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Simple 4-phase Templates
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 4-phase fork, join

 4-phase merge

 4-phase split (demux)

 NOTE: 

 Mutually exclusive signals must always be dualMutually exclusive signals must always be dual--rail encodedrail encoded
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4-Phase Merge
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Toggle Element Specification
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 An event is the rise or fall of the input

 A fall event must follow a rise event

 Thus, operation is as follows:

 Input rises first output rises

 Input falls second output rises

 Input rises first output falls

 Input falls second output falls, … etc.

Toggle Element PTnet
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 Need 2 choice places per output channel!
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Handshake Protocol Converters
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 2-phase to 4-phase OR 4-phase to 2-phase

 Obvious specifications

H/SH/S

ProtocolProtocol

ConverterConverter

Rin

Ain

Rout

Aout

DataData

4-Phase to 2-Phase PTnet
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 Causality Relationships

 Rin+ causes 

Rout+ OR Rout-

 Aout+ OR Aout-

cause Ain-
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4-Phase to 2-Phase PTnet – S-Covers
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 3 SMs in 

S-Cover

 Can you 

identify 

where 

they come 

from?

4-Phase to 2-Phase PTnet – MSFSMs
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4-Phase to 2-Phase PTnet – MSFSMs
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4-Phase to 2-Phase PTnet – MSFSMs
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2-Phase to 4-Phase PTnet
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 Causality Relationships

 Rin+ OR Rin-

cause Rout+

 Aout- causes 

Ain+ OR Ain-

Sequencer
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 Handshakes on S1 first then S2
 Used to sequence operations associated with S1 and S2

 Both handshakes enclosed in handshake on R
 Initiated by request on R

 Terminated by acknowledgement of R

Rreq

Rack

S1req

S1ack

S2req

S2ack

SEQS1 S2

R

5/3/2014
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Sequencer Block - PTnet

5/3/2014CE-653 - Handshake Templates 

Implementation

19

 PTnet is FSM

 No concurrency

Sequencer Block – Implementation
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 S1req identical to Rreq

 S2req is join of Rreq, S1ack 

 Rack is join of S1ack, S2ack

 2 C Elements  2 FSMs

 where are these FSMs in Sequencer’s specification?

 are they concurrent, or sequential?

Rreq S1req

S2req

S1ack

CC

CCRack
S2ack
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Parallel

Rreq

Rack

P1req

P1ack

P2req

P2ack

PARP1 P2

R

• Handshakes on P1 in parallel with P2
• Used to execute operations associated with P1 and P2 in parallel

• Both handshakes enclosed in handshake on R
• Initiated by request on R
• Terminated by acknowledgement of R

• Both P1 and P2 must complete before R is acknowledged
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Parallel Block - PTnet
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 Concurrency 

between two 

parallel 

handshakes

 You need two 

places after

 P1ack+, P2ack+

 P1ack-, P2ack-

 Join, not return 

from choice!
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Parallel Block - Implementation
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 Rreq simply forks to two requests

 Ack is join of acknowledgements

 1 C Element  1 FSM

 What of the concurrency in original Ptnet?

 Where is it present in the single FSM?

Rreq
P1req

P2req

P1ack
CCRack

P2ack

Transferer
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 Purpose

 Pulls data from its input channel and pushes it onto its output channel 

 All enclosed in handshake on request channel R

 Operation

 Waits for a request on its passive nonput port 

 Then initiates a handshake on its pull input port 

 The handshake on the pull input channel is relayed to the push output channel 

 Finally, it completes the handshaking on the passive nonput channel

→

R

I O

Rreq
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Iack

Oreq

Oack

Rack T1

T1

T1
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T2
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Transferer PTnet
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 No difference to 

Sequencer…

Conditional and Non-Linear Pipeines
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 MERGE
 Wait for token on S.

 Depending on value, 
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S, 
send copy of token on A to O1 or O2

(a) (b)

M
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G
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O

S
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L
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O1

O2

S

A
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Timing Diagram of Merge
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 Assumptions (in this example)

 full-buffer two-phase handshaking 

 dual-rail select signal

 Functionality

 Token on A consumed first 

 After token on S = 0

 I.e., S0 changes

 Token on B stalled until consumed 

second 

 After token on S = 1

 I.e., Once S1 changes

 Result: two tokens on O

 First = Oreq+

 Second = Oreq-

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack
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 Why is it so 
complex?

 PTnet must 
include:
 2-phase ring for 
Oreq/Oack

 DR choice

 DR return from 
choice

 Oreq*
dependence to 
A/Back*

 DR return from 
choice 
dependence on 
A/Back*
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Variables

(a) (b)

VARW R

 

VARW R

R/W

• Purpose
• Store state of some program variable
• W is a write port and R is a read port

• Type (a) 
• R and W are assumed to be mutually exclusive

• Type (b) 
• Waits for token on R/W 1-bit port
• Dependent on value…

• Waits for request on W and store data value received or
• Generates a token on R with the previously stored data value
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Multi-Bit Variables

• Functionality

• Store multi-bit state of some program variable

• W is a write port and R is a read port

• Addr is the address port

• R/W controls read/write

• C is simultaneous read and write to different addresses

(a) (b)

SP

MEM

 

W R

R/W

 

Addr

DP

MEM
 

W R

RAWA

 

R/W/C
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Channel-Based FSM

• Purpose

• Implement FSM based on channels

• State 

• Stored in token in Buffers

• Consumed every “cycle”

• New state generated by Next State Logic

• Output 

• New output token generated in response 
to input token and current state

• Copy cells needed to route input tokens 
and state to both NSL and OL.

• Buffers

• One of the buffers must be token buffer, 
reflecting initial state of FSM

I Next    

State   

Logic

Output 

Logic

Buffers

C

C

O
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 Purpose
 Used to control access to shared resource

 Approach
 Acknowledge handshake on request port that 

arrives first, granting access
 Requires four-phase protocol

 winner maintains mutually-exclusive access of 
resource until it resets request

 Caveat
 Make take an exponential amount of time to 

determine who came first when requests arrive 
very close together

 Sometimes called slackless arbiter

R1

R2

R1req

R1ack

R2req

R2ack

R1 has 

access

R2 has 

access
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Basic 2-way Arbiter - 1
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 Consists of an SR latch and a Metastability Filter

 G1 – Grant 1, G2 – Grant 2

SR Latch

R1R2

G1 G2

M
U

T
E

X

R2

R1 G1

G2

x1x2

Metastability

Filter

Basic 2-way Arbiter - 2
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 MUTEX Cell and Handshaking Logic

 C gates used for Acknowledgements
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Slackless Tree Arbiters
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 Slackless Tree Arbiter cell

 Used to build multi-way arbiters

 Approach

 Add T channel to normal arbiter

 Delay ack of request channels until T channel acknowledged

 Can send request on T channel as soon as any request arrives 

R1
T

R2

R1
T

R2

R1
T

R2

R1

R2

4-way Slackless Tree Arbiter
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 Purpose

 Used to control access to shared resource in a pipelined design

 Approach

 Acknowledge of request not used to signify winner

 Instead, additional W channel used to identify who won

 Handshake on W simultaneously with acknowledging winning request

 Note

 Still may take exponential time

 In principle, this can use a two or four-phase protocol

 Arbiter + Pipeline Buffers all in one

R1
W

R2
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Pipelined Tree Arbiter Cells
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 Tree Arbiter cell

 Used to build multi-way pipelined arbiters

 Approach

 Add synchronization channel O to 2-way (pipelined) arbiter

 Send request on O channel as soon as any request arrives

 Question

 How can use this cell as the basis of a 4-way pipelined arbiter?

R1 W

R2 O
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Pipelined Tree Arbiter – Naïve Solution
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 The Problem Scenario

 All 4 requests arrive at same time

 Output generates 1-bit output

 Which of the 4 requests does this 1-bit output identify?

 Need notion of addresses to distinguish between 4 requests

R1 W

R2 O

R1 W

R2 O

R1
W

R2

M
E

R
G

E

A

B

O

S

N.B. Assume this 

Merge operates on 1-

bit data channels
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