
3/5/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

1 CE-653 - Handshake Templates

Implementation

http://inf-server.inf.uth.gr/courses/CE653/

5/3/2014

Contents

5/3/2014CE-653 - Handshake Templates

Implementation

2

 This Slide Set

 Hanshake Channel Elements Implementations

 Simple 4-phase Templates

 Toggle Element (Micropipelines)

 2-phase to 4-phase Converter

 4-phase to 2-phase Converter

 Sequencer

 Parallel

 Transferer

 Merge Element

 Split Element

3/5/2014

2

Simple 4-phase Templates

5/3/2014CE-653 - Handshake Templates

Implementation

3

 4-phase fork, join

 4-phase merge

 4-phase split (demux)

 NOTE:

 Mutually exclusive signals must always be dualMutually exclusive signals must always be dual--rail encodedrail encoded

y.t

z.t
x.t

y.f

z.f
x.f

C
y-ack
z-ack

x-ackC
y-ack
z-ack

x-ack

y-req

z-req
x-req

y

z
x

Fork

y

z
x

y-ack
z-ack

x-ack

Cy-req
z-req

x-req

y z1
x z0

y-ack
z-ack

x-ack

x.t z0.t
x.f z0.f

y.t z1.t
y.f z1.f

COMPONENT 4-phase bundled data 4-phase dual-rail

Join

(wait for all)

y
z

x

4-Phase Fork-Join

5/3/2014CE-653 - Handshake Templates

Implementation

4

3/5/2014

3

4-Phase Merge

5/3/2014CE-653 - Handshake Templates

Implementation

5

COMPONENT 4-phase bundled data 4-phase dual-rail

y
z

x y
z

x

y-req

x-req

y-ack
z-ack

x-ack

y-req
z-req

x-req

C

C

z.t

y-ack
z-ack

x-ack

C

x.t

z.f
y.f

y.t

x.f

C

CD

CD

Merge

(wait for one)

4-Phase Split

5/3/2014CE-653 - Handshake Templates

Implementation

6

y-ack
z-ack

x-ack

y-req

z-req

x-req

C

C
ctl.f

ctl.t

ctl-ack

z
x

y

ctl

0

1

y

zx

3/5/2014

4

Toggle Element Specification

5/3/2014CE-653 - Handshake Templates

Implementation

7

 An event is the rise or fall of the input

 A fall event must follow a rise event

 Thus, operation is as follows:

 Input rises first output rises

 Input falls second output rises

 Input rises first output falls

 Input falls second output falls, … etc.

Toggle Element PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

8

 Need 2 choice places per output channel!

3/5/2014

5

Handshake Protocol Converters

5/3/2014CE-653 - Handshake Templates

Implementation

9

 2-phase to 4-phase OR 4-phase to 2-phase

 Obvious specifications

H/SH/S

ProtocolProtocol

ConverterConverter

Rin

Ain

Rout

Aout

DataData

4-Phase to 2-Phase PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

10

 Causality Relationships

 Rin+ causes

Rout+ OR Rout-

 Aout+ OR Aout-

cause Ain-

3/5/2014

6

4-Phase to 2-Phase PTnet – S-Covers

5/3/2014CE-653 - Handshake Templates

Implementation

11

 3 SMs in

S-Cover

 Can you

identify

where

they come

from?

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

12

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

3/5/2014

7

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

13

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

14

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

3/5/2014

8

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

15

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

16

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

3/5/2014

9

2-Phase to 4-Phase PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

17

 Causality Relationships

 Rin+ OR Rin-

cause Rout+

 Aout- causes

Ain+ OR Ain-

Sequencer

CE-653 - Handshake Templates

Implementation

18

 Handshakes on S1 first then S2
 Used to sequence operations associated with S1 and S2

 Both handshakes enclosed in handshake on R
 Initiated by request on R

 Terminated by acknowledgement of R

Rreq

Rack

S1req

S1ack

S2req

S2ack

SEQS1 S2

R

5/3/2014

3/5/2014

10

Sequencer Block - PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

19

 PTnet is FSM

 No concurrency

Sequencer Block – Implementation

5/3/2014CE-653 - Handshake Templates

Implementation

20

 S1req identical to Rreq

 S2req is join of Rreq, S1ack

 Rack is join of S1ack, S2ack

 2 C Elements  2 FSMs

 where are these FSMs in Sequencer’s specification?

 are they concurrent, or sequential?

Rreq S1req

S2req

S1ack

CC

CCRack
S2ack

3/5/2014

11

Parallel

Rreq

Rack

P1req

P1ack

P2req

P2ack

PARP1 P2

R

• Handshakes on P1 in parallel with P2
• Used to execute operations associated with P1 and P2 in parallel

• Both handshakes enclosed in handshake on R
• Initiated by request on R
• Terminated by acknowledgement of R

• Both P1 and P2 must complete before R is acknowledged

21 CE-653 - Handshake Templates

Implementation

5/3/2014

Parallel Block - PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

22

 Concurrency

between two

parallel

handshakes

 You need two

places after

 P1ack+, P2ack+

 P1ack-, P2ack-

 Join, not return

from choice!

3/5/2014

12

Parallel Block - Implementation

5/3/2014CE-653 - Handshake Templates

Implementation

23

 Rreq simply forks to two requests

 Ack is join of acknowledgements

 1 C Element  1 FSM

 What of the concurrency in original Ptnet?

 Where is it present in the single FSM?

Rreq
P1req

P2req

P1ack
CCRack

P2ack

Transferer

CE-653 - Handshake Templates

Implementation

24

 Purpose

 Pulls data from its input channel and pushes it onto its output channel

 All enclosed in handshake on request channel R

 Operation

 Waits for a request on its passive nonput port

 Then initiates a handshake on its pull input port

 The handshake on the pull input channel is relayed to the push output channel

 Finally, it completes the handshaking on the passive nonput channel

→

R

I O

Rreq

Ireq

Iack

Oreq

Oack

Rack T1

T1

T1

T1

T1

T2

T2

T2

T2

T2

5/3/2014

3/5/2014

13

Transferer PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

25

 No difference to

Sequencer…

Conditional and Non-Linear Pipeines

CE-653 - Handshake Templates

Implementation

26

 MERGE
 Wait for token on S.

 Depending on value,
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S,
send copy of token on A to O1 or O2

(a) (b)

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

5/3/2014

3/5/2014

14

Timing Diagram of Merge

CE-653 - Handshake Templates

Implementation

27

 Assumptions (in this example)

 full-buffer two-phase handshaking

 dual-rail select signal

 Functionality

 Token on A consumed first

 After token on S = 0

 I.e., S0 changes

 Token on B stalled until consumed

second

 After token on S = 1

 I.e., Once S1 changes

 Result: two tokens on O

 First = Oreq+

 Second = Oreq-

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

5/3/2014

Merge PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

28

 Why is it so
complex?

 PTnet must
include:
 2-phase ring for
Oreq/Oack

 DR choice

 DR return from
choice

 Oreq*
dependence to
A/Back*

 DR return from
choice
dependence on
A/Back*

3/5/2014

15

Variables

(a) (b)

VARW R

VARW R

R/W

• Purpose
• Store state of some program variable
• W is a write port and R is a read port

• Type (a)
• R and W are assumed to be mutually exclusive

• Type (b)
• Waits for token on R/W 1-bit port
• Dependent on value…

• Waits for request on W and store data value received or
• Generates a token on R with the previously stored data value

29 CE-653 - Handshake Templates

Implementation

5/3/2014

Multi-Bit Variables

• Functionality

• Store multi-bit state of some program variable

• W is a write port and R is a read port

• Addr is the address port

• R/W controls read/write

• C is simultaneous read and write to different addresses

(a) (b)

SP

MEM

W R

R/W

Addr

DP

MEM

W R

RAWA

R/W/C

30 CE-653 - Handshake Templates

Implementation

5/3/2014

3/5/2014

16

Channel-Based FSM

• Purpose

• Implement FSM based on channels

• State

• Stored in token in Buffers

• Consumed every “cycle”

• New state generated by Next State Logic

• Output

• New output token generated in response
to input token and current state

• Copy cells needed to route input tokens
and state to both NSL and OL.

• Buffers

• One of the buffers must be token buffer,
reflecting initial state of FSM

I Next

State

Logic

Output

Logic

Buffers

C

C

O

31 CE-653 - Handshake Templates

Implementation

5/3/2014

Basic 2-way Arbiter

CE-653 - Handshake Templates

Implementation

32

 Purpose
 Used to control access to shared resource

 Approach
 Acknowledge handshake on request port that

arrives first, granting access
 Requires four-phase protocol

 winner maintains mutually-exclusive access of
resource until it resets request

 Caveat
 Make take an exponential amount of time to

determine who came first when requests arrive
very close together

 Sometimes called slackless arbiter

R1

R2

R1req

R1ack

R2req

R2ack

R1 has

access

R2 has

access

5/3/2014

3/5/2014

17

Basic 2-way Arbiter - 1

5/3/2014CE-653 - Handshake Templates

Implementation

33

 Consists of an SR latch and a Metastability Filter

 G1 – Grant 1, G2 – Grant 2

SR Latch

R1R2

G1 G2

M
U

T
E

X

R2

R1 G1

G2

x1x2

Metastability

Filter

Basic 2-way Arbiter - 2

5/3/2014CE-653 - Handshake Templates

Implementation

34

 MUTEX Cell and Handshaking Logic

 C gates used for Acknowledgements

A
R

B
IT

E
R

R1

R0
A0

A1

R2
A2

R1

A1

R2

A2

M
U

T
E

X

C

R0

A0

C

G1

G2

Y1

Y2

3/5/2014

18

Slackless Tree Arbiters

CE-653 - Handshake Templates

Implementation

35

 Slackless Tree Arbiter cell

 Used to build multi-way arbiters

 Approach

 Add T channel to normal arbiter

 Delay ack of request channels until T channel acknowledged

 Can send request on T channel as soon as any request arrives

R1
T

R2

R1
T

R2

R1
T

R2

R1

R2

4-way Slackless Tree Arbiter

5/3/2014

2-way (Pipelined) Arbiter

CE-653 - Handshake Templates

Implementation

36

 Purpose

 Used to control access to shared resource in a pipelined design

 Approach

 Acknowledge of request not used to signify winner

 Instead, additional W channel used to identify who won

 Handshake on W simultaneously with acknowledging winning request

 Note

 Still may take exponential time

 In principle, this can use a two or four-phase protocol

 Arbiter + Pipeline Buffers all in one

R1
W

R2

5/3/2014

3/5/2014

19

Pipelined Tree Arbiter Cells

CE-653 - Handshake Templates

Implementation

37

 Tree Arbiter cell

 Used to build multi-way pipelined arbiters

 Approach

 Add synchronization channel O to 2-way (pipelined) arbiter

 Send request on O channel as soon as any request arrives

 Question

 How can use this cell as the basis of a 4-way pipelined arbiter?

R1 W

R2 O

5/3/2014

Pipelined Tree Arbiter – Naïve Solution

CE-653 - Handshake Templates

Implementation

38

 The Problem Scenario

 All 4 requests arrive at same time

 Output generates 1-bit output

 Which of the 4 requests does this 1-bit output identify?

 Need notion of addresses to distinguish between 4 requests

R1 W

R2 O

R1 W

R2 O

R1
W

R2

M
E

R
G

E

A

B

O

S

N.B. Assume this

Merge operates on 1-

bit data channels

5/3/2014

