
5/11/2014

1

CE653 – Asynchronous Circuit

Design

Instructor: C. Sotiriou

http://inf-server.inf.uth.gr/courses/CE653/

CE-653 - Asynchronous Pipeline Performance 11/5/20141

Contents

 Pipeline Performance Metrics

 Synchronous vs. Asynchronous

 Forward and Backward Latencies

 Linear Pipeline Performance

 Cycle Time, Latency, Throughput, Dynamic Slack/Occupancy

 Occupancy vs. # of Tokens Graph

 Computing Peak Throughput and Average # of Tokens
Occupancy

 Performance of Pipeline Rings

 An Example: GCD Implementation

 Pipelining the GCD datapath

 Optimising Pipelines and Rings

CE-653 - Asynchronous Pipeline Performance 11/5/20142

5/11/2014

2

Pipeline Performance and Metrics
 Synchronous Design

 Latency of a pipeline
 Measured in terms of # of clock cycles

 Throughput
 Typically measured in terms of results per second

 Inverse of Clock Cycle Time for systems that generate a result each cycle

 Asynchronous Pipelined Design (i.e., using pipelined handshaking)
 Latency

 Time between tokens consumed at inputs and generated outputs

 Inputs tokens spread apart to avoid congestion slowing down results

 Cycle Time
 Taken as long-term average of time between successive output tokens

 Throughput
 Results (tokens) per second - inverse of cycle time

 Data-dependent delays
 Block-level delays and data-flow may be data-dependent

CE-653 - Asynchronous Pipeline Performance 11/5/20143

Forward Latency

 Forward latency (FL) – block level

 Time between tokens consumed at inputs
and generated outputs

 Inputs tokens spread apart to avoid congestion
slowing down results

 May be data-dependent

 (Forward) latency – system

 A sum of forward latencies through blocks

 Must account for causality of output tokens
within blocks

 Earlier/latest arriving token may cause output
token

 I.e., notion of critical path exists

module OR(L1, L2, R);

`INPORT(L1,1);

`INPORT(L2,1);

`OUTPORT(R,1);

`USES_CHANNEL

parameter FL = 2;

reg d1, d2;

always

begin

fork

`RECEIVE(L1,d1);

`RECEIVE(L2,d2);

join

#FL;

`SEND(R,d1 | d2);

end

endmodule

CE-653 - Asynchronous Pipeline Performance 11/5/20144

5/11/2014

3

Local Cycle Time + Backward Latency

 Local cycle time

 Shortest time to complete a
handshake with its neighbours
 Cycle may involve three neighbours for half-

buffers

 Lower-bound on performance

 Equals FL + BL

 Backward latency (BL)

 Time needed to reset before
accepting new tokens
 Time between generated output and earliest

time of subsequent input

module BUF(L, R);

parameter width = 8;

parameter FL = 2;

parameter BL = 4;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

reg [width-1:0] d;

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL;

end

endmodule
CE-653 - Asynchronous Pipeline Performance 11/5/20145

Full-Buffer PTnet Model

CE-653 - Asynchronous Pipeline Performance

FL

BL

 How do FL/BL determine pipeline performance?

11/5/20146

5/11/2014

4

Half-Buffer PTnet Model

CE-653 - Asynchronous Pipeline Performance

FL

BL

BL2
FL

 What parameters determine the performance in the

Half-Buffer case?

11/5/20147

Full-Buffer Handshaking –

Backward Latency

11/5/2014CE-653 - Asynchronous Pipeline Performance8

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1 T2

T1

T3

T1

T2

FL BL

5/11/2014

5

Half-Buffer Handshaking –

Backward Latency

11/5/2014CE-653 - Asynchronous Pipeline Performance9

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T2

FL BL
Cycle involves three successive blocks

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

T1

T1

T1

T2

Performance Metrics - Animated

 Forward Latency (FL)

 Backward Latency (BL)

 Local Cycle Time

 FL+BL

FL

BL

CE-653 - Asynchronous Pipeline Performance 11/5/201410

5/11/2014

6

Dynamic Pipeline Behaviour

CE-653 - Asynchronous Pipeline Performance

 Cycle Time
 T = FL + BL (simplest case)

 Latency
 input to output delay = N * FL

 Throughput
 # of tokens flowing per unit time, generally = 1/T = 1/(FL + BL)

 Depends on throughput of sender/receiver

 Static Slack or Static Token Occupancy
 Maximum token capacity of the pipeline

 Spread
 distance between successive tokens in a full pipeline

 token distance travelled for 1 T = (FL + BL)/FL

 Dynamic Slack or Dynamic Occupancy
 Average token capacity in the pipeline during operation

 N*1/Spread = (N*FL)/(FL + BL)

11/5/201411

Dynamic Slack

 Dynamic Slack or Dynamic Occupancy
Formula for N buffers:

 Assumptions:
 Tokens not stalled by buffers or

BitBucket resetting
 Tokens inserted at rate of local cycle

time (FL + BL)
 Tokens consumed at rate of local cycle

time

 Can be as small as N/9 (depending on
circuit type)

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

FL

BL

N

BLFL

FLN

1

*

CE-653 - Asynchronous Pipeline Performance

(average)

Peak Throughput

= 1/(FL + BL)

11/5/201412

5/11/2014

7

Throughput vs. Tokens Graph

 Throughput is zero
 When no tokens in pipe

 When pipeline is full of
tokens

 Peak throughput in-
between
 Token limited region

 Faster BitGen
improves throughput

 Bubble limited region

 Faster BitBucket
improves performance

peak

throughput

bubble

limited

region

token

limited

region

dynamic

slack

static

slack

tokens

throughput

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

CE-653 - Asynchronous Pipeline Performance 11/5/201413

N

FL

1

N

BL

1

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

tokens

throughput

Buffer: FL=2, BL=2

CE-653 - Asynchronous Pipeline Performance 11/5/201414

5/11/2014

8

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=2t=8t=4t=6t=18t=10

2

t=12t=14t=16

• Slow left environment
• Bitgen: LCT = 6

• Buffer: FL=2, BL=2

• Bucket: LCT = 2

34

t=20t=22t=24

5

t=0: Token 1 generated

t=6: Token 2 generated

t=12: Token 3 generated

t=18: Token 4 generated

t=24: Token 5 generated

CE-653 - Asynchronous Pipeline Performance 11/5/201415

Example: Pipeline Performance

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C31

t=0t=6t=2t=4t=8t=10t=12t=14

• Slow right environment
• Bitgen: LCT = 2

• Buffer: FL=2, BL=2

• Bucket: LCT = 6

23

t=16

45

t=18t=20

t=6: Token 1 consumed

t=12: Token 2 consumed

t=18: Token 3 consumed

t=24

t=24: Token 4 consumed

t=22

CE-653 - Asynchronous Pipeline Performance 11/5/201416

5/11/2014

9

Concrete Example: 3-stage Pipeline

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

1/6

1/4

3/2 3

tokens

throughput

Buffer: FL=2, BL=2

CE-653 - Asynchronous Pipeline Performance 11/5/201417

Non-homogeneous Pipelines

CE-653 - Asynchronous Pipeline Performance

 Peak throughput is limited by:

 Worst-case (largest)
local cycle time

 Dynamic slack/Occupancy

 Becomes a range of # of
tokens

 Data-limited slope

 Inverse of sum of FLs (?)

 Bubble-limited slope

 Inverse of sum of BLs (?)

Bit

Gen
BUF BUF BUF

Bit

Bucket
C0 C1 C2 C3

tokens

throughput

 (max (FLi + BLi))
-1

i

Slope = (∑FLi)
-1

i
Slope = -(∑BLi)

-1

i

dynamic slack

11/5/201418

5/11/2014

10

Pipeline Rings

 Definition (informal)

 Pipeline buffers configured in a loop

 Can be combined with forks, joins

 Used in implementing iterative

algorithms

 Each iteration implemented by a token

traversing the loop

 Multiple tokens in loop possible

 Each token independent of others

 Implements “multi-threading”, i.e.

pipelining

function gcd(A, B)

while A ≠ B

if A > B

A := A - B

else

B := B - A

return O = A

Euclid’s Algorithm for Greatest

Common Divisor (GCD)

CE-653 - Asynchronous Pipeline Performance 11/5/201419

A GCD Implementation

 Implementation Notes

 MUXs are same as MERGEs but
consume both input tokens

 TB is a token buffer

 Generates a token on
initialization with configurable
value

 Acts as a buffer afterwards

 FORK cells implied by branching
channels (for clarity)

 All cells use pipeline handshaking

 Architectural Feature

 Contains many pipeline rings

 Single Token around the ring

 Does one GCD at a time!

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

!=

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

BB

A

B

O

<

M
U

X

A

B

O

S

M
U

X

A

B

O

S

S
U

B

A

B

O

S
U

B

A

B

O

T
B

CE-653 - Asynchronous Pipeline Performance 11/5/201420

5/11/2014

11

A GCD Implementation

 Operation

 TB generates tokens to select

input tokens come in on PIs

A and B

 Tested for equality which

controls how they are routed

 If != routed to SUBs & „<„

 Otherwise, A is routed to output

 SUBs concurrently generate

differences.

 Specific difference routed back to

merge controlled by „<„ and

MUXs

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

!=

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

BB

A

B

O

<

M
U

X

A

B

O

S

M
U

X

A

B

O

S

S
U

B

A

B

O

S
U

B

A

B

O

T
B

CE-653 - Asynchronous Pipeline Performance 11/5/201421

Token Buffer – VerilogCSP Model
module TOK_BUF(L, R);

parameter width = 8; parameter init = 8‟b0;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

parameter FL = 2; parameter BL = 4;

reg [width-1:0] d;

initial

begin

`SEND(R,init);

end

always

begin

`RECEIVE(L,d);

#FL;

`SEND(R,d);

#BL;

end

endmodule

 Initial block

 Mechanism to send out initial

token

 Init

 Value of initial token sent out

 Configurable via Verilog

parameter feature

 After initial block, never used

again

 Always block

 Performs steady-state behavior

 Just like BUF cell

CE-653 - Asynchronous Pipeline Performance 11/5/201422

5/11/2014

12

“Multi-Threading”/Pipelined Variant

CE-653 - Asynchronous Pipeline Performance

 Add another Token Buffer (TBs)

 Pipelines design by enabling two
sets of tokens in loop
simultaneously

 Second set enters immediately,
before first set completes algorithm

 Each set represents a thread and
moves around loop independent of
other set

 No interference due to handshaking

 The Purpose

 Multiple instances of GCD
algorithm solved simultaneously

 Can improve throughput

 Tokens on O per second

 Completion may be
Out-Of-Order (OOO)

 depending on # of iterations per
input

 Use ROB or problem/tag

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

!=

M
E

R
G

E

A

B

O

S

S
P

L
IT

O1

O2

S

A

BB

A

B

O

<

M
U

X

A

B

O

S

M
U

X

A

B

O

S

S
U

B

A

B

O

S
U

B

A

B

O

T
B

T
B

11/5/201423

Pipeline Loops – Bottleneck Example

 Buffer Performance
 Assume: FL = 2; BL = 4

 Ring Architecture
 Three tokens with four full-buffers

 N.B. # of tokens in ring is
constant

 Performance Analysis
 Each token can move forward

every 3 * BL = 12 time units

 Example: token #3 moves forward
at t = 2 and t = 14

 Each token completes an iteration
every 12 * 4 = 48 time units

 Three tokens do this concurrently

 Completing 3 iterations every 48
time units

 Yields, throughput of 1 iteration
every 48/3 = 16 time units

t = 0

B

T

T

T t = 2

B

T

T

T t = 4

B

T

T

T

t = 6

B

T

T

T t = 8

B

T

T

T t = 10

B

T

T

T

t = 12

B

T

T

T t = 14

B

T

T

T t = 16

B

T

T

T

1

1

1

111

2

2

2 2

22

3

3

3

3

3 3

1

2

1

23

13

3

2

CE-653 - Asynchronous Pipeline Performance 11/5/201424

5/11/2014

13

Pipeline ring – Performance Analysis

 Intuition

 Pipeline ring is like a linear

pipeline with output channel

tied to input channel

 Optimal performance

 No pipeline buffer starved

 No pipeline buffer stalled

 Dynamic slack/Occupancy
(for full-buffers):

1/16

1/6

4/3 4

tokens

throughput

1/8

N.B. Performance is at discrete points

only because cannot have a fractional

number of tokens in pipeline ringFL

BL

N

1

N = 4

FL = 2

BL = 4

CE-653 - Asynchronous Pipeline Performance 11/5/201425

Pipeline Loops – Improving Performance

CE-653 - Asynchronous Pipeline Performance

 Bubble-limited loops

 Can improve

performance by adding

pipeline buffers

 Intuition

 Bubbles need to flow

backwards less distance

for tokens to flow

forward

 Data-limited loops

 Increase multi-

threading

 Shorten loop latency

N = 6

FL = 2

BL = 4

Throughput = 8

B

B

B

T

TT

t = 0

B

B

B

T

TT

t = 2

B

B

B

T

TT

t = 4

B

B

B

T

TT

t = 6

B

B

B

T

TT

t = 8

11

11

1

22

22

2

33

33

3

11/5/201426

5/11/2014

14

Fork – Join Pipeline - Bottlenecks

CE-653 - Asynchronous Pipeline Performance

 Slowest fork-join

path determines

input-output

latency

S0

S1 S2 S3 S4 S5 S6

S8

S7

S0

S1 S2 S3 S4 S5 S6

S8

S7

2

1

t = 0

t = 6

t = 12
1

1

2

S0

S1 S2 S3 S4 S5 S6

S8

S7

S0

S1 S2 S3 S4 S5 S6

S8

S7

1

1

t = 18

2

2

S0

S1 S2 S3 S4 S5 S6

S8

S7

t = 22

2

3

11/5/201427

Fork – Join: Performance Analysis

CE-653 - Asynchronous Pipeline Performance

 Intuition

 Number of tokens in each
branch of fork-join is
identical

 Throughput versus #
tokens

 Lower-bounded by triangle
graphs of individual pipelines

 Performance characteristics

 Static slack is minimum of
two individual pipelines

 Peak throughput can be
lower than either of
individual pipelines

1/16

1/6

2/3 2
tokens

throughput

1/8

7

1/11

Bottom

Branch Top

Branch

Fork-Join

11/5/201428

5/11/2014

15

Fork – Join: Other Characteristics

CE-653 - Asynchronous Pipeline Performance

 Shorter pipeline (lower static slack) may not be bottleneck
 Can happen if peak throughout of shorter pipeline is larger than longer

pipeline

 See Figure (a) above

 Equal static slack is not always optimal
 i.e., adding buffers may improve peak throughput despite causing a static

slack imbalance

 See Figure (b) above

tokens

throughput

Branch 1 Branch 2
Old Fork-Join

New

Branch 1

New Fork-Join

tokens

throughput

Branch 1
Branch 2

Fork-Join

(a) (b)

11/5/201429

Summary and Conclusions

CE-653 - Asynchronous Pipeline Performance

 Performance of asynchronous pipelines is complex

 Largely due to presence of backward latency of pipeline buffers

 Throughput versus # of tokens graph

 Effective way to analyze simple pipeline structures

 Provides good intuition of many issues

 More complex pipeline structures popular

 For example, forks / joins / conditional in pipeline loops

 e.g., GCD example

 Need more powerful methods of analyzing and optimizing

pipelining

 Covered later on using performance models

11/5/201430

