CE653 — Asynchronous Circuit
Design

Instructor: C. Sotiriou

http://inf-server.inf.uth.gr/courses/CE653/

1 CE-653 - Handshake Templates 5/3/2014
Implementation

Contents
» This Slide Set
Hanshake Channel Elements Implementations
» Simple 4-phase Templates
» Toggle Element (Micropipelines)
» 2-phase to 4-phase Converter
» 4-phase to 2-phase Converter
» Sequencer
» Parallel
» Transferer
» Merge Element

» Split Element

2 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

Simple 4-phase Templates

» 4-phase fork, join

» 4-phase merge

» 4-phase split (demux)

» NOTE:

Mutually exclusive signals must always be dual-rail encoded

CE-653 - Handshake Templates 5/3/2014
Implementation

4-Phase Fork-Join

COMPONENT

;
X %
z

Fork

X
z
y

Join
(wait for all)

4-phase bundled data

y
X

— 7.
y-req
z-req

y-ack

x-ack Z-ack

X ———HF——»20
y———F——— 71

x-req .
yreq z-req
x-ack
z-ack
y-ack

4-phase dual-rail
y.t
x.t
y.f
x.f
xack+——(C [13K

xt——F~—— 70t
xf—ol w20 f

yt————~L 71t
yf—————f—— w71 f

x-ack
z-ack
y-ack

CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

4-Phase Merge

COMPONENT 4-phase bundled data
A
X y ——F—»
z x-req
y y-req
Merge
(wait for one) x-ack
Xx-req
y-req
y-ack
5

4-phase dual-rail

x-ack

> z.req) /2t

z-ack

y-ack

z-ack

CE-653 - Handshake Templates 5/3/2014
Implementation

4-Phase Split

<

ctl.f
e

x-req

x-ack y-ack
z-ack
ctl-ack

CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

Toggle Element Specification

= TOGGLE steers events
TOGGLE to its outputs alternately

i starting with the dot.

» An event is the rise or fall of the input
» A fall event must follow a rise event

» Thus, operation is as follows:
Input rises = first output rises
Input falls =» second output rises
Input rises => first output falls
Input falls = second output falls, ... etc.

7 CE-653 - Handshake Templates 5/3/2014
Implementation

Toggle Element PTnet

» Need 2 choice places per output channel!

8 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

Handshake Protocol Converters

» 2-phase to 4-phase OR 4-phase to 2-phase
» Obvious specifications

R, R

n - H/S -Ut

Protocol

Converter
~ <

out

9 CE-653 - Handshake Templates 5/3/2014

Implementation

4-Phase to 2-Phase PTnet

» Causality Relationships

Rin+ causes
Rout+ OR Rout-

2out+ OR Aout-
cause Ain-

10 CE-653 - Handshake Templates 5/3/2014

Implementation

3/5/2014

4-Phase to 2-Phase PTnet — S-Covers

» 3SMsin
S-Cover

» Canyou
identify
where
they come
from?

11

CE-653 - Handshake Templates 5/3/2014
Implementation

4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs

12

FSM #2 FSM #3

)

Aout’ .s2 ' Aout.s2

)

CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs

13

FSM #2

NO

Rin’.s5 ' Rin.sl

= ()

FSM #3

()

Aout’ .s2 ' Aout.s2

®

CE-653 - Handshake Templates 5/3/2014
Implementation

4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs
14

FSM #2

()

Rin’.s5 . Rin.sl

20

FSM #3

)

Aout’ .s2 ' Aout.s2

N0

CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs

15

FSM #2

9o

Rin’.s5 ' Rin.sl

40

FSM #3

(@

Aout’ .s2 ' Aout.s2

NS

CE-653 - Handshake Templates 5/3/2014
Implementation

4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs
16

FSM #2

()

Rin’.s5 . Rin.sl

20

FSM #3

@

Aout’ .s2 ' Aout.s2

)

CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

2-Phase to 4-Phase PTnet

» Causality Relationships
Rin+ OR Rin-
cause Rout+

Aout- causes
Ain+ OR Ain-

CE-653 - Handshake Templates 5/3/2014

17
Implementation

Sequencer

» Handshakes on S| first then S2
Used to sequence operations associated with S| and S2
» Both handshakes enclosed in handshake on R
Initiated by request on R
Terminated by acknowledgement of R

CE-653 - Handshake Templates 5/3/2014

18
Implementation

3/5/2014

Sequencer Block - PTnet

» PThnet is FSM

No concurrency

19 CE-653 - Handshake Templates 5/3/2014
Implementation

Sequencer Block — Implementation
Rreq —T_ Slreq
I_ I Slack
Rack I S2ack

» Slreq identical to Rreqg

» S2reqis join of Rreq, Slack
» Rack is join of Slack, S2ack
» 2 C Elements = 2 FSMs

where are these FSMs in Sequencer’s specification?
are they concurrent, or sequential?

20 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

10

Parallel

P1 PAR P

\

P2ack J

e Handshakes on P1 in parallel with P2
¢ Used to execute operations associated with P1 and P2 in parallel
e Both handshakes enclosed in handshake on R
¢ Initiated by request on R
¢ Terminated by acknowledgement of R
e Both P1 and P2 must complete before R is acknowledged

21

CE-653 - Handshake Templates 5/3/2014
Implementation

Parallel Block - PTnet

» Concurrency
between two
parallel
handshakes

» You need two
places after

Plack+, P2ack+
Plack-, P2ack-

Join, not return
from choice!

22

Plireqt
P3

Plack+
P12

Pack+

CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

11

Parallel Block - Implementation
Plreg
P2req

Plack
P2ack

Rack

» Rreq simply forks to two requests
» Ack is join of acknowledgements
» | C Element = | FSM

What of the concurrency in original Ptnet?

Where is it present in the single FSM?

23 CE-653 - Handshake Templates 5/3/2014
Implementation

Transferer

» Purpose
Pulls data from its input channel and pushes it onto its output channel
All enclosed in handshake on request channel R
» Operation
Waits for a request on its passive nonput port
Then initiates a handshake on its pull input port
The handshake on the pull input channel is relayed to the push output channel
Finally,it completes the handshaking on the passive nonput channel

24 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

12

Transferer PTnet

» No difference to
Sequencer-...

25 CE-653 - Handshake Templates 5/3/2014
Implementation

Conditional and Non-Linear Pipeines

—

>

—»(» IDHIAN

—

[os]

i
J
>

o 117dS

(@ (b)
» MERGE
Wait for token on S.

Depending on value,
wait for token on either A or B and send onto O

» SPLIT
Wait for token on S and A.

Dependent upon value of S,
send copy of token on A to Ol or O2

26 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

13

Timing Diagram of Merge
aea L A\ » Assumptions (in this example)

\ \ full-buffer two-phase handshaking

I
Aack ' « dual-rail select signal

Breq _/~|11: » Functionality
)|
|
R

Token on A consumed first

\
\ Vad After token on S =0

o _,(' T v T l.e., SO changes
\ \ | Token on B stalled until consumed
|

s1 il \. \‘ ﬁ second

N v v After token on S = |

| X —
Sack \\ ‘ \ I ’ l.e.,Once S| changes
\

Result: two tokens on O

[Y/,
Oreq ’C 7 /k First = Oreq+

A\ /] Second = Oreg-

27 CE-653 - Handshake Templates 5/3/2014
Implementation

Merge PTnet

» Why is it so
complex?
» PTnet must
include:
2-phase ring for
Oreg/Oack
DR choice
DR return from
choice

Oreq* choice - =
dependence to : e |
A/Back* i
DR return from

choice
dependence on

Oack.

A/Back*

28 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

14

Variables
w VAR R
RIW
(a) (b)
e Purpose
¢ Store state of some program variable
e W is a write port and R is a read port
* Type (a)
e Rand W are assumed to be mutually exclusive
» Type (b)

* Waits for token on R/W 1-bit port
¢ Dependent on value...
o Waits for request on W and store data value received or
o Generates a token on R with the previously stored data value

29 CE-653 - Handshake Templates 5/3/2014
Implementation

Multi-Bit Variables

w SP R
MEM
Addr R/W

-
(a)

e Functionality
¢ Store multi-bit state of some program variable
e W is a write port and R is a read port
e Addr is the address port
e R/W controls read/write
¢ Cis simultaneous read and write to different addresses

30 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

15

Channel-Based FSM

e Purpose
e Implement FSM based on channels
e State

A

Output

; —» O
e Stored in token in Buffers Logic
e Consumed every “cycle”
* New state generated by Next State Logic
e Output
¢ New output token generated in response | — Next

to input token and current state

e Copy cells needed to route input tokens I:‘:I Logic
C

and state to both NSL and OL.
e Buffers

¢ One of the buffers must be token buffer,

reflecting initial state of FSM

State @®——

Buffers

A

31 CE-653 - Handshake Templates 5/3/2014

Implementation

Basic 2-way Arbiter

R2(>

» Purpose
Used to control access to shared resource
» Approach

Acknowledge handshake on request port that
arrives first, granting access

Requires four-phase protocol

winner maintains mutually-exclusive access of

resource until it resets request
» Caveat
Make take an exponential amount of time to

R1req
\ (Aol
R1ack 55 / \

/

R2req / I ;
\
I
R2ack f \

R1 has R2 has
access access

determine who came first when requests arrive

very close together
» Sometimes called slackless arbiter

32 CE-653 - Handshake Templates 5/3/2014

Implementation

3/5/2014

16

Basic 2-way Arbiter - 1

» Consists of an SR latch and a Metastability Filter
Gl — Grant |, G2 — Grant 2

R2 R1
SR Latch
R1—— g — G1 x2 x1
_|
m
R2—— X — G2 Metastability
G1 G2 Filter
33 CE-653 - Handshake Templates 5/3/2014
Implementation
Basic 2-way Arbiter - 2
» MUTEX Cell and Handshaking Logic
» C gates used for Acknowledgements
A1 = i] (c I
R1—»[5 RI— g 0 1
g
iga% iy A Rz T e A Y2 A0
A2« (c—|
34 CE-653 - Handshake Templates 5/3/2014

Implementation

3/5/2014

17

Slackless Tree Arbiters

» Slackless Tree Arbiter cell

Used to build multi-way arbiters —Rr1

» Approach —R2

AddT channel to normal arbiter
Delay ack of request channels until T channel acknowledged

Can send request on T channel as soon as any request arrives

35 CE-653 - Handshake Templates 5/3/2014
Implementation

R1 > 4-way Slackless Tree Arbiter
R2

2-way (Pipelined) Arbiter

RZOW

» Purpose

Used to control access to shared resource in a pipelined design
» Approach

Acknowledge of request not used to signify winner

Instead, additional W channel used to identify who won

Handshake on W simultaneously with acknowledging winning request
» Note

Still may take exponential time

In principle, this can use a two or four-phase protocol

» Arbiter + Pipeline Buffers all in one

36 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

18

Pipelined Tree Arbiter Cells

R2(>O

» Tree Arbiter cell
Used to build multi-way pipelined arbiters

» Approach
Add synchronization channel O to 2-way (pipelined) arbiter
Send request on O channel as soon as any request arrives

» Question

How can use this cell as the basis of a 4-way pipelined arbiter?

37 CE-653 - Handshake Templates 5/3/2014
Implementation

Pipelined Tree Arbiter — Naive Solution

o N.B. Assume this
Merge operates on 1-
bit data channels

| 3OH3IN

» The Problem Scenario
All 4 requests arrive at same time
Output generates |-bit output
Which of the 4 requests does this |-bit output identify?

Need notion of addresses to distinguish between 4 requests

38 CE-653 - Handshake Templates 5/3/2014
Implementation

3/5/2014

19

