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Simple 4-phase Templates

» 4-phase fork, join

» 4-phase merge

» 4-phase split (demux)

» NOTE:

Mutually exclusive signals must always be dual-rail encoded
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4-Phase Fork-Join
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4-Phase Merge

COMPONENT 4-phase bundled data
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4-Phase Split
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Toggle Element Specification

= TOGGLE steers events
TOGGLE to its outputs alternately

i starting with the dot.

» An event is the rise or fall of the input
» A fall event must follow a rise event

» Thus, operation is as follows:
Input rises = first output rises
Input falls =» second output rises
Input rises => first output falls
Input falls = second output falls, ... etc.
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Toggle Element PTnet

» Need 2 choice places per output channel!
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Handshake Protocol Converters

» 2-phase to 4-phase OR 4-phase to 2-phase
» Obvious specifications

R, R

n - H/S -Ut

Protocol

Converter
~ <

out
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4-Phase to 2-Phase PTnet

» Causality Relationships

Rin+ causes
Rout+ OR Rout-

2out+ OR Aout-
cause Ain-
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4-Phase to 2-Phase PTnet — S-Covers

» 3SMsin
S-Cover

» Canyou
identify
where
they come
from?

11
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4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs

12

FSM #2 FSM #3

)

Aout’ .s2 ' Aout.s2

)
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4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs
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FSM #2
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4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs
14

FSM #2

()

Rin’.s5 . Rin.sl
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FSM #3
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4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs

15

FSM #2

9o

Rin’.s5 ' Rin.sl

40

FSM #3
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4-Phase to 2-Phase PTnet - MSFSMs

FSM #1

» Ain,Rout outputs
» Rin,Aout inputs
16

FSM #2

()

Rin’.s5 . Rin.sl

20

FSM #3

@

Aout’ .s2 ' Aout.s2

)

CE-653 - Handshake Templates  5/3/2014
Implementation

3/5/2014



2-Phase to 4-Phase PTnet

» Causality Relationships
Rin+ OR Rin-
cause Rout+

Aout- causes
Ain+ OR Ain-
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Sequencer

» Handshakes on S| first then S2
Used to sequence operations associated with S| and S2
» Both handshakes enclosed in handshake on R
Initiated by request on R
Terminated by acknowledgement of R
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Sequencer Block - PTnet

» PThnet is FSM

No concurrency
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Sequencer Block — Implementation
Rreq —T_ Slreq
I_ I Slack
Rack I S2ack

» Slreq identical to Rreqg

» S2reqis join of Rreq, Slack
» Rack is join of Slack, S2ack
» 2 C Elements = 2 FSMs

where are these FSMs in Sequencer’s specification?
are they concurrent, or sequential?
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Parallel

P1 PAR P

\

P2ack J

e Handshakes on P1 in parallel with P2
¢ Used to execute operations associated with P1 and P2 in parallel
e Both handshakes enclosed in handshake on R
¢ Initiated by request on R
¢ Terminated by acknowledgement of R
e Both P1 and P2 must complete before R is acknowledged
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Parallel Block - PTnet

» Concurrency
between two
parallel
handshakes

» You need two
places after

Plack+, P2ack+
Plack-, P2ack-

Join, not return
from choice!

22

Plireqt
P3

Plack+
P12

Pack+
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Parallel Block - Implementation
Plreg
P2req

Plack
P2ack

Rack

» Rreq simply forks to two requests
» Ack is join of acknowledgements
» | C Element = | FSM

What of the concurrency in original Ptnet?

Where is it present in the single FSM?
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Transferer

» Purpose
Pulls data from its input channel and pushes it onto its output channel
All enclosed in handshake on request channel R
» Operation
Waits for a request on its passive nonput port
Then initiates a handshake on its pull input port
The handshake on the pull input channel is relayed to the push output channel
Finally,it completes the handshaking on the passive nonput channel
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Transferer PTnet

» No difference to
Sequencer-...
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Conditional and Non-Linear Pipeines

—

>

—»(» IDHIAN
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[os]

i
J
>

o 117dS

(@ (b)
» MERGE
Wait for token on S.

Depending on value,
wait for token on either A or B and send onto O

» SPLIT
Wait for token on S and A.

Dependent upon value of S,
send copy of token on A to Ol or O2
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Timing Diagram of Merge
aea L A\ » Assumptions (in this example)

\ \ full-buffer two-phase handshaking

I
Aack ' « dual-rail select signal

Breq _/~|11: » Functionality
)|
|
R

Token on A consumed first

\
\ Vad After token on S =0

o _,(' T v T l.e., SO changes
\ \ | Token on B stalled until consumed
|

s1 il \. \‘ ﬁ second

N v v After token on S = |

| X —
Sack \\ ‘ \ I ’ l.e.,Once S| changes
\

Result: two tokens on O

[ Y/,
Oreq ’C 7 /k First = Oreq+

A\ / ] Second = Oreg-
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Merge PTnet

» Why is it so
complex?
» PTnet must
include:
2-phase ring for
Oreg/Oack
DR choice
DR return from
choice

Oreq* choice - =
dependence to : e |
A/Back* i
DR return from

choice
dependence on

Oack.

A/Back*
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Variables
w VAR R
RIW
(a) (b)
e Purpose
¢ Store state of some program variable
e W is a write port and R is a read port
* Type (a)
e Rand W are assumed to be mutually exclusive
» Type (b)

* Waits for token on R/W 1-bit port
¢ Dependent on value...
o Waits for request on W and store data value received or
o Generates a token on R with the previously stored data value

29 CE-653 - Handshake Templates  5/3/2014
Implementation

Multi-Bit Variables

w SP R
MEM
Addr  R/W

-
(a)

e Functionality
¢ Store multi-bit state of some program variable
e W is a write port and R is a read port
e Addr is the address port
e R/W controls read/write
¢ Cis simultaneous read and write to different addresses
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Channel-Based FSM

e Purpose
e Implement FSM based on channels
e State

A

Output

; —» O
e Stored in token in Buffers Logic
e Consumed every “cycle”
* New state generated by Next State Logic
e Output
¢ New output token generated in response | — Next

to input token and current state

e Copy cells needed to route input tokens I:‘:I Logic
C

and state to both NSL and OL.
e Buffers

¢ One of the buffers must be token buffer,

reflecting initial state of FSM

State @®——

Buffers

A
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Basic 2-way Arbiter

R2(>

» Purpose
Used to control access to shared resource
» Approach

Acknowledge handshake on request port that
arrives first, granting access

Requires four-phase protocol

winner maintains mutually-exclusive access of

resource until it resets request
» Caveat
Make take an exponential amount of time to

R1req
\ (Aol
R1ack 55 / \

/

R2req / I ;
\
I
R2ack f \

R1 has R2 has
access access

determine who came first when requests arrive

very close together
» Sometimes called slackless arbiter
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Basic 2-way Arbiter - 1

» Consists of an SR latch and a Metastability Filter
Gl — Grant |, G2 — Grant 2

R2 R1
SR Latch
R1—— g — G1 x2 x1
_|
m
R2—— X — G2 Metastability
G1 G2 Filter
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Basic 2-way Arbiter - 2
» MUTEX Cell and Handshaking Logic
» C gates used for Acknowledgements
A1 = i] (c I
R1—»[ 5 RI— g 0 1
g
iga% iy A Rz T e A Y2 A0
A2« (c—|
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Slackless Tree Arbiters

» Slackless Tree Arbiter cell

Used to build multi-way arbiters —Rr1

» Approach —R2

AddT channel to normal arbiter
Delay ack of request channels until T channel acknowledged

Can send request on T channel as soon as any request arrives
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R1 > 4-way Slackless Tree Arbiter
R2

2-way (Pipelined) Arbiter

RZOW

» Purpose

Used to control access to shared resource in a pipelined design
» Approach

Acknowledge of request not used to signify winner

Instead, additional W channel used to identify who won

Handshake on W simultaneously with acknowledging winning request
» Note

Still may take exponential time

In principle, this can use a two or four-phase protocol

» Arbiter + Pipeline Buffers all in one
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Pipelined Tree Arbiter Cells

R2(>O

» Tree Arbiter cell
Used to build multi-way pipelined arbiters

» Approach
Add synchronization channel O to 2-way (pipelined) arbiter
Send request on O channel as soon as any request arrives

» Question

How can use this cell as the basis of a 4-way pipelined arbiter?
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Pipelined Tree Arbiter — Naive Solution

o N.B. Assume this
Merge operates on 1-
bit data channels

| 3OH3IN

» The Problem Scenario
All 4 requests arrive at same time
Output generates |-bit output
Which of the 4 requests does this |-bit output identify?

Need notion of addresses to distinguish between 4 requests
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