CE653 — Asynchronous Circuit
Design

Instructor: C. Sotiriou

http://inf-server.inf.uth.gr/courses/CE653/

1 CE-653 - STG-based Logic Synthesis - Petrify

Contents

» STG Presentation
» Add:

Synthesis Conditions for Implementability
Boundedness, Consistency, CSC
Encodability

Slides 36, 37

Irreducible vs. Reducible CSC
Monotonic Covers Definition

2 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



Understanding SI Model

» Check circuit for disabled transitions in State Graph:
State Graph <a, b, c>

» There are no disabled transitions
[*>1 or 020 in the State Graph

Thus circuit is S|

» This analysis assumes the unbounded delay model

3 CE-653 - STG-based Logic Synthesis - Petrify

Understanding SI Model

» Check circuit for disabled transitions in State Graph:
State Graph <a, b, c>

amcm
b

» Disabled transitions |*>1 or 020 in the State Graph
Thus circuit is not Sl

Circuit is also not semi-modular

» This analysis assumes the unbounded delay model

4 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



4/1/2014

Design flow

Specification

(STG)

Reachability analysis
State Graph

State encoding

SG with
CsC

Boolean minimization

Next-state
functions
ogic decomposition

Decomposed
functions

echnology mapping

Gate netlist

5 CE-653 - STG-based Logic Synthesis - Petrify

Specification
X
x
Lz | Y
Y4
z+ — Xx-

AN
\/

Signal Transition Graph (STG)

6 CE-653 - STG-based Logic Synthesis - Petrify




Token flow

CE-653 - STG-based Logic Synthesis - Petrify

State graph

Xyz
000
x+
.\ 100
z+ @~ x- :
10l
xt—@—yt —@— z- X- ™~
e 00| i
y- y+ X~
0ll
Z-
010
8 CE-653 - STG-based Logic Synthesis - Petrify

110

z+

4/1/2014



Next-state functions

Xyz
000
= ;. i 100
x= S (x))
101 110
y — + v
001 11
o gt 2
Oll
010
9 CE-653 - STG-based Logic Synthesis - Petrify
Gate netlist
x= 2 (xt) ]
y= ot
z
z_ .t )z

10

CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



Design flow

eachability analysis
State Graph

State encoding

SG with
CsC

Next-state
functions

Decomposed
functions

Gate netlist

11 CE-653 - STG-based Logic Synthesis - Petrify

Boolean minimization

ogic decomposition

echnology mapping

VME Bus Example

12 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



STG for READs

’/’DSH +«—@— DTACK- \

LDS+ —>» LDTACK+ —» — DTACK+ — DS~ —»
>K’-\ LDTACK- «———— LDS- J
DSt —f | oS,
LDTACK
DTACK < lé———————
13 CE-653 - STG-based Logic Synthesis - Petrify

NEED Choice to select between
READ OR WRITE

| |
A
SRR
U

14 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



NEED Choice to select between

READ OR WRIT
A/\@/_\

| l
l l
| l
l |
l l
| l

()

15 CE-653 - STG-based Logic Synthesis - Petrify

SI Asynchronous Circuit Synthesis

» Goal:
Derive a hazard-free circuit under a given delay model and mode of
operation
» Speed Independence
Unbounded gate / environment delays
Certain wire delays shorter than certain paths in the circuit
Wires LONGER than GATES!!!

» Sl Implementability Conditions

Consistency
Signal transitions alternate in all PTnet paths and thus Reachability Graph
Complete State Coding (CSC)

Each pair of Reachability Graph States have different state encoding, or if the share the
same encoding, they enable different non-input (output) signals = distinguishable

Persistency = Semi-Modularity
Outputs cannot be disabled once enabled, Inputs cannot be disabled by Outputs

16 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



Design flow

Specification

(STG)

Reachability analysis

State encoding

SG with
CsC

Boolean minimization

Next-state
functions
ogic decomposition

Decomposed
functions

echnology mapping

Gate netlist

17 CE-653 - STG-based Logic Synthesis - Petrify

STG for the READ cycle

K—’DSH <+—@—— DTACK- ﬁ

LDS+ —» LDTACK+ —» —» DTACK+ ——» DSr- —»

b\.\ LDTACK- <«——— | DS- 42

DSt — | DS |
LDTACK
DTACK i U
18 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014



Reachability Graph — Binary Encoding

b 20 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

10



Defining Excitation and Quiescent Regions

ER (LDS+)

QR (LDS-)

QR (LDS+) ER (LDS-)

21 CE-653 - STG-based Logic Synthesis - Petrify

Forming the Next State Function

0—->0

1—>0

22 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

11



Extracting the Boolean Expression of
the Next State Function

23 CE-653 - STG-based Logic Synthesis - Petrify

Design flow

Specification

(STG)
Reachability analysis
State Graph

State encoding

Boolean minimization

Next-state
functions

ogic decomposition
Decomposed

functions
echnology mapping

Gate netlist

24 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

12



Concurrency Reduction (Manual/Automatic)
at State Graph Level

DSr+

DSr+

m X% e s

25 CE-653 - STG-based Logic Synthesis - Petrify

Concurrency Reduction —
Migration to STG/PTnet Level

—

AR
N, S

26 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

13



State Encoding Conflicts

27 CE-653 - STG-based Logic Synthesis - Petrify

Resolving Conflicts through Signal Insertion

28 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

14



4/1/2014

Signal Insertion

CE-653 - STG-based Logic Synthesis - Petrify 29

Design flow

Specification

(STG)

Reachability analysis
State Graph

State encoding

SG with
CsC

Boolean minimization

ogic decomposition

Decomposed
functions

echnology mapping

Gate netlist

30 CE-653 - STG-based Logic Synthesis - Petrify

15



Complex-Gate Implementation

LDS = D T csc
DTACK ~— D

D ~ .DTACK “csc

csc = DSr (csc ¥ LDTACK )

31 CE-653 - STG-based Logic Synthesis - Petrify

Implementability Conditions - Revisited
» Consistency

Rising and falling transitions of each signal alternate in any trace

» Complete state coding (CSC)

Next-state functions correctly defined
» Persistency

No event can be disabled by another event (unless they are
both inputs)

32 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

16



Implementability Conditions - Revisited

» Consistency + CSC + persistency

» There exists a speed-independent circuit that implements
the behavior of the STG

under the assumption that any Boolean function can be
implemented with one complex gate

33 CE-653 - STG-based Logic Synthesis - Petrify

Understanding Persistency

100 —£— 000 —<t— 001 a:)_b
| b+ | b+ ¢

«

b /\/
N is this a pulse ?

Speed independence = glitch-free output behavior under any delay

34 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

17



Simple STG Example - 1 0000 ——

a+t

1+ 1000
lb+
bt 1100
l .
a- 0100
I | o+
ct 0110
| |+ d-
® d+ 0111
I at
at 1111
| [ b
b- 1011
VAN S
a- C- 0011 1001
\/ N
d- 000] ————
35 CE-653 - STG-based Logic Synthesis - Petrify
Simple STG Example - 2 0000
1000
Ib+
1100
a-
0 0 0 0 0100
ER(d?) ct
0 1 &+
01111
a+t
I |11 1 1111
|
1 1011
N
0011 1001
c- a
ER(d-)—

37

CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

18



Simple STG Example - 3 0000 ———

at
1000
l b+
1100

a:

0100

ct+

d+ d-
0111

| ar
1111

[ o-
1011

a:

0011 1001
c- a

C-

39 CE-653 - STG-based Logic Synthesis - Petrify

C-Element Based Implementation

=

eee >S5S+ >72+>S->R+—>2z->R-—> e

» Correctness Conditions:
S (set) and R (reset) must be mutually exclusive
S must cover ER(z+) and must not intersect ER(z-) U QR(z-)
R must cover ER(z-) and must not intersect ER(z+) U QR(z+)

41 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

19



Monotonic Covers

» Definition[Monotonic Cover]

Cover Cube C is a monotonic cover for ER(a*) iff:
C covers all states ER(a*)
C covers no states outside ER(a*) U QR(a*)
C changes only once inside QR(a*)

» A Monotonic Cover ensures Sl implementation using
simple gates

42 CE-653 - STG-based Logic Synthesis - Petrify

C-Element Based Example

43 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

20



C-Element Based Example

» If the Reset R = a’c’ has an
unbounded delay

» Then, starting from state 0000:
at;R-;b+;a-; | S+ d+;

The a-, c+ transition can cause a
hazard at the Reset logic

44 CE-653 - STG-based Logic Synthesis - Petrify

C-Element Based Example

45 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

21



4/1/2014

C-Element Based Example

Monotonic

§ Cover 0011 1001
C_ -

CE-653 - STG-based Logic Synthesis - Petrify

Technology Mapping
C-Element Implementations

> d ¢ d
>0
a

weak +
weak
d

generalized C elements (gC)

%?{rf

47 CE-653 - STG-based Logic Synthesis - Petrify

22



Speed-Independence - Summary

» Implementability conditions

Consistency
Complete State Coding (CSC)
Persistency

» Circuit architectures

Complex (hazard-free) gates
C elements with monotonic covers

48 CE-653 - STG-based Logic Synthesis - Petrify

Synthesis Exercise

y 1001
/\\\ |006/ \OOOI
SN N

‘ ‘ |0|o\ /oooo\ }m
yr x+  x- 0010 0100
\/ N

» Derive circuits for outputs x and z

Both complex gate and C-element based implementations
49 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

23



Synthesis Exercise — x Output

1011
1 001 |
Signal x
pso CE-653 - STG-based Logic Synthesis - Petrify

Synthesis Exercise — z Output

1000

OO-O/\

LB B

0011

1|1 -1 0010 0100
0 . - 10
Signal z
b CE.653 - STG-bused Logic Synchesis - Pexrity

4/1/2014

24



Logic Decomposition - Example

1001 1011 s
|ooc3/ \oom /\\
/N7 X

- - =
0000 010l 00l = W= w

NN | | ]
0010 0100 y*t X+ x-
N4 \L/
0l0 — — 0111
z+
b2 CE-653 - STG-based Logic Synthesis - Pecrify

Logic Decomposition - Example

N
1000 0001

N e

IOI(\ ‘70000\+ }m
w- Yy xt z-
oolo 0100

XV
= =1

» Can we decompose yz into an independent AND gate?

p 53 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

25



Logic Decomposition - Example

1001

Z‘QOOI

1000

Yy AN
1000 0001
SN e

IOIO\A ‘70000\+ }OI
w- Yy x+ z-
0010 +0I00

{A")’

0110

b 54 CE-653 - STG-based Logic Synthesis - Petrify

Logic Decomposition - Example

0001

BT

IOIO\‘ ‘70000\4_ }OI
w- Yy x+ z-
0010 +0I00

&"Y

p 55 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

26



Timing Assumptions

» Relative Timing Assumptions can significantly reduce
circuit complexity

Timing assumptions effectively remove or make redundant
PTnet/STG edges

Extreme example:

Ain is not necessary, as controller and receiver are faster than
sender

Each timing assumption must be guaranteed by
timing constraints at schematic or physical level or even system
level
» Relative Timing Assumptions can be used to optimise
timing by a great deal!

56 CE-653 - STG-based Logic Synthesis - Petrify

Timing Assumptions Example — SI Netlist

—> —> D+ —> —> —>
\0—\ «— y
D
DTACK ‘

e 5 P
map

LDTACK

DSr

57 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

27



Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions

DTk g O ioTeK- before D51

DSr

LDTACK

58 CE-653 - STG-based Logic Synthesis - Petrify

Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions

’/ ‘j
— n—> — —
4—

P

»
- B

csc

DSr

LDTACK

59 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

28



4/1/2014

Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — State Graph

LDTACK-

) 60 CE-653 - STG-based Logic Synthesis - Petrify

Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — State Graph

) 61 CE-653 - STG-based Logic Synthesis - Petrify

29



Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — State Graph

DSr
Comar bfore D2 o

LDTACK-

Two more unreachable states

62 CE-653 - STG-based Logic Synthesis - Petrify

Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — Boolean Logic

» Original Circuit had CSC issue!!!

63 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

30



Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — Boolean Logic

» Timing assumptions add DC and resolve CSC!!!

64 CE-653 - STG-based Logic Synthesis - Petrify

Timing Assumptions Example — SI Netlist
with Timing Constraint

ST R

— —> —>
«— 4--*”’//
DTACK 4‘, b
>-_| =
map
DSr b
N
LDTACK

65 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

31



Timing Assumptions Example — SI Netlist
with Timing Constraint

C/%T;?

.

DTACK
<

D ( riminG cONSTRAINT
LDTACK- before DSr+

DSr ‘ j LDS

LDTACK

66 CE-653 - STG-based Logic Synthesis - Petrify

STG Logic Synthesis - Conclusions
» STGs have a high expressiveness power at a low level of
granularity (similar to FSMs for synchronous systems)

» Very effective approach for asynchronous control circuit
design

» Not suitable for datapath design

» Circuits with choice require attention for determinism
(no confusion!)

» Synthesis from STGs can be fully automated

» Synthesis tools often suffer from the state explosion
problem (symbolic techniques are used)

State Space generation is exponential

67 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

32



