
5/11/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

http://inf-server.inf.uth.gr/courses/CE653/

CE-653 - Asynchronous Pipeline Performance 11/5/20141

Contents

 Pipeline Performance Metrics

 Synchronous vs. Asynchronous

 Forward and Backward Latencies

 Linear Pipeline Performance

 Cycle Time, Latency, Throughput, Dynamic Slack/Occupancy

 Occupancy vs. # of Tokens Graph

 Computing Peak Throughput and Average # of Tokens
Occupancy

 Performance of Pipeline Rings

 An Example: GCD Implementation

 Pipelining the GCD datapath

 Optimising Pipelines and Rings

CE-653 - Asynchronous Pipeline Performance 11/5/20142

5/11/2014

2

Pipeline Performance and Metrics
 Synchronous Design

 Latency of a pipeline
 Measured in terms of # of clock cycles

 Throughput
 Typically measured in terms of results per second

 Inverse of Clock Cycle Time for systems that generate a result each cycle

 Asynchronous Pipelined Design (i.e., using pipelined handshaking)
 Latency

 Time between tokens consumed at inputs and generated outputs

 Inputs tokens spread apart to avoid congestion slowing down results

 Cycle Time
 Taken as long-term average of time between successive output tokens

 Throughput
 Results (tokens) per second - inverse of cycle time

 Data-dependent delays
 Block-level delays and data-flow may be data-dependent

CE-653 - Asynchronous Pipeline Performance 11/5/20143

Forward Latency

 Forward latency (FL) – block level

 Time between tokens consumed at inputs
and generated outputs

 Inputs tokens spread apart to avoid congestion
slowing down results

 May be data-dependent

 (Forward) latency – system

 A sum of forward latencies through blocks

 Must account for causality of output tokens
within blocks

 Earlier/latest arriving token may cause output
token

 I.e., notion of critical path exists

module OR(L1, L2, R);

`INPORT(L1,1);

`INPORT(L2,1);

`OUTPORT(R,1);

`USES_CHANNEL

parameter FL = 2;

reg d1, d2;

always

begin

fork

`RECEIVE(L1,d1);

`RECEIVE(L2,d2);

join

#FL;

`SEND(R,d1 | d2);

end

endmodule

CE-653 - Asynchronous Pipeline Performance 11/5/20144

5/11/2014

3

Local Cycle Time + Backward Latency

 Local cycle time

 Shortest time to complete a
handshake with its neighbours
 Cycle may involve three neighbours for half-

buffers

 Lower-bound on performance

 Equals FL + BL

 Backward latency (BL)

 Time needed to reset before
accepting new tokens
 Time between generated output and earliest

time of subsequent input

module BUF(L, R);

parameter width = 8;

parameter FL = 2;

parameter BL = 4;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

reg [width-1:0] d;

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL;

end

endmodule
CE-653 - Asynchronous Pipeline Performance 11/5/20145

Full-Buffer PTnet Model

CE-653 - Asynchronous Pipeline Performance

FL

BL

 How do FL/BL determine pipeline performance?

11/5/20146

5/11/2014

4

Half-Buffer PTnet Model

CE-653 - Asynchronous Pipeline Performance

FL

BL

BL2
FL

 What parameters determine the performance in the

Half-Buffer case?

11/5/20147

Full-Buffer Handshaking –

Backward Latency

11/5/2014CE-653 - Asynchronous Pipeline Performance8

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1 T2

T1

T3

T1

T2

FL BL

5/11/2014

5

Half-Buffer Handshaking –

Backward Latency

11/5/2014CE-653 - Asynchronous Pipeline Performance9

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T2

FL BL
Cycle involves three successive blocks

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

T1

T1

T1

T2

Performance Metrics - Animated

 Forward Latency (FL)

 Backward Latency (BL)

 Local Cycle Time

 FL+BL

FL

BL

CE-653 - Asynchronous Pipeline Performance 11/5/201410

5/11/2014

6

Dynamic Pipeline Behaviour

CE-653 - Asynchronous Pipeline Performance

 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline

 Spread
 distance between successive tokens in a full pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline during operation

 N*1/Spread = (N*FL)/(FL + BL)

11/5/201411

Dynamic Slack

 Dynamic Slack or Dynamic Occupancy
Formula for N buffers:

 Assumptions:
 Tokens not stalled by buffers or

BitBucket resetting
 Tokens inserted at rate of local cycle

time (FL + BL)
 Tokens consumed at rate of local cycle

time

 Can be as small as N/9 (depending on
circuit type)

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN

1

*

CE-653 - Asynchronous Pipeline Performance

(average)

Peak Throughput

= 1/(FL + BL)

11/5/201412

5/11/2014

7

Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of
tokens

 Peak throughput in-
between
 Token limited region

 Faster BitGen
improves throughput

 Bubble limited region

 Faster BitBucket
improves performance

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

CE-653 - Asynchronous Pipeline Performance 11/5/201413

N

FL

1

N

BL

1

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

tokens

throughput

Buffer: FL=2, BL=2

CE-653 - Asynchronous Pipeline Performance 11/5/201414

5/11/2014

8

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

• Slow left environment
• Bitgen: LCT = 6

• Buffer: FL=2, BL=2

• Bucket: LCT = 2

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated

CE-653 - Asynchronous Pipeline Performance 11/5/201415

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

• Slow right environment
• Bitgen: LCT = 2

• Buffer: FL=2, BL=2

• Bucket: LCT = 6

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22

CE-653 - Asynchronous Pipeline Performance 11/5/201416

5/11/2014

9

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

tokens

throughput

Buffer: FL=2, BL=2

CE-653 - Asynchronous Pipeline Performance 11/5/201417

Non-homogeneous Pipelines

CE-653 - Asynchronous Pipeline Performance

 Peak throughput is limited by:

 Worst-case (largest)
local cycle time

 Dynamic slack/Occupancy

 Becomes a range of # of
tokens

 Data-limited slope

 Inverse of sum of FLs (?)

 Bubble-limited slope

 Inverse of sum of BLs (?)

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

tokens

throughput

 (max (FLi + BLi))
-1

i

Slope = (∑FLi)
-1

i
Slope = -(∑BLi)

-1

i

dynamic slack

11/5/201418

5/11/2014

10

Pipeline Rings

 Definition (informal)

 Pipeline buffers configured in a loop

 Can be combined with forks, joins

 Used in implementing iterative

algorithms

 Each iteration implemented by a token

traversing the loop

 Multiple tokens in loop possible

 Each token independent of others

 Implements “multi-threading”, i.e.

pipelining

function gcd(A, B)

while A ≠ B

if A > B

A := A - B

else

B := B - A

return O = A

Euclid’s Algorithm for Greatest

Common Divisor (GCD)

CE-653 - Asynchronous Pipeline Performance 11/5/201419

A GCD Implementation

 Implementation Notes

 MUXs are same as MERGEs but
consume both input tokens

 TB is a token buffer

 Generates a token on
initialization with configurable
value

 Acts as a buffer afterwards

 FORK cells implied by branching
channels (for clarity)

 All cells use pipeline handshaking

 Architectural Feature

 Contains many pipeline rings

 Single Token around the ring

 Does one GCD at a time!

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

!=

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

BB

A

B

O

<

M
U

X

A

B

O

S

M
U

X

A

B

O

S

S
U

B

A

B

O

S
U

B

A

B

O

T
B

CE-653 - Asynchronous Pipeline Performance 11/5/201420

5/11/2014

11

A GCD Implementation

 Operation

 TB generates tokens to select

input tokens come in on PIs

A and B

 Tested for equality which

controls how they are routed

 If != routed to SUBs & „<„

 Otherwise, A is routed to output

 SUBs concurrently generate

differences.

 Specific difference routed back to

merge controlled by „<„ and

MUXs

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

!=

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

BB

A

B

O

<

M
U

X

A

B

O

S

M
U

X

A

B

O

S

S
U

B

A

B

O

S
U

B

A

B

O

T
B

CE-653 - Asynchronous Pipeline Performance 11/5/201421

Token Buffer – VerilogCSP Model
module TOK_BUF(L, R);

parameter width = 8; parameter init = 8‟b0;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

parameter FL = 2; parameter BL = 4;

reg [width-1:0] d;

initial

begin

`SEND(R,init);

end

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL;

end

endmodule

 Initial block

 Mechanism to send out initial

token

 Init

 Value of initial token sent out

 Configurable via Verilog

parameter feature

 After initial block, never used

again

 Always block

 Performs steady-state behavior

 Just like BUF cell

CE-653 - Asynchronous Pipeline Performance 11/5/201422

5/11/2014

12

“Multi-Threading”/Pipelined Variant

CE-653 - Asynchronous Pipeline Performance

 Add another Token Buffer (TBs)

 Pipelines design by enabling two
sets of tokens in loop
simultaneously

 Second set enters immediately,
before first set completes algorithm

 Each set represents a thread and
moves around loop independent of
other set

 No interference due to handshaking

 The Purpose

 Multiple instances of GCD
algorithm solved simultaneously

 Can improve throughput

 Tokens on O per second

 Completion may be
Out-Of-Order (OOO)

 depending on # of iterations per
input

 Use ROB or problem/tag

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

!=

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

BB

A

B

O

<

M
U

X

A

B

O

S

M
U

X

A

B

O

S

S
U

B

A

B

O

S
U

B

A

B

O

T
B

T
B

11/5/201423

Pipeline Loops – Bottleneck Example

 Buffer Performance
 Assume: FL = 2; BL = 4

 Ring Architecture
 Three tokens with four full-buffers

 N.B. # of tokens in ring is
constant

 Performance Analysis
 Each token can move forward

every 3 * BL = 12 time units

 Example: token #3 moves forward
at t = 2 and t = 14

 Each token completes an iteration
every 12 * 4 = 48 time units

 Three tokens do this concurrently

 Completing 3 iterations every 48
time units

 Yields, throughput of 1 iteration
every 48/3 = 16 time units

t = 0

B

T

T

T t = 2

B

T

T

T t = 4

B

T

T

T

t = 6

B

T

T

T t = 8

B

T

T

T t = 10

B

T

T

T

t = 12

B

T

T

T t = 14

B

T

T

T t = 16

B

T

T

T

1

1

1

111

2

2

2 2

22

3

3

3

3

3 3

1

2

1

23

13

3

2

CE-653 - Asynchronous Pipeline Performance 11/5/201424

5/11/2014

13

Pipeline ring – Performance Analysis

 Intuition

 Pipeline ring is like a linear

pipeline with output channel

tied to input channel

 Optimal performance

 No pipeline buffer starved

 No pipeline buffer stalled

 Dynamic slack/Occupancy
(for full-buffers):

1/16

1/6

4/3 4

tokens

throughput

1/8

N.B. Performance is at discrete points

only because cannot have a fractional

number of tokens in pipeline ringFL

BL

N

1

N = 4

FL = 2

BL = 4

CE-653 - Asynchronous Pipeline Performance 11/5/201425

Pipeline Loops – Improving Performance

CE-653 - Asynchronous Pipeline Performance

 Bubble-limited loops

 Can improve

performance by adding

pipeline buffers

 Intuition

 Bubbles need to flow

backwards less distance

for tokens to flow

forward

 Data-limited loops

 Increase multi-

threading

 Shorten loop latency

N = 6

FL = 2

BL = 4

Throughput = 8

B

B

B

T

TT

t = 0

B

B

B

T

TT

t = 2

B

B

B

T

TT

t = 4

B

B

B

T

TT

t = 6

B

B

B

T

TT

t = 8

11

11

1

22

22

2

33

33

3

11/5/201426

5/11/2014

14

Fork – Join Pipeline - Bottlenecks

CE-653 - Asynchronous Pipeline Performance

 Slowest fork-join

path determines

input-output

latency

S0

S1 S2 S3 S4 S5 S6

S8

S7

S0

S1 S2 S3 S4 S5 S6

S8

S7

2

1

t = 0

t = 6

t = 12
1

1

2

S0

S1 S2 S3 S4 S5 S6

S8

S7

S0

S1 S2 S3 S4 S5 S6

S8

S7

1

1

t = 18

2

2

S0

S1 S2 S3 S4 S5 S6

S8

S7

t = 22

2

3

11/5/201427

Fork – Join: Performance Analysis

CE-653 - Asynchronous Pipeline Performance

 Intuition

 Number of tokens in each
branch of fork-join is
identical

 Throughput versus #
tokens

 Lower-bounded by triangle
graphs of individual pipelines

 Performance characteristics

 Static slack is minimum of
two individual pipelines

 Peak throughput can be
lower than either of
individual pipelines

1/16

1/6

2/3 2
tokens

throughput

1/8

7

1/11

Bottom

Branch Top

Branch

Fork-Join

11/5/201428

5/11/2014

15

Fork – Join: Other Characteristics

CE-653 - Asynchronous Pipeline Performance

 Shorter pipeline (lower static slack) may not be bottleneck
 Can happen if peak throughout of shorter pipeline is larger than longer

pipeline

 See Figure (a) above

 Equal static slack is not always optimal
 i.e., adding buffers may improve peak throughput despite causing a static

slack imbalance

 See Figure (b) above

tokens

throughput

Branch 1 Branch 2
Old Fork-Join

New

Branch 1

New Fork-Join

tokens

throughput

Branch 1
Branch 2

Fork-Join

(a) (b)

11/5/201429

Summary and Conclusions

CE-653 - Asynchronous Pipeline Performance

 Performance of asynchronous pipelines is complex

 Largely due to presence of backward latency of pipeline buffers

 Throughput versus # of tokens graph

 Effective way to analyze simple pipeline structures

 Provides good intuition of many issues

 More complex pipeline structures popular

 For example, forks / joins / conditional in pipeline loops

 e.g., GCD example

 Need more powerful methods of analyzing and optimizing

pipelining

 Covered later on using performance models

11/5/201430

