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Pipeline Performance and Metrics
 Synchronous Design

 Latency of a pipeline
 Measured in terms of # of clock cycles

 Throughput
 Typically measured in terms of results per second

 Inverse of Clock Cycle Time for systems that generate a result each cycle

 Asynchronous Pipelined Design (i.e., using pipelined handshaking)
 Latency

 Time between tokens consumed at inputs and generated outputs

 Inputs tokens spread apart to avoid congestion slowing down results

 Cycle Time
 Taken as long-term average of time between successive output tokens

 Throughput
 Results (tokens) per second - inverse of cycle time

 Data-dependent delays
 Block-level delays and data-flow may be data-dependent
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Forward Latency

 Forward latency (FL) – block level

 Time between tokens consumed at inputs 
and generated outputs

 Inputs tokens spread apart to avoid congestion 
slowing down results

 May be data-dependent

 (Forward) latency – system

 A sum of forward latencies through blocks

 Must account for causality of output tokens 
within blocks

 Earlier/latest arriving token may cause output 
token

 I.e., notion of critical path exists

module OR(L1, L2, R);

`INPORT(L1,1);

`INPORT(L2,1);

`OUTPORT(R,1);

`USES_CHANNEL

parameter FL = 2; 

reg d1, d2;

always

begin

fork

`RECEIVE(L1,d1);

`RECEIVE(L2,d2);

join

#FL;

`SEND(R,d1 | d2);

end 

endmodule 
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Local Cycle Time + Backward Latency

 Local cycle time

 Shortest time to complete a 
handshake with its neighbours
 Cycle may involve three neighbours for half-

buffers

 Lower-bound on performance

 Equals FL + BL

 Backward latency (BL)

 Time needed to reset before 
accepting new tokens
 Time between generated output and earliest 

time of subsequent input

module BUF(L, R);

parameter width = 8; 

parameter FL = 2; 

parameter BL = 4;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

reg [width-1:0] d;

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL; 

end 

endmodule 
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Full-Buffer PTnet Model
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FL

BL

 How do FL/BL determine pipeline performance?
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Half-Buffer PTnet Model
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FL

BL

BL2
FL

 What parameters determine the performance in the 

Half-Buffer case?
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Full-Buffer Handshaking –

Backward Latency
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Half-Buffer Handshaking –

Backward Latency
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C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T2

FL BL
Cycle involves three successive blocks

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

T1

T1

T1

T2

Performance Metrics - Animated

 Forward Latency (FL)

 Backward Latency (BL)

 Local Cycle Time

 FL+BL

FL

BL
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Dynamic Pipeline Behaviour
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 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline 

 Spread
 distance between successive tokens in a full pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline during operation

 N*1/Spread = (N*FL)/(FL + BL)
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Dynamic Slack

 Dynamic Slack or Dynamic Occupancy 
Formula for N buffers:

 Assumptions: 
 Tokens not stalled by buffers or 

BitBucket resetting 
 Tokens inserted at rate of local cycle 

time (FL + BL)
 Tokens consumed at rate of local cycle 

time

 Can be as small as N/9 (depending on 
circuit type)

peak

throughput

bubble

limited 

region

token

limited 

region

dynamic 

slack

static 

slack

# tokens

throughput

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN

1

*
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(average)

Peak Throughput 

= 1/(FL + BL)
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Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of 
tokens

 Peak throughput in-
between
 Token limited region

 Faster BitGen
improves throughput

 Bubble limited region

 Faster BitBucket
improves performance

peak

throughput

bubble

limited 

region

token

limited 

region

dynamic 

slack

static 

slack

# tokens

throughput

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3
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N

FL

1

N

BL

1

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

# tokens

throughput

Buffer: FL=2, BL=2
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Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

• Slow left environment
• Bitgen: LCT  = 6

• Buffer: FL=2, BL=2

• Bucket: LCT = 2

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated
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Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

• Slow right environment
• Bitgen: LCT = 2

• Buffer: FL=2, BL=2

• Bucket: LCT = 6

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22
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Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

# tokens

throughput

Buffer: FL=2, BL=2
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Non-homogeneous Pipelines
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 Peak throughput is limited by:

 Worst-case (largest) 
local cycle time

 Dynamic slack/Occupancy

 Becomes a range of # of 
tokens

 Data-limited slope

 Inverse of sum of FLs (?)

 Bubble-limited slope

 Inverse of sum of BLs (?)

Bit

Gen
BUF BUF BUF

Bit 

Bucket
C0 C1 C2 C3

# tokens

throughput

 (max (FLi + BLi))
-1

i

Slope = (∑FLi)
-1

i
Slope = -(∑BLi)

-1

i

dynamic slack
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Pipeline Rings

 Definition (informal)

 Pipeline buffers configured in a loop

 Can be combined with forks, joins

 Used in implementing iterative 

algorithms

 Each iteration implemented by a token 

traversing the loop

 Multiple tokens in loop possible

 Each token independent of others

 Implements “multi-threading”, i.e.

pipelining 

function gcd(A, B)         

while A ≠ B

if A > B

A := A - B

else

B := B - A

return O = A

Euclid’s Algorithm for Greatest 

Common Divisor (GCD)
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A GCD Implementation

 Implementation Notes

 MUXs are same as MERGEs but 
consume both input tokens

 TB is a token buffer

 Generates a token on 
initialization with configurable 
value

 Acts as a buffer afterwards

 FORK cells implied by branching 
channels (for clarity)

 All cells use pipeline handshaking

 Architectural Feature

 Contains many pipeline rings

 Single Token around the ring

 Does one GCD at a time!
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A GCD Implementation

 Operation

 TB generates tokens to select 

input tokens come in on PIs

A and B 

 Tested for equality which 

controls how they are routed

 If != routed to SUBs & „<„

 Otherwise, A is routed to output

 SUBs concurrently generate 

differences.

 Specific difference routed back to 

merge controlled by „<„ and 

MUXs
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Token Buffer – VerilogCSP Model
module TOK_BUF(L, R);

parameter width = 8; parameter init = 8‟b0;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

parameter FL = 2; parameter BL = 4;

reg [width-1:0] d;

initial

begin

`SEND(R,init);

end

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL; 

end 

endmodule

 Initial block

 Mechanism to send out initial 

token

 Init

 Value of initial token sent out

 Configurable via Verilog

parameter feature

 After initial block, never used 

again

 Always block

 Performs steady-state behavior

 Just like BUF cell
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“Multi-Threading”/Pipelined Variant
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 Add another Token Buffer (TBs)

 Pipelines design by enabling two 
sets of tokens in loop 
simultaneously

 Second set enters immediately, 
before first set completes algorithm

 Each set represents a thread and 
moves around loop independent of 
other set

 No interference due to handshaking

 The Purpose

 Multiple instances of GCD 
algorithm solved simultaneously

 Can improve throughput 

 Tokens on O per second

 Completion may be 
Out-Of-Order (OOO)

 depending on # of iterations per 
input

 Use ROB or problem/tag
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Pipeline Loops – Bottleneck Example

 Buffer Performance
 Assume: FL = 2; BL = 4

 Ring Architecture
 Three tokens with four full-buffers

 N.B. # of tokens in ring is 
constant

 Performance Analysis
 Each token can move forward 

every 3 * BL = 12 time units

 Example: token #3 moves forward 
at t = 2 and t = 14

 Each token completes an iteration 
every 12 * 4 = 48 time units

 Three tokens do this concurrently

 Completing 3 iterations every 48 
time units

 Yields, throughput of 1 iteration 
every 48/3 = 16 time units
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Pipeline ring – Performance Analysis

 Intuition

 Pipeline ring is like a linear 

pipeline with output channel 

tied to input channel

 Optimal performance

 No pipeline buffer starved 

 No pipeline buffer stalled

 Dynamic slack/Occupancy 
(for full-buffers):

1/16

1/6

4/3 4

# tokens

throughput

1/8

N.B. Performance is at discrete points 

only because cannot have a fractional 

number of tokens in pipeline ringFL

BL

N

1

N = 4

FL = 2

BL = 4
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Pipeline Loops – Improving Performance
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 Bubble-limited loops

 Can improve 

performance by adding 

pipeline buffers 

 Intuition

 Bubbles need to flow 

backwards less distance 

for tokens to flow 

forward

 Data-limited loops

 Increase multi-

threading

 Shorten loop latency
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Fork – Join Pipeline - Bottlenecks
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 Slowest fork-join 

path determines

input-output 

latency
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Fork – Join: Performance Analysis

CE-653 - Asynchronous Pipeline Performance

 Intuition

 Number of tokens in each 
branch of fork-join is 
identical

 Throughput versus # 
tokens

 Lower-bounded by triangle 
graphs of individual pipelines 

 Performance characteristics

 Static slack is minimum of 
two individual pipelines

 Peak throughput can be 
lower than either of 
individual pipelines

1/16

1/6

2/3 2
# tokens

throughput

1/8

7

1/11

Bottom 

Branch Top 

Branch

Fork-Join
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Fork – Join: Other Characteristics
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 Shorter pipeline (lower static slack) may not be bottleneck
 Can happen if peak throughout of shorter pipeline is larger than longer 

pipeline

 See Figure (a) above

 Equal static slack is not always optimal
 i.e., adding buffers may improve peak throughput despite causing a static 

slack imbalance

 See Figure (b) above

# tokens

throughput

Branch 1 Branch 2
Old Fork-Join

New 

Branch 1

New Fork-Join

# tokens

throughput

Branch 1
Branch 2

Fork-Join

(a) (b)
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Summary and Conclusions
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 Performance of asynchronous pipelines is complex

 Largely due to presence of backward latency of pipeline buffers

 Throughput versus # of tokens graph

 Effective way to analyze simple pipeline structures

 Provides good intuition of many issues

 More complex pipeline structures popular

 For example, forks / joins / conditional in pipeline loops 

 e.g., GCD example

 Need more powerful methods of analyzing and optimizing 

pipelining

 Covered later on using performance models
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