SS U SSp;

Pnew = Pnew – {p}; Pold = Pold U {p};

}

Find all Minimal Siphons - Algorithn
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 Find_All_Min_Siphons(G, Ø) returns all minimal siphons of G

 Worst-case complexity is O(2n)

 Due to Recursive call for Rule 7


