
3/5/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

1 CE-653 - Handshake Templates

Implementation

http://inf-server.inf.uth.gr/courses/CE653/

5/3/2014

Contents

5/3/2014CE-653 - Handshake Templates

Implementation

2

 This Slide Set

 Hanshake Channel Elements Implementations

 Simple 4-phase Templates

 Toggle Element (Micropipelines)

 2-phase to 4-phase Converter

 4-phase to 2-phase Converter

 Sequencer

 Parallel

 Transferer

 Merge Element

 Split Element

3/5/2014

2

Simple 4-phase Templates

5/3/2014CE-653 - Handshake Templates

Implementation

3

 4-phase fork, join

 4-phase merge

 4-phase split (demux)

 NOTE:

 Mutually exclusive signals must always be dualMutually exclusive signals must always be dual--rail encodedrail encoded

y.t

z.t
x.t

y.f

z.f
x.f

C
y-ack
z-ack

x-ackC
y-ack
z-ack

x-ack

y-req

z-req
x-req

y

z
x

Fork

y

z
x

y-ack
z-ack

x-ack

Cy-req
z-req

x-req

y z1
x z0

y-ack
z-ack

x-ack

x.t z0.t
x.f z0.f

y.t z1.t
y.f z1.f

COMPONENT 4-phase bundled data 4-phase dual-rail

Join

(wait for all)

y
z

x

4-Phase Fork-Join

5/3/2014CE-653 - Handshake Templates

Implementation

4

3/5/2014

3

4-Phase Merge

5/3/2014CE-653 - Handshake Templates

Implementation

5

COMPONENT 4-phase bundled data 4-phase dual-rail

y
z

x y
z

x

y-req

x-req

y-ack
z-ack

x-ack

y-req
z-req

x-req

C

C

z.t

y-ack
z-ack

x-ack

C

x.t

z.f
y.f

y.t

x.f

C

CD

CD

Merge

(wait for one)

4-Phase Split

5/3/2014CE-653 - Handshake Templates

Implementation

6

y-ack
z-ack

x-ack

y-req

z-req

x-req

C

C
ctl.f

ctl.t

ctl-ack

z
x

y

ctl

0

1

y

zx

3/5/2014

4

Toggle Element Specification

5/3/2014CE-653 - Handshake Templates

Implementation

7

 An event is the rise or fall of the input

 A fall event must follow a rise event

 Thus, operation is as follows:

 Input rises first output rises

 Input falls second output rises

 Input rises first output falls

 Input falls second output falls, … etc.

Toggle Element PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

8

 Need 2 choice places per output channel!

3/5/2014

5

Handshake Protocol Converters

5/3/2014CE-653 - Handshake Templates

Implementation

9

 2-phase to 4-phase OR 4-phase to 2-phase

 Obvious specifications

H/SH/S

ProtocolProtocol

ConverterConverter

Rin

Ain

Rout

Aout

DataData

4-Phase to 2-Phase PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

10

 Causality Relationships

 Rin+ causes

Rout+ OR Rout-

 Aout+ OR Aout-

cause Ain-

3/5/2014

6

4-Phase to 2-Phase PTnet – S-Covers

5/3/2014CE-653 - Handshake Templates

Implementation

11

 3 SMs in

S-Cover

 Can you

identify

where

they come

from?

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

12

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

3/5/2014

7

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

13

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

14

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

3/5/2014

8

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

15

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

4-Phase to 2-Phase PTnet – MSFSMs

5/3/2014CE-653 - Handshake Templates

Implementation

16

FSM #1 FSM #2 FSM #3

s1

s2

s3 s4

s5

s6

s7

Ain’

Ain

Rin.s6

Rin.s1Rin’.s5

s7

RoutRout’

s8s9

s9

s8

Rout

Rout’

Aout.s2Aout’.s2

AoutAout’

 Ain, Rout outputs

 Rin, Aout inputs

3/5/2014

9

2-Phase to 4-Phase PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

17

 Causality Relationships

 Rin+ OR Rin-

cause Rout+

 Aout- causes

Ain+ OR Ain-

Sequencer

CE-653 - Handshake Templates

Implementation

18

 Handshakes on S1 first then S2
 Used to sequence operations associated with S1 and S2

 Both handshakes enclosed in handshake on R
 Initiated by request on R

 Terminated by acknowledgement of R

Rreq

Rack

S1req

S1ack

S2req

S2ack

SEQS1 S2

R

5/3/2014

3/5/2014

10

Sequencer Block - PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

19

 PTnet is FSM

 No concurrency

Sequencer Block – Implementation

5/3/2014CE-653 - Handshake Templates

Implementation

20

 S1req identical to Rreq

 S2req is join of Rreq, S1ack

 Rack is join of S1ack, S2ack

 2 C Elements 2 FSMs

 where are these FSMs in Sequencer’s specification?

 are they concurrent, or sequential?

Rreq S1req

S2req

S1ack

CC

CCRack
S2ack

3/5/2014

11

Parallel

Rreq

Rack

P1req

P1ack

P2req

P2ack

PARP1 P2

R

• Handshakes on P1 in parallel with P2
• Used to execute operations associated with P1 and P2 in parallel

• Both handshakes enclosed in handshake on R
• Initiated by request on R
• Terminated by acknowledgement of R

• Both P1 and P2 must complete before R is acknowledged

21 CE-653 - Handshake Templates

Implementation

5/3/2014

Parallel Block - PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

22

 Concurrency

between two

parallel

handshakes

 You need two

places after

 P1ack+, P2ack+

 P1ack-, P2ack-

 Join, not return

from choice!

3/5/2014

12

Parallel Block - Implementation

5/3/2014CE-653 - Handshake Templates

Implementation

23

 Rreq simply forks to two requests

 Ack is join of acknowledgements

 1 C Element 1 FSM

 What of the concurrency in original Ptnet?

 Where is it present in the single FSM?

Rreq
P1req

P2req

P1ack
CCRack

P2ack

Transferer

CE-653 - Handshake Templates

Implementation

24

 Purpose

 Pulls data from its input channel and pushes it onto its output channel

 All enclosed in handshake on request channel R

 Operation

 Waits for a request on its passive nonput port

 Then initiates a handshake on its pull input port

 The handshake on the pull input channel is relayed to the push output channel

 Finally, it completes the handshaking on the passive nonput channel

→

R

I O

Rreq

Ireq

Iack

Oreq

Oack

Rack T1

T1

T1

T1

T1

T2

T2

T2

T2

T2

5/3/2014

3/5/2014

13

Transferer PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

25

 No difference to

Sequencer…

Conditional and Non-Linear Pipeines

CE-653 - Handshake Templates

Implementation

26

 MERGE
 Wait for token on S.

 Depending on value,
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S,
send copy of token on A to O1 or O2

(a) (b)

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

5/3/2014

3/5/2014

14

Timing Diagram of Merge

CE-653 - Handshake Templates

Implementation

27

 Assumptions (in this example)

 full-buffer two-phase handshaking

 dual-rail select signal

 Functionality

 Token on A consumed first

 After token on S = 0

 I.e., S0 changes

 Token on B stalled until consumed

second

 After token on S = 1

 I.e., Once S1 changes

 Result: two tokens on O

 First = Oreq+

 Second = Oreq-

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

5/3/2014

Merge PTnet

5/3/2014CE-653 - Handshake Templates

Implementation

28

 Why is it so
complex?

 PTnet must
include:
 2-phase ring for
Oreq/Oack

 DR choice

 DR return from
choice

 Oreq*
dependence to
A/Back*

 DR return from
choice
dependence on
A/Back*

3/5/2014

15

Variables

(a) (b)

VARW R

VARW R

R/W

• Purpose
• Store state of some program variable
• W is a write port and R is a read port

• Type (a)
• R and W are assumed to be mutually exclusive

• Type (b)
• Waits for token on R/W 1-bit port
• Dependent on value…

• Waits for request on W and store data value received or
• Generates a token on R with the previously stored data value

29 CE-653 - Handshake Templates

Implementation

5/3/2014

Multi-Bit Variables

• Functionality

• Store multi-bit state of some program variable

• W is a write port and R is a read port

• Addr is the address port

• R/W controls read/write

• C is simultaneous read and write to different addresses

(a) (b)

SP

MEM

W R

R/W

Addr

DP

MEM

W R

RAWA

R/W/C

30 CE-653 - Handshake Templates

Implementation

5/3/2014

3/5/2014

16

Channel-Based FSM

• Purpose

• Implement FSM based on channels

• State

• Stored in token in Buffers

• Consumed every “cycle”

• New state generated by Next State Logic

• Output

• New output token generated in response
to input token and current state

• Copy cells needed to route input tokens
and state to both NSL and OL.

• Buffers

• One of the buffers must be token buffer,
reflecting initial state of FSM

I Next

State

Logic

Output

Logic

Buffers

C

C

O

31 CE-653 - Handshake Templates

Implementation

5/3/2014

Basic 2-way Arbiter

CE-653 - Handshake Templates

Implementation

32

 Purpose
 Used to control access to shared resource

 Approach
 Acknowledge handshake on request port that

arrives first, granting access
 Requires four-phase protocol

 winner maintains mutually-exclusive access of
resource until it resets request

 Caveat
 Make take an exponential amount of time to

determine who came first when requests arrive
very close together

 Sometimes called slackless arbiter

R1

R2

R1req

R1ack

R2req

R2ack

R1 has

access

R2 has

access

5/3/2014

3/5/2014

17

Basic 2-way Arbiter - 1

5/3/2014CE-653 - Handshake Templates

Implementation

33

 Consists of an SR latch and a Metastability Filter

 G1 – Grant 1, G2 – Grant 2

SR Latch

R1R2

G1 G2

M
U

T
E

X

R2

R1 G1

G2

x1x2

Metastability

Filter

Basic 2-way Arbiter - 2

5/3/2014CE-653 - Handshake Templates

Implementation

34

 MUTEX Cell and Handshaking Logic

 C gates used for Acknowledgements

A
R

B
IT

E
R

R1

R0
A0

A1

R2
A2

R1

A1

R2

A2

M
U

T
E

X

C

R0

A0

C

G1

G2

Y1

Y2

3/5/2014

18

Slackless Tree Arbiters

CE-653 - Handshake Templates

Implementation

35

 Slackless Tree Arbiter cell

 Used to build multi-way arbiters

 Approach

 Add T channel to normal arbiter

 Delay ack of request channels until T channel acknowledged

 Can send request on T channel as soon as any request arrives

R1
T

R2

R1
T

R2

R1
T

R2

R1

R2

4-way Slackless Tree Arbiter

5/3/2014

2-way (Pipelined) Arbiter

CE-653 - Handshake Templates

Implementation

36

 Purpose

 Used to control access to shared resource in a pipelined design

 Approach

 Acknowledge of request not used to signify winner

 Instead, additional W channel used to identify who won

 Handshake on W simultaneously with acknowledging winning request

 Note

 Still may take exponential time

 In principle, this can use a two or four-phase protocol

 Arbiter + Pipeline Buffers all in one

R1
W

R2

5/3/2014

3/5/2014

19

Pipelined Tree Arbiter Cells

CE-653 - Handshake Templates

Implementation

37

 Tree Arbiter cell

 Used to build multi-way pipelined arbiters

 Approach

 Add synchronization channel O to 2-way (pipelined) arbiter

 Send request on O channel as soon as any request arrives

 Question

 How can use this cell as the basis of a 4-way pipelined arbiter?

R1 W

R2 O

5/3/2014

Pipelined Tree Arbiter – Naïve Solution

CE-653 - Handshake Templates

Implementation

38

 The Problem Scenario

 All 4 requests arrive at same time

 Output generates 1-bit output

 Which of the 4 requests does this 1-bit output identify?

 Need notion of addresses to distinguish between 4 requests

R1 W

R2 O

R1 W

R2 O

R1
W

R2

M
E

R
G

E

A

B

O

S

N.B. Assume this

Merge operates on 1-

bit data channels

5/3/2014

