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Pipeline Performance and Metrics
 Synchronous Design

 Latency of a pipeline
 Measured in terms of # of clock cycles

 Throughput
 Typically measured in terms of results per second

 Inverse of Clock Cycle Time for systems that generate a result each cycle

 Asynchronous Pipelined Design (i.e., using pipelined handshaking)
 Latency

 Time between tokens consumed at inputs and generated outputs

 Inputs tokens spread apart to avoid congestion slowing down results

 Cycle Time
 Taken as long-term average of time between successive output tokens

 Throughput
 Results (tokens) per second - inverse of cycle time

 Data-dependent delays
 Block-level delays and data-flow may be data-dependent

CE-653 - Asynchronous Pipeline Performance 11/5/20143

Forward Latency

 Forward latency (FL) – block level

 Time between tokens consumed at inputs 
and generated outputs

 Inputs tokens spread apart to avoid congestion 
slowing down results

 May be data-dependent

 (Forward) latency – system

 A sum of forward latencies through blocks

 Must account for causality of output tokens 
within blocks

 Earlier/latest arriving token may cause output 
token

 I.e., notion of critical path exists

module OR(L1, L2, R);

`INPORT(L1,1);

`INPORT(L2,1);

`OUTPORT(R,1);

`USES_CHANNEL

parameter FL = 2; 

reg d1, d2;

always

begin

fork

`RECEIVE(L1,d1);

`RECEIVE(L2,d2);

join

#FL;

`SEND(R,d1 | d2);

end 

endmodule 
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Local Cycle Time + Backward Latency

 Local cycle time

 Shortest time to complete a 
handshake with its neighbours
 Cycle may involve three neighbours for half-

buffers

 Lower-bound on performance

 Equals FL + BL

 Backward latency (BL)

 Time needed to reset before 
accepting new tokens
 Time between generated output and earliest 

time of subsequent input

module BUF(L, R);

parameter width = 8; 

parameter FL = 2; 

parameter BL = 4;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

reg [width-1:0] d;

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL; 

end 

endmodule 
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Full-Buffer PTnet Model
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FL

BL

 How do FL/BL determine pipeline performance?

11/5/20146



5/11/2014

4

Half-Buffer PTnet Model
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FL

BL

BL2
FL

 What parameters determine the performance in the 

Half-Buffer case?
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Full-Buffer Handshaking –

Backward Latency
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Half-Buffer Handshaking –

Backward Latency
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Performance Metrics - Animated

 Forward Latency (FL)

 Backward Latency (BL)

 Local Cycle Time

 FL+BL

FL

BL
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Dynamic Pipeline Behaviour
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 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline 

 Spread
 distance between successive tokens in a full pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline during operation

 N*1/Spread = (N*FL)/(FL + BL)
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Dynamic Slack

 Dynamic Slack or Dynamic Occupancy 
Formula for N buffers:

 Assumptions: 
 Tokens not stalled by buffers or 

BitBucket resetting 
 Tokens inserted at rate of local cycle 

time (FL + BL)
 Tokens consumed at rate of local cycle 

time

 Can be as small as N/9 (depending on 
circuit type)

peak

throughput

bubble

limited 

region

token

limited 

region

dynamic 

slack

static 

slack

# tokens

throughput

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN
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*
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(average)

Peak Throughput 

= 1/(FL + BL)
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Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of 
tokens

 Peak throughput in-
between
 Token limited region

 Faster BitGen
improves throughput

 Bubble limited region

 Faster BitBucket
improves performance
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throughput
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# tokens

throughput
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Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

# tokens

throughput

Buffer: FL=2, BL=2
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Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

• Slow left environment
• Bitgen: LCT  = 6

• Buffer: FL=2, BL=2

• Bucket: LCT = 2

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated
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Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

• Slow right environment
• Bitgen: LCT = 2

• Buffer: FL=2, BL=2

• Bucket: LCT = 6

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22
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Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

# tokens

throughput

Buffer: FL=2, BL=2
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Non-homogeneous Pipelines
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 Peak throughput is limited by:

 Worst-case (largest) 
local cycle time

 Dynamic slack/Occupancy

 Becomes a range of # of 
tokens

 Data-limited slope

 Inverse of sum of FLs (?)

 Bubble-limited slope

 Inverse of sum of BLs (?)

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

# tokens

throughput

 (max (FLi + BLi))
-1

i

Slope = (∑FLi)
-1

i
Slope = -(∑BLi)

-1

i

dynamic slack
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Pipeline Rings

 Definition (informal)

 Pipeline buffers configured in a loop

 Can be combined with forks, joins

 Used in implementing iterative 

algorithms

 Each iteration implemented by a token 

traversing the loop

 Multiple tokens in loop possible

 Each token independent of others

 Implements “multi-threading”, i.e.

pipelining 

function gcd(A, B)         

while A ≠ B

if A > B

A := A - B

else

B := B - A

return O = A

Euclid’s Algorithm for Greatest 

Common Divisor (GCD)
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A GCD Implementation

 Implementation Notes

 MUXs are same as MERGEs but 
consume both input tokens

 TB is a token buffer

 Generates a token on 
initialization with configurable 
value

 Acts as a buffer afterwards

 FORK cells implied by branching 
channels (for clarity)

 All cells use pipeline handshaking

 Architectural Feature

 Contains many pipeline rings

 Single Token around the ring

 Does one GCD at a time!
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A GCD Implementation

 Operation

 TB generates tokens to select 

input tokens come in on PIs

A and B 

 Tested for equality which 

controls how they are routed

 If != routed to SUBs & „<„

 Otherwise, A is routed to output

 SUBs concurrently generate 

differences.

 Specific difference routed back to 

merge controlled by „<„ and 

MUXs
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Token Buffer – VerilogCSP Model
module TOK_BUF(L, R);

parameter width = 8; parameter init = 8‟b0;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

parameter FL = 2; parameter BL = 4;

reg [width-1:0] d;

initial

begin

`SEND(R,init);

end

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL; 

end 

endmodule

 Initial block

 Mechanism to send out initial 

token

 Init

 Value of initial token sent out

 Configurable via Verilog

parameter feature

 After initial block, never used 

again

 Always block

 Performs steady-state behavior

 Just like BUF cell
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“Multi-Threading”/Pipelined Variant

CE-653 - Asynchronous Pipeline Performance

 Add another Token Buffer (TBs)

 Pipelines design by enabling two 
sets of tokens in loop 
simultaneously

 Second set enters immediately, 
before first set completes algorithm

 Each set represents a thread and 
moves around loop independent of 
other set

 No interference due to handshaking

 The Purpose

 Multiple instances of GCD 
algorithm solved simultaneously

 Can improve throughput 

 Tokens on O per second

 Completion may be 
Out-Of-Order (OOO)

 depending on # of iterations per 
input

 Use ROB or problem/tag
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Pipeline Loops – Bottleneck Example

 Buffer Performance
 Assume: FL = 2; BL = 4

 Ring Architecture
 Three tokens with four full-buffers

 N.B. # of tokens in ring is 
constant

 Performance Analysis
 Each token can move forward 

every 3 * BL = 12 time units

 Example: token #3 moves forward 
at t = 2 and t = 14

 Each token completes an iteration 
every 12 * 4 = 48 time units

 Three tokens do this concurrently

 Completing 3 iterations every 48 
time units

 Yields, throughput of 1 iteration 
every 48/3 = 16 time units
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Pipeline ring – Performance Analysis

 Intuition

 Pipeline ring is like a linear 

pipeline with output channel 

tied to input channel

 Optimal performance

 No pipeline buffer starved 

 No pipeline buffer stalled

 Dynamic slack/Occupancy 
(for full-buffers):

1/16

1/6

4/3 4

# tokens

throughput

1/8

N.B. Performance is at discrete points 

only because cannot have a fractional 

number of tokens in pipeline ringFL

BL

N

1

N = 4

FL = 2

BL = 4
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Pipeline Loops – Improving Performance
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 Bubble-limited loops

 Can improve 

performance by adding 

pipeline buffers 

 Intuition

 Bubbles need to flow 

backwards less distance 

for tokens to flow 

forward

 Data-limited loops

 Increase multi-

threading

 Shorten loop latency
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Fork – Join Pipeline - Bottlenecks
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 Slowest fork-join 

path determines

input-output 

latency
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Fork – Join: Performance Analysis
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 Intuition

 Number of tokens in each 
branch of fork-join is 
identical

 Throughput versus # 
tokens

 Lower-bounded by triangle 
graphs of individual pipelines 

 Performance characteristics

 Static slack is minimum of 
two individual pipelines

 Peak throughput can be 
lower than either of 
individual pipelines
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Bottom 

Branch Top 
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Fork – Join: Other Characteristics
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 Shorter pipeline (lower static slack) may not be bottleneck
 Can happen if peak throughout of shorter pipeline is larger than longer 

pipeline

 See Figure (a) above

 Equal static slack is not always optimal
 i.e., adding buffers may improve peak throughput despite causing a static 

slack imbalance

 See Figure (b) above

# tokens

throughput

Branch 1 Branch 2
Old Fork-Join

New 

Branch 1

New Fork-Join

# tokens

throughput

Branch 1
Branch 2

Fork-Join

(a) (b)
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Summary and Conclusions
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 Performance of asynchronous pipelines is complex

 Largely due to presence of backward latency of pipeline buffers

 Throughput versus # of tokens graph

 Effective way to analyze simple pipeline structures

 Provides good intuition of many issues

 More complex pipeline structures popular

 For example, forks / joins / conditional in pipeline loops 

 e.g., GCD example

 Need more powerful methods of analyzing and optimizing 

pipelining

 Covered later on using performance models
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