
4/20/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

http://inf-server.inf.uth.gr/courses/CE653/

CE-653 - Indicating Logic 20/4/20141

Contents
 Indicating Logic Basics

 Dual-Rail and Other types of Encoding

 Indicating Logic Types

 Strongly vs. Weakly Indicating

 DIMS (Delay Insensitive Minterm Synthesis)

 NCL (Null Convention Logic)

 Threshold Gates

 NCL Flow

 NCLX (NCL with eXplicit Completion)

 NCLX Output Completion Network

 Dual-Polarity DR Logic

 Monotonic Boolean Networks (MBN)

 Support for Negative Gates (NAND, NOR, … etc.)

20/4/20142 CE-653 - Indicating Logic

4/20/2014

2

Indicating Logic

20/4/2014CE-653 - Indicating Logic3

 Indicating logic is able to generate a data-dependent
Completion Detection (CD/DONE) signal

 Indicates that valid data have arrived at the
C.L. cloud’s outputs

 What was there before valid data arrived?

 difficult separating successive data values (Validn, Validn+1, …)

 Intermediate value between valid data used (NULL/Spacer)

 Indicating circuit operation is two-phase: NULL, DATA, NULL, DATA, …

CombinationalCombinational

Logic CloudLogic Cloud
PIsPIs POsPOs

DONEDONE//CDCD

SignalSignal

Indicating Logic - Encodings

20/4/2014CE-653 - Indicating Logic4

 Indicating circuit operation is two-phase:
 NULL, DATA, NULL, DATA, …

 Boolean Logic encodes two values:

 0 or 1, T or F

 We need DATA and NULL, i.e. three values

 0 or 1 or NULL, T or F or NULL

 Simplest ternary logic is dual-rail

 Need two wires per Boolean signal

ActualValue: x.t, x.f Logical/Boolean Value

00 NULL

01 0 (False)

10 1 (True)

11 Unused

 Other Encodings

Possible

 1-of-n or m-of-n

4/20/2014

3

Indicating Logic – Strong vs. Weak

Indication

20/4/2014CE-653 - Indicating Logic5

 Dual-rail encoding allows us to detect DATA arrival at

 Inputs or Outputs

 Definition[Strongly/Weakly Indicating Logic]

 A circuit is strongly-indicating iff it waits for all of its inputs to
arrive before it computes and produces valid outputs, as well
as for all of its inputs to become NULL before it produces
NULL outputs

CombinationalCombinational

Logic CloudLogic Cloud
PIsPIs POsPOs

DONEDONE//CDCD

SignalSignal

Indicating Logic – Orphan Wires/Gates

20/4/2014CE-653 - Indicating Logic6

 Orphans represent unacknowledged circuit nodes

at the POs

 Definition[Wire Orphan]

 An orphan wire, or wire orphan is an indicating circuit wire, a

signal transition of which, triggered by a given and valid input

transition, is NOT acknowledged by a respective signal

transition on any PO

 Definition[Gate Orphan]

 An orphan gate, or gate orphan is an indicating circuit gate, a

signal transition through which, triggered by a given and valid

input transition, is NOT acknowledged by a respective signal

transition on any PO

4/20/2014

4

Indicating Logic – Orphan Wires/Gates

20/4/2014CE-653 - Indicating Logic7

 Thick lines

 data evaluation

 Dotted lines

 wire orphans which do not propagate, and are

unacknowledged, but must be cleared before new data

Indicating Logic – Orphan Wires/Gates

20/4/2014CE-653 - Indicating Logic8

 Orphan on lower input wire of g3 causes erroneous

output on z1

4/20/2014

5

Indicating Logic – Orphan Wires/Gates

20/4/2014CE-653 - Indicating Logic9

 In this example, orphans propagate through gates

 For proper reset dotted lines MUST return to zero

 But this cannot be checked by inspection of the

circuit’s outputs!

DIMS – Delay Insensitive Minterm

Synthesis

20/4/2014CE-653 - Indicating Logic10

4/20/2014

6

DIMS

20/4/2014CE-653 - Indicating Logic11

 DIMS is the simplest form of DR logic

 Each signal is instantiated in .t and .f rails

 Truth-table Minterms directly translated to 2-level DR logic

 1st DR circuit level is C-Elements, 2nd level is OR gates

DIMS (Delay Insensitive Minterm Synthesis)

20/4/2014CE-653 - Indicating Logic12

 Four-input NAND Example in DIMS

4/20/2014

7

NCL – Null Convention Logic

20/4/2014CE-653 - Indicating Logic13

Threshold Gates – DIMS Generalisation

20/4/2014CE-653 - Indicating Logic14

2 2

3

2

3

4

2

3

4

5

11 1 1

OR gate equivalents
DIMS DIMS

4/20/2014

8

Threshold Gates – DIMS Generalisation

20/4/2014CE-653 - Indicating Logic15

 Threshold gates

 generalisation of

C-elements

 Threshold Gate Output

Rises when the

number of threshold

inputs rises

 Threshold Gate Output

Falls when all inputs

fall

Threshold Gates – 2 of 3 with hysteresis

20/4/2014CE-653 - Indicating Logic16

 Hysteresis means Sequential

 Threshold 23 gate switches:

 high when 2 of 3 inputs are high

 low when all 3 inputs are low

 Boolean Function Format:
 z = ab + ac + bc + z(a + b + c)

a

b

b

b

c

c

a

a

z

c

4/20/2014

9

NCL Flow 1 – Separate C.L., Registers

20/4/2014CE-653 - Indicating Logic17

 Combinational Logic and Registers are separated

Request for data/null
reset

Combi-

national

process

Request for data/null

S
e

q
u

e
n

ti
a

l

p
ro

c
e

s
s

Replaced by NCL Replaced by NCL

registration in RTL coderegistration in RTL codeSubject of Subject of

synthesis and synthesis and

optimizationoptimization

NCL Commercial Flow – Synopsys DC Based

20/4/2014CE-653 - Indicating Logic18

NCL NCL

librarylibrary

VHDL

Generic

library

Synthesis

DualDual--railrail

definitiondefinition
Intermediate

netlist

NCLNCL

netlistnetlist

Synthesis

 Step Step 11. .

Translate HDL into Translate HDL into

“synchronous” netlist“synchronous” netlist

 Step Step 22..

Convert intermediate Convert intermediate

netlist into NCL netlistnetlist into NCL netlist

4/20/2014

10

NCL Optimisation with Synopsys DC

20/4/2014CE-653 - Indicating Logic19

 Dual-rail expansion

 Two phases (set and reset) are separated

 Set phase ensures circuit functionality

 Reset phase is implied

 Optimizations are applied to the set phase

NCL Gate Images – Output Rise (Set)

Equivalent

20/4/2014

CE-653 - Indicating Logic20

NCL gatesNCL gates

z=ab+z=ab+z(a+b)z(a+b)

aa

bb th22

zz

aa

aa
bb

zz

z=a+bz=a+b

z=a(b+c)+z=a(b+c)+z(a+b+c)z(a+b+c)

bb
cc th33w2

zz

……

Boolean gates (images)Boolean gates (images)

z=abz=ab
aa

aa
bb

zz

z=a+bz=a+b

z=a(b+c)z=a(b+c)

aa

bb
zz

bb
cc

zz

……

equivalent for

set phase

In the initial state:In the initial state:

z=a=b=c=z=a=b=c=00

HysteresisHysteresis--

sequential behaviorsequential behavior
Combinational Combinational

behaviorbehavior

Projection for

optimization

Mapping for

implementation

4/20/2014

11

Image of D-R NAND Gate

20/4/2014CE-653 - Indicating Logic21

 No Difference to DIMS implementation of standard-cell gates

out.t

out.f

C

C

C

C

a.t

b.t

a.f

b.f

D-R
NAND

a.t
a.f

b.t

b.f

CC--elementelement equation: z=abequation: z=ab++z(a+b). z(a+b).

out.t

out.f

NCL Flow Detailed Example – Step 1

20/4/2014CE-653 - Indicating Logic22

 Conventional RTL Description

 Multiplexer

entity test

input a,b,s : ncl_logic;

output z : ncl_logic;

architecture

process (a, b, s) is begin

if s = „1‟ then

z <= a;

else

z <= b;

end if;

end process;

a

b
z

s

4/20/2014

12

NCL Flow Detailed Example – Step 2

20/4/2014CE-653 - Indicating Logic23

 Conventional RTL to Boolean Gates Synthesis

a

s

b

x

y

z

Two input NAND gates

a

b

s

z

NCL Flow Detailed Example – Step 3

20/4/2014CE-653 - Indicating Logic24

 Define new type for signal logic – dual_rail_logic
type dual_rail_logic is record

rail1 : std_logic ;

rail0 : std_logic ;

end record;

 Overload common operators/gates:

a.0

a.1

{0,1}

{0,1}a

{0,1,N}

22

22

22

22

13 z.0

z.1

a.0

a.1

b.0

b.1

function “nand”

th22 = two-input C-element

th13 = three-input OR

a.0

a.1

z.1

z.0

function “not”

4/20/2014

13

NCL Flow Detailed Example – Step 4

20/4/2014CE-653 - Indicating Logic25

 Naive semi-static DIMS implementation – 114 transistors

- may be reduced to 63 transistors by merging C-elements

with OR-gates - versus 14 for a synchronous circuit

a

s

b

x

y

z

b.f

a.t

b.t

D-R

NAND

D-R

NAND

D-R

NAND

x.t

s.f

a.f

x.f

y.t

y.f

z.t

z.f

s.t

NCL Flow Detailed Example – Set Phase

20/4/2014CE-653 - Indicating Logic26

out.t

out.f

a.t

b.t

a.f
b.f

CC--elementelement equation: z=ab+z(a+b), equation: z=ab+z(a+b),

initially z=a=b=0initially z=a=b=0

In a set phase it behaves like anIn a set phase it behaves like an AND gateAND gate z=abz=ab

 During the set phase C-elements in D-R gates behave like

AND gates

4/20/2014

14

NCL Flow Detailed Example – Step 5

20/4/2014CE-653 - Indicating Logic27

 Dual-Rail Expansion Step

b.f

a.t

b.t

x.t

s.f

a.f

x.f

y.t

y.f

z.t

z.f

s.t

Twelve Twelve 22--input Cinput C--gates gates

&&

Three Three 33--input ORinput OR--gatesgates

Set Phase Image Circuit after DR Expansion

20/4/2014CE-653 - Indicating Logic28

 This circuit contains DCs

 x.t.x.f = 1 is DC

b.f

a.t

b.t

x.t

s.f

a.f

x.f

y.t

y.f

z.t

z.f

s.t

4/20/2014

15

NCL Flow Detailed Example – Step 6

20/4/2014CE-653 - Indicating Logic29

 Technology independent optimization (DCs)

 Technology-mapping of image gates to NCL library gates

b.f

a.t

b.t

s.f

a.f

s.t

z.t

z.f

image of th33w2

A(B+C)A(B+C)

image of thXOR

AB+CDAB+CD

NCL Flow Detailed Example – Step 7

20/4/2014CE-653 - Indicating Logic30

 Final NCL circuit

 Image gates (Set phase) are replaced by sequential NCL

standard-cells with reset pull-ups

b.f

a.t

b.t

s.f

a.f

s.t

thXOR

z.t

z.f

th33w2

th33w2th33w2

thXOR

2

2

thXORthXOR

2

2

th22

th22

th24w2

th24w2

f

e

m

n

e

f

m

n

k

SemiSemi--static CMOS static CMOS

implementation of implementation of

thXOR.thXOR.

44 transistors - 30% better than optimized DIMS

4/20/2014

16

NCL Flow Results

20/4/2014CE-653 - Indicating Logic31

 Typically, actual area overhead is >2.5X

0

500

1000

1500

2000

2500

clock

NCL

0

5000

10000

15000

20000

25000

30000

35000

gates transistors
Penalty in transistors:

Dual-rail implementation

Effective delay-insensitivity

NCLX – NCL with eXplicit

completion

20/4/2014CE-653 - Indicating Logic32

4/20/2014

17

NCLX – Explicit Completion

20/4/2014CE-653 - Indicating Logic33

 Aims to reduce huge area overhead of NCL

 Strongly-Indicating Logic (alike DIMS/NCL)

 Key Idea

 Separate Functional Part (Set Functions for DR Outputs)

and Delay-Insensitive Part (Resetting and Orphans)

 Four Boolean Networks

 Dual-Rail Functional Part (DR Inputs  DR Outputs)

 Input Completion Part for Strong-Indication

 Also referred to as.go signal

 Intermediate Node Completion Part for Orphan Elimination

 Output Completion Part for Strong-Indication

 Input Completion and Local Completion are merged

NCLX

20/4/2014CE-653 - Indicating Logic34

 Four-input NAND Example in NCLX

4/20/2014

18

Dual-Rail Network Conversion - MBN

20/4/2014CE-653 - Indicating Logic35

 Weakly-Indicating

 No input, local node completion

 Timing assumptions required for orphan nodes/gates

a.t

b.t

x.t

a.f

b.f
x.f

CD

a x

b

Original BN:

x = a b

[x‟ = a‟ + b‟]

DR Equivalent BN:

x.t = a.t b.t

x.f = a.f + b.f

CD = x.t + x.f

36

Monotonic Boolean Network

 Boolean Network consists of

 Monotonic Nodes

 Must be Unate

 Unate = node function contains each variable in either

non-complemented or complemented form

a

b

F =ab

Monotonic Node

a

b

F = ab‟ + a‟b

Non-Monotonic Node

20/4/2014CE-653 - Indicating Logic

4/20/2014

19

Two Phase DR Network Elastic Operation

20/4/2014CE-653 - Indicating Logic37

a.f

b.f

x.t

a.t

b.t

x.f

c.t

c.f

y.t

y.f

CD

Two Phase DR Network Elastic Operation

20/4/2014CE-653 - Indicating Logic38

0

0

0

0

0

0

0

0

0

0

DONE

0

1

1

1

1

1
1

Critical path depth: 3 Logic Levels (LL)

4/20/2014

20

Two Phase DR Network Elastic Operation

20/4/2014CE-653 - Indicating Logic39

0

0

0

0

0

0

0

0

0

0

DONE

0

1

1

1

1

1

1

Critical path depth: 2 Logic Levels (LL)

Complex NCLX Example

20/4/2014CE-653 - Indicating Logic40

4/20/2014

21

NCLX Results

20/4/2014CE-653 - Indicating Logic41

 Good improvement

over NCL

 Difficult to reduce

area further

without sacrificing

delay-insensitivity

Timing Assumptions for DR Logic

20/4/2014CE-653 - Indicating Logic42

 Strongly-Indicating DR Circuit – detect arrival of all inputs

 Timing Assumption about Orphan nodes’ Reset

 Can go a step further  weak-indication, no input detection…

4/20/2014

22

Dual-Polarity/Phase DR Logic

20/4/2014CE-653 - Indicating Logic43

Dual-Polarity DR Logic Methodology

20/4/2014CE-653 - Indicating Logic44

 All methodologies so far only support

positive polarity gates (positive unate)

 AND/OR, etc.

 Dual-Polarity DR Logic supports both

Positive and Negative Polarity Gates

 e.g. NAND, NOR, etc.

 CMOS Negative gates are faster than positive gates

 Positive gates are Negative gates + inverter

 General methodology for Boolean Network

transformation to a Monotonic Boolean Network

 Logic Synthesis level

4/20/2014

23

Dual-Polarity DR Logic Methodology

20/4/2014CE-653 - Indicating Logic45

1x

2x

3x

4x

Area

Delay1x

Static CMOS

Dynamic Logic

NCLX

DualDual--Polarity Polarity

DRDR

DIMS

MBNs (Monotonic Boolean Networks)
 We can allow for BN nodes to be phased as negative or positive

 Definition[Increasing/Decreasing Node]

 BN node f is increasing (decreasing) in positive (negative) variable xi 

xi: 0→1 (1→0), f cannot change 1→0 (0 →1)

 Definition[Unate Function]

 BN function f unate in xi, iff f is increasing or decreasing in xi

 Definition[Positive/Negative Nodes]

 Node ni with local function fi is +ve (-ve)

 xi is +ve (-ve) and fi is increasing in xi,OR
xi is -ve (+ve) and fi is decreasing in xi.

 Definition [Monotonic Node]

 A node is monotonic if it is either +ve or –ve.

 Definition [Monotonic Boolean Network]

 A BN is MBN if all its nodes are monotonic

 MBN is hazard-free under monotonic input transitions

20/4/201446 CE-653 - Indicating Logic

4/20/2014

24

Monotonic Boolean Networks

 Assign polarity to every node to check monotonicity.

++

++

++

++

++

++

--

--

--
++

is this BN monotonic?

20/4/201447 CE-653 - Indicating Logic

is this BN monotonic?

++

++

++

++

++

--

++
??????

20/4/201448 CE-653 - Indicating Logic

Monotonic Boolean Networks

4/20/2014

25

MBN Transformations

 Key Questions:

 given a BN, how do we transform it to an MBN?

 given an MBN, which transformations and optimizations can

we apply to reduce to another MBN?

 Answers:

 Provide two transformation procedures, based on the dual-rail

code, for generating an MBN from a generic BN:

 Technology-Independent (TI) Conversion

 Technology-Mapped (TM) Conversion

 Provide a set of hazard-non-increasing transformations on

MBNs.

20/4/201449 CE-653 - Indicating Logic

Technology-Independent DR Conversion
 For each PI x, create xt and xf representing the true and

false evaluations of x.

 For each node implementing yi = fi(x1, …, xn), create
two nodes:
 yti = DR(fi(x1, …, xn)) and yfi = DR(fi‟(x1, …, xn))

 y = x‟, special case, yt = xf, yf = xt

 Define DR recursively (based on Shannon Expansion Th.):
 DR(0) = 0, DR(1) = 1

 DR(x.fx + x‟.fx‟) = xt.DR(fx) + xf.DR(fx‟)

 Theorem[DR Conversion]
 Given function y = f(x1, …,xn), under the assumption that

xi = xti = xfi‟ it holds that y = yt = yf‟

 Proof: by induction on function DR

20/4/201450 CE-653 - Indicating Logic

4/20/2014

26

Technology-Independent DR Conversion

 y = a‟b + b(c + d‟)

 would be converted into:

 yt = DR(a‟b + b(c + d‟)) = atbf + bt(ct + df)

 yf = DR(a‟b + b(c + d‟))‟ = (af + bt)(bf + cfdt)

 How do I convert?

 Use Shannon’s Expansion Theorem

 assume that xi = xti = xfi‟, for all nodes/POs x in circuit

 Use the SIS dr package!

20/4/201451 CE-653 - Indicating Logic

Technology-Independent Conversion -

Example

a

b

c

d

x

y

r

s

 Original BN:

 y = a‟b + b(c + d‟)

20/4/201452 CE-653 - Indicating Logic

4/20/2014

27

Technology-Independent Conversion -

Example

 Dual-Rail Conversion:

 yt = atbf + bt(ct + df)

 yf = (af + bt)(bf + cfdt)

a.t
b.f

c.f

d.t

x.t

y.f

r.t

s.t
b.t

d.f
y.t

x.f

c.t

a.f

s.f

r.f

20/4/201453 CE-653 - Indicating Logic

Technology-Independent Conversion -

Example

 Technology Mapping to a library

a.t

b.f

c.f

d.t

x.t

y.f

b.t

d.f
y.t

x.f

c.t

a.f

20/4/201454 CE-653 - Indicating Logic

4/20/2014

28

Technology-Mapped Conversion

 For each gate, producing signal yti, from signals

ytj, …, ytk, add a dual gate, based on De Morgan’s law.

 Label each node as +ve or –ve, starting from the PO’s,

according to gate polarities

 In case of multiple paths from POs to the node, consider

the longest

 For each inconsistently labeled gate input or PI, which is,

invert and connect to its dual

20/4/201455 CE-653 - Indicating Logic

Technology-Mapped Conversion - Example

 Original technology-mapped circuit:

y

a

b

c

d

x

20/4/201456 CE-653 - Indicating Logic

4/20/2014

29

Technology-Mapped Conversion –

Example – Phase Labeling
a.t

b.f

c.f

d.t

x.t

y.t

b.t

a.f

b.t

d.f

b.f

c.t

x.f

y.f

+/P

+/P

+/P

+/P

-/N

-/N

-/N

-/N

-/N

-/N

-/N

-/N

+/P

+/P

+/P

+/P

+/P

+/P

+/P

+/P

20/4/201457 CE-653 - Indicating Logic

Technology-Mapped Conversion –

Example – Phase Correction
a.t

b.f

c.f

d.t

x.t

y.t

b.t

a.f

b.t

d.f

b.f

c.t

x.f

y.f

+/P

+/P

+/P

+/P

-/N

-/N

-/N

-/N

-/N

-/N

-/N

-/N

+/P

+/P

+/P

+/P

+/P

+/P

+/P

+/P

20/4/201458 CE-653 - Indicating Logic

4/20/2014

30

Technology-Mapped Conversion –

Example – Final Result
+/P

a.t

b.f

c.f

d.f

x.t

y.t

b.t

a.f

b.t

d.t

b.f

c.t

x.f

y.f

+/P

+/P

+/P

+/P

-/N

-/N

-/N

-/N

-/N

-/N

-/N

-/N

+/P

+/P

+/P

+/P

+/P

+/P

+/P

+/P

+/P

20/4/201459 CE-653 - Indicating Logic

Hazard-non Increasing Transformations

20/4/2014CE-653 - Indicating Logic60

 Set of transformations that preserve MBN:

 De Morgan’s laws.

 Dual global and global flow.

 Tree decomposition.

 Gate replication.

 Collapsing.

 Kernel-factoring.

 Cube-factoring.

4/20/2014

31

Fast Reset

20/4/2014CE-653 - Indicating Logic61

 The MBN approach is NOT delay-insensitive

 Set function performs Completion-Detection

 Reset is timed

 Note that typically MBN requires reset at every cycle

 This is an issue for speed

 Fast Reset Approach

 Slice DR Logic Circuit with multiple Reset Levels

 Reset each level

 Use a delay element to wait for Reset

Dual-Phase DR Results – Scatter 1

20/4/201462 CE-653 - Indicating Logic

4/20/2014

32

Dual-Phase DR Results – Scatter 2

20/4/201463 CE-653 - Indicating Logic

Dual-Phase DR Results – Scatter 3

20/4/201464 CE-653 - Indicating Logic

4/20/2014

33

Dual-Rail MBN Use Cases

20/4/2014CE-653 - Indicating Logic65

 Synchronous

Environment

 Check against

a clock signal

 Asynchronous

Environment

 Exploit data-

dependent

latencies

Advanced DR Methodologies

20/4/2014CE-653 - Indicating Logic66

4/20/2014

34

Gated DR Circuits

20/4/2014CE-653 - Indicating Logic67

Gated DR Circuits

20/4/2014CE-653 - Indicating Logic68

 GDR motivation
 High degree of power overhead of monotonic DR circuit (~x9)

 Gated Logic
 Logic subcircuit prevented from switching

 Gating Logic
 Logic controlling (enabling/disabling) when the Gated Logic

is prevented from switching

 Blocking Elements
 Gates which block signal transitions propagation

Blocking ElementsBlocking Elements Gated LogicGated Logic

Gating LogicGating Logic

Original Circuit Original Circuit

Unmodified LogicUnmodified Logic

PIs

4/20/2014

35

Gated DR Circuits – Basics

20/4/2014CE-653 - Indicating Logic69

 A Circuit node is controllable if a subset of its inputs is able to
determine node’s value
 A node implementing the AND logic function is controllable, as the

evaluation of any of its inputs to 0 is able to determine node’s value.

 A node implementing the XOR logic function is not controllable, as
every input value is needed in order to evaluate node’s value.

GatingGating

LogicLogic
Gated LogicGated Logic Controllable Controllable

NodeNode

GDR Example

20/4/2014CE-653 - Indicating Logic70

a

b

c

d

Original Monotonic Original Monotonic DualDual--Rail CircuitRail Circuit

d

c

b

a Gated LogicGated Logic

GatingGating

LogicLogic

Blocking ElementsBlocking Elements

Controllable NodeControllable Node

GDR Monotonic DR CircuitGDR Monotonic DR Circuit

4/20/2014

36

Mixed SRDR Circuits

20/4/2014CE-653 - Indicating Logic71

Mixed SRDR Circuits

20/4/2014CE-653 - Indicating Logic72

 DR circuits benefits and drawbacks

 Data-dependent latency (+)

 Large area overhead (-)

 Large power overhead (-)

 NULL (RESET) phase is slow!!! (-)

 Why not implemented Mixed SR and DR Logic?

 Slice C.L. circuit’s Logic Levels vertically

 Use conventional Boolean (SR) logic for first logic levels of C.L.

 Traversed anyway by most exercised circuit paths

 Use DR logic only for deep logic levels

 Exhibit data-dependent elasticity

 Hide NULL phase of DR Logic

 Overlap with SR evaluation!!!

4/20/2014

37

Mixed SRDR Circuit Architecture

20/4/2014CE-653 - Indicating Logic73

 DR Logic may RESET while SR Delay is evaluating
 Hide DR RESET Overhead!!!

DR

SR

LC LC

ro
CD

SR/DRSR/DR

SR Delay

interface

RESETRESETDR Logic

SR Logic

DATADATA RESETRESET DATADATA

EVALEVAL EVALEVAL

Mixed SRDR Circuit Example

20/4/2014CE-653 - Indicating Logic74

a_t

b_t

c_t

d_t

f_t

e
f

G_t

G_f

c_f

d_f

b_f

a_f

f_f C

ro

LC

f = a(b + cdG)

G = e‟f +ef‟

f_t = a_t(b_t + c_t d_t G_t)

f_f = a_f + b_f(c_f + d_f + G_f)

SR

f_t CD

