
2/18/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

1 CE-653 - Handshake Channel Design

http://inf-server.inf.uth.gr/courses/CE653/

Hardware Abstraction

CE-653 - Handshake Channel Design2

 System:

 Collection of “Processes” linked by Channels

 Channels pass messages with guaranteed delivery

 Processes synchronize

 Processes can be decomposed into smaller processes

2/18/2014

2

Synchronous Version

 In case of edge triggered stages

 During the cycle: Process

 At the edge of the clock: Pass to successor

clock

Process

clock

Pass to
successor

3 CE-653 - Handshake Channel Design

Synchronous Version

module ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk);

right = left;

end

endmodule

 Central synchronizer

 `SYNC(clk)

4 CE-653 - Handshake Channel Design

2/18/2014

3

Synchronous FF Stage

 Abstract synchronization

 `SYNC(clk)

module ff(clk, left, right)

input clk;

input left;

output reg right;

always @(posedge clk) begin

right = left;

end

endmodule

module ff(clk, left, right)

input clk;

input left;

output reg right;

always

begin

`SYNC(clk);

right = left;

end

endmodule

5 CE-653 - Handshake Channel Design

Asynchronous Version

module Sender(right)

output reg right;

output reg data;

always

begin

right = data;

`SYNC(right);

end

endmodule

module Receiver(left)

input left;

output reg data;

always

begin

`SYNC(left);

data= left;

end

endmodule

 Distributed
Synchronization

 Sender

 Provide data

 Synchronize

 Receiver

 Synchronize

 Sample data

Sender Receiver

6 CE-653 - Handshake Channel Design

2/18/2014

4

Asynchronous Channels

CE-653 - Handshake Channel Design7

 Channel: A bundle of wires and a protocol for

communicating data/control called a token

 Data/control encoding: Dual-rail or single-rail

 Communication protocol: Specific form of handshaking

over request and acknowledgement wires

Sender Receiver

AbstractAbstract
ChannelChannelFunctional

Block

Asynchronous Channels

CE-653 - Handshake Channel Design8

1 of the N wires is risen

(N-1 remains zero)

Req

Ack

Data

Data stable

The sender drives

1 of the N wires high

The receiver drives

1 of the N wires low

1

2

3

4

1

2

3

4

1 2

Ack

1-of-N

1-of-N

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

Single-Track Channel

Data
Sender Receiver

2/18/2014

5

Early, Late, Broad

CE-653 - Handshake Channel Design9

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

Narrow/Early:

• Data stable after Req+

• Data stable until Ack+

Broad:

• Data stable after Req+

• Data stable until Ack-

(a)

(c)

2
nd

 data1
st
 data

Req

Ack

Broad

2
nd

 data1
st
 data

Req

Ack

Early

(b)

2
nd

 data1
st
 data

Req

Ack

Late

Late:

• Data stable after Req-

• Data stable until Ack-

2-Phase Bundled-Data

CE-653 - Handshake Channel Design10

Data

Req

Ack

Bundled-Data Channel

Sender Receiver

2
nd

 data1
st
 data

Req

Ack

Data

• Two-phase Bundled-Data Protocol

• Both rising and falling transitions on Req

• Means new data is available

• Both rising and falling transitions on Ack

• Means data has been acknowledged

• Sometimes called transition signalling

• It is the transition that is meaningful, not the values

2/18/2014

6

1-of-N Protocols

CE-653 - Handshake Channel Design11

Data

Ack

Dual-Rail (1-of-N) Channel

Sender Receiver

Data_0

Data_1

Ack

 1
st
 token = 0 2

nd
 token = 1

Data_0

Data_3

Ack

 1
st
 token = 1 2

nd
 token = 3

Data_1

Data_2

(a)

(b)

Dual-Rail

• 4 phase

• 2 wires per bit

1-of-4

• 4 phase

• 4 wires per 2 bits

Pull Channels

CE-653 - Handshake Channel Design12

Sender

Request

Acknowledge

Single-Rail Data

Receiver

(a)

(c)

(b)

1
st
 data 2

nd

Req

Ack

Late

Req

Early 1
st
 data

Ack

2
nd

 data

0
th

1
st
 data 2

nd
Data

Ack

0
th

Req

Broad

Early:

• Data stable after Ack+

• Data stable until Req-

Broad:

• Data stable after Ack+

• Data stable until Req-

Late:

• Data stable after Ack-

• Data stable until Req+

2/18/2014

7

Abstract Channel Diagrams

CE-653 - Handshake Channel Design13

(a)

(b)

(c)

Push channel

Pull channel

Nonput/Synchronization channel

• No data – Control only

• Active on right side

Handshaking details omitted

Sequencing and Concurrency

CE-653 - Handshake Channel Design14

 Enclosed Handshaking

 B completes handshake w/ C before

starting handshake w/ D

 Operation associated with C occurs

before operation associated with D

 B can enclose both handshakes in

handshake w/ A

 Completion of handshake w/ A is ack

that C and D‟s task are done

 Pipelining Handshake

 B overlaps handshake w/ C and

handshake w/ A

 Creates pipeline behavior

 Tokens on both channels

 Increases throughput

B
C

D
A

A B C

2/18/2014

8

Enclosed Handshaking

CE-653 - Handshake Channel Design15

 Internal handshake on R represents the completion of some
operation

 The enclosed handshake represents a “function call”
 Initiated by the request on on L

 Terminated by the acknowledgement on L

Lreq

Lack

Rreq

Rack

L1

R1

L2

R2

L R

Sequencer

CE-653 - Handshake Channel Design16

 Handshakes on S1 first then S2
 Used to sequence operations associated with S1 and S2

 Both handshakes enclosed in handshake on R
 Initiated by request on R

 Terminated by acknowledgement of R

Rreq

Rack

S1req

S1ack

S2req

S2ack

SEQS1 S2

R

2/18/2014

9

Parallel

Rreq

Rack

P1req

P1ack

P2req

P2ack

PARP1 P2

R

• Handshakes on P1 in parallel with P2
• Used to execute operations associated with P1 and P2 in parallel

• Both handshakes enclosed in handshake on R
• Initiated by request on R
• Terminated by acknowledgement of R

• Both P1 and P2 must complete before R is acknowledged

17 CE-653 - Handshake Channel Design

Transferer

CE-653 - Handshake Channel Design18

 Purpose

 Pulls data from its input channel and pushes it onto its output channel

 All enclosed in handshake on request channel R

 Operation

 Waits for a request on its passive nonput port

 Then initiates a handshake on its pull input port

 The handshake on the pull input channel is relayed to the push output channel

 Finally, it completes the handshaking on the passive nonput channel

→

R

I O

Rreq

Ireq

Iack

Oreq

Oack

Rack T1

T1

T1

T1

T1

T2

T2

T2

T2

T2

2/18/2014

10

Pipelined Handshaking

CE-653 - Handshake Channel Design19

 Pipeline handshaking enables multiple tokens to exist in pipeline

 Each token represents intermediate result of different problem instance

 Increases throughput of system

 No tokens lost despite relative speed of stages – has implicit flow control

 Two types

 Full buffers can support distinct tokens on inputs/output channels

 Half buffers cannot support distinct tokens on inputs/outputs

 N-stage pipeline of half-buffers can support a maximum of N/2 tokens

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Full-Buffer Handshaking

CE-653 - Handshake Channel Design20

Handshaking assuming very slow Bit Bucket

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1 T2

T1

T3

T1

T2

2/18/2014

11

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

Half-Buffer Handshaking

CE-653 - Handshake Channel Design21

 Handshaking constraint
that leads to a half-buffer

 Output channel must be
acknowledged (e.g., c2ack+)

 indicating that the output

token (e.g., on channel c2) has

been consumed (and thus is

in the subsequent channel

(e.g., in channel c3))

 Before the reset phases of

the input channel is complete

(e.g., before c1ack-) which is

before

 A new token on the input

channel (e.g., c1) can be

generated.

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T1

T1

T1

T2

T2

Handshaking assuming very

slow Bit Bucket

Conditional and Non-Linear Pipeines

CE-653 - Handshake Channel Design22

 MERGE
 Wait for token on S.

 Depending on value,
wait for token on either A or B and send onto O

 SPLIT
 Wait for token on S and A.

 Dependent upon value of S,
send copy of token on A to O1 or O2

(a) (b)

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

2/18/2014

12

Timing Diagram of Merge

CE-653 - Handshake Channel Design23

 Assumptions (in this example)

 full-buffer two-phase handshaking

 dual-rail select signal

 Functionality

 Token on A consumed first

 After token on S = 0

 I.e., S0 changes

 Token on B stalled until consumed

second

 After token on S = 1

 I.e., Once S1 changes

 Result: two tokens on O

 First = Oreq+

 Second = Oreq-

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

Variables

(a) (b)

VARW R

VARW R

R/W

• Purpose
• Store state of some program variable
• W is a write port and R is a read port

• Type (a)
• R and W are assumed to be mutually exclusive

• Type (b)
• Waits for token on R/W 1-bit port
• Dependent on value…

• Waits for request on W and store data value received or
• Generates a token on R with the previously stored data value

24 CE-653 - Handshake Channel Design

2/18/2014

13

Multi-Bit Variables

• Functionality

• Store multi-bit state of some program variable

• W is a write port and R is a read port

• Addr is the address port

• R/W controls read/write

• C is simultaneous read and write to different addresses

(a) (b)

SP

MEM

W R

R/W

Addr

DP

MEM

W R

RAWA

R/W/C

25 CE-653 - Handshake Channel Design

Channel-Based FSM

• Purpose

• Implement FSM based on channels

• State

• Stored in token in Buffers

• Consumed every “cycle”

• New state generated by Next State Logic

• Output

• New output token generated in response
to input token and current state

• Copy cells needed to route input tokens
and state to both NSL and OL.

• Buffers

• One of the buffers must be token buffer,
reflecting initial state of FSM

I Next

State

Logic

Output

Logic

Buffers

C

C

O

26 CE-653 - Handshake Channel Design

2/18/2014

14

Basic 2-way Arbiter

CE-653 - Handshake Channel Design27

 Purpose
 Used to control access to shared resource

 Approach
 Acknowledge handshake on request port that

arrives first, granting access
 Requires four-phase protocol

 winner maintains mutually-exclusive access of
resource until it resets request

 Caveat
 Make take an exponential amount of time to

determine who came first when requests arrive
very close together

 Sometimes called slackless arbiter

R1

R2

R1req

R1ack

R2req

R2ack

R1 has

access

R2 has

access

Slackless Tree Arbiters

CE-653 - Handshake Channel Design28

 Slackless Tree Arbiter cell

 Used to build multi-way arbiters

 Approach

 Add T channel to normal arbiter

 Delay ack of request channels until T channel acknowledged

 Can send request on T channel as soon as any request arrives

R1
T

R2

R1
T

R2

R1
T

R2

R1

R2

4-way Slackless Tree Arbiter

2/18/2014

15

2-way (Pipelined) Arbiter

CE-653 - Handshake Channel Design29

 Purpose

 Used to control access to shared resource in a pipelined design

 Approach

 Acknowledge of request not used to signify winner

 Instead, additional W channel used to identify who won

 Handshake on W simultaneously with acknowledging winning request

 Note

 Still may take exponential time

 In principle, this can use a two or four-phase protocol

R1
W

R2

Pipelined Tree Arbiter Cells

CE-653 - Handshake Channel Design30

 Tree Arbiter cell

 Used to build multi-way pipelined arbiters

 Approach

 Add synchronization channel O to 2-way (pipelined) arbiter

 Send request on O channel as soon as any request arrives

 Question

 How can use this cell as the basis of a 4-way pipelined arbiter?

R1 W

R2 O

2/18/2014

16

Pipelined Tree Arbiter – Naïve Solution

CE-653 - Handshake Channel Design31

 The Problem Scenario

 All 4 requests arrive at same time

 Output generates 1-bit output

 Which of the 4 requests does this 1-bit output identify?

 Need notion of addresses to distinguish between 4 requests

R1 W

R2 O

R1 W

R2 O

R1
W

R2

M
E

R
G

E

A

B

O

S

N.B. Assume this

Merge operates on 1-

bit data channels

Design Example I: 2x2 Crossbar

CE-653 - Handshake Channel Design32

 Features

 Provides any sender to any

receiver communication

 Concurrent communication

enabled

 S0 -> R0 && S1 -> R1

OR

 S0 ->R1 && S1 -> R0

 No packets lost

 Implicit flow control

CrossBar

Sender

0

Receiver

0

Receiver

1

Sender

1

S0_Data

S0_ToAddr

S1_Data

S1_ToAddr

R0_Data

R1_Data

2/18/2014

17

2x2 Crossbar Implementation

CE-653 - Handshake Channel Design33

Design notes

 Addresses are 1-bit wide

 Special Splits

 Splits 1-bit input into
one of two
synchronization
tokens

 Not slack elastic

 Adding pipeline
buffers can cause
design to deadlock

 Occurs when control
path has more slack
than data channel

S
P

L
IT

O1

O2

S

AS0_Data

S0_ToAddr

M
E

R
G

E
A

B

O

S

M
E

R
G

E

A

B

O

S

R1
W

R2

R1
W

R2
S

P
E

C
IA

L

S
P

L
IT

O1

O2

A

C
O

P
Y

S
P

L
IT

O1

O2

S

AS1_Data

S1_ToAddr

S
P

E
C

IA
L

S
P

L
IT

O1

O2

A

C
O

P
Y

R1_Data

R0_Data

Design Example II: Control-driven

2-place FIFO

CE-653 - Handshake Channel Design34

 Design notes

 Each half of the pipeline is controlled by a repeater (denoted „*”)

 Repeatedly handshake its active nonput channel with a sequencer

 Sequencer (denoted „SEQ‟) is responsible for

 first transferring the input to the corresponding variable

 and then onto the next stage.

 The join element, denoted by a „ ‟, is responsible for synchronizing the transfer
between the two variables.

→

PAR* *

SEQ0 1 SEQ0 1

x → y →in out

2/18/2014

18

Control-driven FIFO vs BUF-based pipeline

CE-653 - Handshake Channel Design35

 Control-driven 2-place FIFO

 Transfer of data is control-driven and transfer elements have active (pull) inputs.

 Data stored in designated variable elements “x” and “y”

 BUF-based linear pipeline

 Data stored in channels

 Can store two tokens (on C1 and C2) assuming BUF is a full-buffer

 Data-driven consisting of pipeline buffers that have passive (push) inputs.

BUF BUFC0 C1 C2

→

PAR* *

SEQ0 1 SEQ0 1

x → y →in out

VS

