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Understanding SI Model

» Check circuit for disabled transitions in State Graph:
State Graph <a, b, c>

» There are no disabled transitions
[*>1 or 020 in the State Graph

Thus circuit is S|

» This analysis assumes the unbounded delay model
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Understanding SI Model

» Check circuit for disabled transitions in State Graph:
State Graph <a, b, c>

amcm
b

» Disabled transitions |*>1 or 020 in the State Graph
Thus circuit is not Sl

Circuit is also not semi-modular

» This analysis assumes the unbounded delay model
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Token flow
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State graph
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Next-state functions
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Design flow
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Boolean minimization

ogic decomposition

echnology mapping

VME Bus Example
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STG for READs
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NEED Choice to select between
READ OR WRITE
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NEED Choice to select between
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SI Asynchronous Circuit Synthesis

» Goal:
Derive a hazard-free circuit under a given delay model and mode of
operation
» Speed Independence
Unbounded gate / environment delays
Certain wire delays shorter than certain paths in the circuit
Wires LONGER than GATES!!!

» Sl Implementability Conditions

Consistency
Signal transitions alternate in all PTnet paths and thus Reachability Graph
Complete State Coding (CSC)

Each pair of Reachability Graph States have different state encoding, or if the share the
same encoding, they enable different non-input (output) signals = distinguishable

Persistency = Semi-Modularity
Outputs cannot be disabled once enabled, Inputs cannot be disabled by Outputs
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STG for the READ cycle
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Reachability Graph — Binary Encoding
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Defining Excitation and Quiescent Regions

ER (LDS+)

QR (LDS-)

QR (LDS+) ER (LDS-)
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Forming the Next State Function

0—->0

1—>0
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Extracting the Boolean Expression of
the Next State Function
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Concurrency Reduction (Manual/Automatic)
at State Graph Level

DSr+

DSr+
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Concurrency Reduction —
Migration to STG/PTnet Level

—

AR
N, S

26 CE-653 - STG-based Logic Synthesis - Petrify

4/1/2014

13



State Encoding Conflicts
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Resolving Conflicts through Signal Insertion
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Signal Insertion
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Complex-Gate Implementation

LDS = D T csc
DTACK ~— D

D ~ .DTACK “csc

csc = DSr (csc ¥ LDTACK )
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Implementability Conditions - Revisited
» Consistency

Rising and falling transitions of each signal alternate in any trace

» Complete state coding (CSC)

Next-state functions correctly defined
» Persistency

No event can be disabled by another event (unless they are
both inputs)
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Implementability Conditions - Revisited

» Consistency + CSC + persistency

» There exists a speed-independent circuit that implements
the behavior of the STG

under the assumption that any Boolean function can be
implemented with one complex gate
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Understanding Persistency

100 —£— 000 —<t— 001 a:)_b
| b+ | b+ ¢

«

b /\/
N is this a pulse ?

Speed independence = glitch-free output behavior under any delay
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Simple STG Example - 1 0000 ——
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Simple STG Example - 3 0000 ———
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C-Element Based Implementation

=

eee >S5S+ >72+>S->R+—>2z->R-—> e

» Correctness Conditions:
S (set) and R (reset) must be mutually exclusive
S must cover ER(z+) and must not intersect ER(z-) U QR(z-)
R must cover ER(z-) and must not intersect ER(z+) U QR(z+)
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Monotonic Covers

» Definition[Monotonic Cover]

Cover Cube C is a monotonic cover for ER(a*) iff:
C covers all states ER(a*)
C covers no states outside ER(a*) U QR(a*)
C changes only once inside QR(a*)

» A Monotonic Cover ensures Sl implementation using
simple gates
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C-Element Based Example
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C-Element Based Example

» If the Reset R = a’c’ has an
unbounded delay

» Then, starting from state 0000:
at;R-;b+;a-; | S+ d+;

The a-, c+ transition can cause a
hazard at the Reset logic
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C-Element Based Example
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C-Element Based Example

Monotonic

§ Cover 0011 1001
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Technology Mapping
C-Element Implementations
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Speed-Independence - Summary

» Implementability conditions

Consistency
Complete State Coding (CSC)
Persistency

» Circuit architectures

Complex (hazard-free) gates
C elements with monotonic covers
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Synthesis Exercise
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» Derive circuits for outputs x and z

Both complex gate and C-element based implementations
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Synthesis Exercise — x Output
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Synthesis Exercise — z Output
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Logic Decomposition - Example
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Logic Decomposition - Example
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» Can we decompose yz into an independent AND gate?
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Logic Decomposition - Example
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Logic Decomposition - Example
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Timing Assumptions

» Relative Timing Assumptions can significantly reduce
circuit complexity

Timing assumptions effectively remove or make redundant
PTnet/STG edges

Extreme example:

Ain is not necessary, as controller and receiver are faster than
sender

Each timing assumption must be guaranteed by
timing constraints at schematic or physical level or even system
level
» Relative Timing Assumptions can be used to optimise
timing by a great deal!
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Timing Assumptions Example — SI Netlist
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions

DTk g O ioTeK- before D51

DSr

LDTACK
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — State Graph

LDTACK-
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — State Graph
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — State Graph

DSr
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Two more unreachable states
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — Boolean Logic

» Original Circuit had CSC issue!!!
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Timing Assumptions Example — SI Netlist —
Adding Timing Assumptions — Boolean Logic

» Timing assumptions add DC and resolve CSC!!!
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Timing Assumptions Example — SI Netlist
with Timing Constraint
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Timing Assumptions Example — SI Netlist
with Timing Constraint
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STG Logic Synthesis - Conclusions
» STGs have a high expressiveness power at a low level of
granularity (similar to FSMs for synchronous systems)

» Very effective approach for asynchronous control circuit
design

» Not suitable for datapath design

» Circuits with choice require attention for determinism
(no confusion!)

» Synthesis from STGs can be fully automated

» Synthesis tools often suffer from the state explosion
problem (symbolic techniques are used)

State Space generation is exponential
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