
Thousand Core Chips—A Technology Perspective
Shekhar Borkar

Intel Corp, Microprocessor Technology Lab, JF2-04, 2111 NE 25th Ave, Hillsboro, OR 97124.
Shekhar.Y.Borkar@intel.com

ABSTRACT
This paper presents the many-core architecture, with hundreds to
thousands of small cores, to deliver unprecedented compute
performance in an affordable power envelope. We discuss fine
grain power management, memory bandwidth, on die networks,
and system resiliency for the many-core system.

Categories and Subject Descriptors
C.0 Computer Systems Organization, General

General Terms
Design, Performance, Reliability.

Keywords
CMOS, Power, Memory, Variability, Reliability.

1. Introduction
Moore’s Law continues with technology scaling, improving
transistor performance to increase frequency, increasing
transistor integration capacity to realize complex architectures,
and reducing energy consumed per logic operation to keep
power dissipation within limit. Advances in software
technology, such as rich multimedia applications and run time
systems, exploited this performance explosion, delivering end
users with higher productivity, seamless internet connectivity,
and even multimedia & entertainment. The technology treadmill
will continue, providing integration capacity of billions of
transistors; however, with several fundamental barriers [1]. In
this paper, we will examine some of the barriers, ways to get
around them, how it changes the landscape, and how the future
advances in technology, architecture, and software, all together
could help continue this treadmill.

2. Is Multi-Core enough?
Integration capacity of billions of transistors exists today, and
will double every two years. This trend is shown in Figure 1,
starting from 2001 with 130nm technology generation, with a
300mm2 die capable of integrating one billion transistors.

Assuming about half the die area being allocated for logic, and
the other half for large memory arrays such as caches, the trend
shows that by 2015 you will have 100B transistors on a 300mm2
die, with almost 1.5B transistors available for logic. The logic
transistors tend to be larger than transistors in the memory, take
larger space, and consume more power.

How will you employ these logic transistors to deliver

performance? The evolutionary approach is to continue today’s
trend with a few large processor cores, each employing 20 to
100 million logic transistors, and a large shared cache.

1

10

100

1,000

10,000

100,000

1,000,000

2001 2005 2009 2013 2017
T

ra
ns

is
to

rs
 (

M
ill

io
ns

)

Total Transistors,

300mm2 die

Logic Transistors
~1.5B Logic
Transistors

~100MB
Cache

Figure 1: Transistor integration capacity

Performance increase by microarchitecture alone is governed by
Pollack’s Rule, which states that performance increase is
roughly proportional to square root of increase in complexity. In
other words, if you double the logic in a processor core, then it
delivers only 40% more performance—as evidenced by all the
leading processors in the past as shown in Figure 2. It plots
integer performance increase of new microarchitectures against
area (power) increase from the previous generation
microarchitecture, in the same process technology.

1

10

1.00 10.00

Area (X)

In
te

g
er

 P
e

rf
 (

X
)

Slope = ~0.5

Performance ~ Sqrt(Area)

Figure 2: Pollack's Rule

A multi-core microarchitecture, on the other hand, has potential
to provide near linear performance improvement with
complexity and power. Two smaller processor cores, instead of a
large monolithic processor core, can potentially provide 70-80%
more performance, as compared to only 40% from a large
monolithic core. Multiprocessors have several other benefits as

--
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 07, June 4-8, 2007, San Diego, CA.
Copyright 2007 ACM 1-58113-688-9/03/0006…$5.00.

746

42.1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

well: (1) each processor core can be individually turned on or
off, thereby saving power; (2) each processor core can be run at
its own optimized supply voltage and frequency; (3) easier to
load balance among processor cores to distribute heat across the
die; and (4) can potentially produce lower die temperatures
improving reliability and leakage.

As technology scales further, transistor performance will not
increase at the historic rates, due to excessive sub-threshold
leakage current, and supply voltage scaling slowing down [1].
Taking these effects into consideration, Figure 3 estimates
power consumption of a 300mm2 processor die.

0

1

10

2001 2005 2009 2013 2017

V
dd

, F
re

q
(G

H
z)

1

10

100

1,000

10,000

P
ow

er
 (

W
)

Vdd Scaling slowing down

Modest frequency increase

Total Power

Figure 3: Frequency and Power Consumption

Notice that such a multi-core die will consume almost 1,000
watts of power, which is unreasonable. Therefore, we need to go
beyond multi-core, and apply Pollack’s rule to the extreme to
deliver compute performance in a reasonable power envelope.

3. From Multi—to Many-Cores
Therefore, business as usual is not an option. You cannot simply
follow the path of multi-core evolution, integrating multiple
complex cores on a die. Instead, we propose that you integrate
lots of smaller cores. Each small core delivers lower
performance than a large complex core; however, the total
compute throughput of the system is much higher as follows.

If you have 1B logic transistor budget, instead of integrating 10
large 100M transistor cores, we propose to integrate 100
medium 10M transistor cores, or even 1,000 small 1M transistor
cores. Applying Pollack’s rule inversely, performance of a
smaller core reduces as square-root of the size, but power
reduction is linear, resulting in smaller performance degradation
with much larger power reduction. Overall, the compute
throughput of the system, on the other hand, increases linearly
with the larger number of small cores.

A many-core system on a die does not necessarily have to be
symmetric or homogenous. An asymmetric system may have a
few large cores to deliver higher single-thread performance, but
will predominantly have large number of small cores. A
heterogeneous system may even integrate diverse special
purpose cores for hardware acceleration, e.g. graphics engines.

Figure 4 illustrates such a heterogeneous many-core system with
general purpose cores (GP), and special purpose cores (SP),
each core having local cache memory, and all cores connected
together with an on-die interconnection network.

GP GP

GP

GP GP

GP

GP

GP GP

GP

GP GP

SP SP

SP SP

CC

CC

CC

CC

CC

CC

CC

CC

GP GP

GP

GP GP

GP

GP

GP GP

GP

GP GP

GP GP

GP

GP GP

GP

GP

GP GP

GP

GP GP

SP SP

SP SP

SP SP

SP SP

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

Figure 4: Illustration of a Many Core System

4. Performance of a Many-Core System
Although it is true that a many-core system will deliver higher
compute throughput than a multi-core system for the same die
size and in the same power envelope, it may be difficult to
harvest the performance. The limitation is Amdahl’s Law, which
states that the parallel speedup is limited by the serial code in a
program:

Parallel Speedup = 1/(Serial% +(1-Serial%)/N)

If the serial percentage in a program is large, then parallel
speedup saturates with small number of cores. Figure 5
illustrates impact of serial percentage of code on parallel
speedup.

0

2

4

6

8

10

0 10 20 30

Number of Cores

S
pe

ed
up

Serial% = 6.7%
N = 16, N1/2 = 8

16 Cores, Perf = 8

Serial% = 20%
N = 6, N1/2 = 3

6 Cores, Perf = 3
0

2

4

6

8

10

0 10 20 30

Number of Cores

S
pe

ed
up

Serial% = 6.7%
N = 16, N1/2 = 8

16 Cores, Perf = 8

Serial% = 20%
N = 6, N1/2 = 3

6 Cores, Perf = 3

Figure 5: Amdahl's Law limits parallel speedup

Notice that even 7% serial code impacts parallel speedup
adversely with diminishing return beyond 16 cores, delivering
the performance of only 8 cores, thereby limiting application of
inverse Pollack’s rule up to only 16 cores. This limitation is true
if only one application is running on the system at any given
time, and you try to parallelize a single application across all the
cores. In practice there are multiple applications running, each
with multiple tasks and multiple threads, and thus there exists
opportunity to harvest the performance of a many core system.

To explore this concept further, consider three systems on a chip
comprising 1: 12 large (60MT) cores, 2: 48 medium (15MT)
cores, and 3: 144 small (5MT) cores, all of them with the same
amount of total cache, and all of them in the same power
envelope. Figure 6 compares their relative performance.

747

0
5

10
15

20
25

30
35

40

TPT One
App

Two
App

Four
App

Eight
App

S
ys

te
m

 P
er

fo
rm

an
ce

12 Large Cores
48 Medium Cores
144 Small Cores

Single Core
Performance

1

0.5

0.3

0

0.2

0.4

0.6

0.8

1

1.2

La
rg

e

M
ed

S
m

al
l

R
el

at
iv

e
P

er
fo

rm
an

ce

0
5

10
15

20
25

30
35

40

TPT One
App

Two
App

Four
App

Eight
App

S
ys

te
m

 P
er

fo
rm

an
ce

12 Large Cores
48 Medium Cores
144 Small Cores

Single Core
Performance

1

0.5

0.3

0

0.2

0.4

0.6

0.8

1

1.2

La
rg

e

M
ed

S
m

al
l

R
el

at
iv

e
P

er
fo

rm
an

ce

Figure 6: Performance of Large, Medium, and Small Cores

Small core is 12 times smaller than the large core, but its
performance is only about a third of the large core. Total
throughput of the small core system (TPT), however, is much
higher than the large core system. If you parallelize one
application for a 12 large core system and a 144 small core
system then the small core system performs poorly, as expected
from Amdahl’s Law. Notice that as the number of applications
increase, total system performance of medium and small core
systems increase. Therefore, to harvest the performance of a
many-core system, we cannot just depend on parallelizing a
single application, but must utilize task level and application
level parallelism.

5. Power and Energy
So far we have discussed how to maximize compute
performance using many-cores, using hundreds or even
thousands of small cores. Now we discuss how to fit the system
in an affordable power envelope.

The best lever to reduce power with minimal impact on
performance is to use voltage scaling. Applying voltage scaling
indiscriminately to the entire system would lower power, but
may not be optimal. Instead we propose to exploit the fact that
there are hundreds to thousands of cores, and each core can be
voltage scaled individually, thus employing fine grain power
management. Individual cores can be voltage and frequency
scaled to any arbitrary voltage and frequency in the possible
range, but this could be difficult and cumbersome. Different
cores running at different voltages and frequency would create
asynchronous interfaces, adding latency, meta-stability, and
would require complex power delivery system.

f f/2

f/2

0 f

f

f

f f/2

f/2

0 f

0 f/2

0 0

Vdd, and 0.7xVdd

f f/2

f/2

0 f

f

f

f f/2

f/2

0 f

f f/2

f/2

0 f

f

f

f f/2

f/2

0 f

0 f/2

0 0

0 f/2

0 0

Vdd, and 0.7xVdd

Figure 7: Fine grain power management

We propose a much simpler method of fine grain power
management illustrated in Figure 7. A core operates at one of
the two frequencies: f and f/2, where f is the maximum
frequency of operation. When a core operates at f/2, it uses
lower voltage, say 0.7xVdd, thus consuming only 25% of the
maximum power. Idle cores could be turned off to save leakage
power. Thus you need only two supply voltages, two sleep
transistors [2] in each core to select a supply voltage, and a
frequency divider in each core to select the frequency of
operation. Since the number of cores is large, this coarse grain
power management of a core enables fine grain power
management of the entire many core system, with only two
supply voltages, simplifying design and power delivery.

If all the cores were operating at half the frequency then the
power consumption would be approximately 200W. Therefore,
we estimate power consumption of about 300W for a 300mm2
die, or 100W for a 100mm2 die, fitting in the affordable power
envelope.

6. Design Considerations
Since a core should be capable of operating at a much lower
voltage, it warrants careful design practices. In the past, designs
had to operate at the highest possible frequency to deliver high
performance, but not anymore; it’s the system performance that
matters. Hence, design styles, such as domino logic, which are
power hungry and do not scale well with voltage should not be
employed. Instead, simple and robust static CMOS logic, which
consumes much lower power, must be used. Large memory
arrays such as caches and register files tend to be sensitive to
lower voltages too, often due to design tradeoffs to increase their
density. These arrays will have to be designed for robustness for
low voltage operation, sacrificing some density.

7. On die network
The backbone of the many-core system is the network on the
chip, connecting all the cores together, and carrying memory
and IO traffic. In a shared memory system, this network carries
cache coherence traffic to keep caches coherent, which is
bandwidth intensive and latency sensitive. The network can be
a ring [3] or a higher dimensional network such as a mesh [4] to
reduce latency. It is typically implemented as a packet switched
network carrying packets buffered at each node.

1

10

100

1,000

2001 2005 2009 2013 2017

N
et

w
or

k
P

ow
er

 (
W

) 4B wide links, 4 links/core

~150W

Figure 8: Network power estimate

These packet switched networks tend to be power hungry,
consuming almost 500mW of power at each node. Assuming

748

even narrow 4 byte wide links, 4 per core, with 1MT small
cores, Figure 8 shows estimated network power for a many core
die, confirming that the network power is substantial.

Power management in the network is difficult, if not impractical,
because any power management technique, such as clock gating
or sleep-states, incurs wake up latency, impacting system
performance. On the one hand, smaller cores give you higher
throughput performance in the same power envelope as
discussed before, but on the other hand, it also increases the
number of network nodes, increasing the network power. A
careful study of the system power and performance is necessary
to balance the size of the core, and the number of cores.

8. Memory Bandwidth
A many core system with thousands of cores will demand 100’s
of GB of memory bandwidth, and a traditional memory
subsystem solution is not sufficient. A memory bus IO circuit
consumes ~25mW/Gbps, and consequently a memory bus alone
would consume about 25W to deliver 100GB/s memory
bandwidth, which is excessive. The IO circuits employ
sophisticated signal processing techniques to attain high data
rate, consuming much of the power. If the bus lengths are
somehow made substantially smaller, say a few millimeters, then
the buses behave like lumped capacitor, rather than as
transmission lines, and the IO circuits would consume
substantially lower power, of the order of 1-2mW/Gbps.

Through
Silicon
Vias (TSV)

Die-to-
die vias

Die #1
(750-800µµµµm thick)

Die #2
(20-100µµµµm thick)

Total height
800-1000 µµµµm

C4 I/O Bump

Bulk Si

Active Si #1

Active Si #2
Bulk Si

Heat
Sink

Through
Silicon
Vias (TSV)

Die-to-
die vias

Die #1
(750-800µµµµm thick)

Die #2
(20-100µµµµm thick)

Total height
800-1000 µµµµm

C4 I/O Bump

Bulk Si

Active Si #1

Active Si #2
Bulk Si

Heat
Sink

Figure 9: Three dimensional interconnect with stacking

A three dimensional integration (3D) of a memory with
processor is a potential solution, where a thinned memory die is
placed between the processor and the package [4]. Signals and
power to the processor are routed through the memory die using
through silicon vias, as shown in Figure 9 & Figure 10.

Package

Thinned DRAM

CPU

Heat-sink
Memory

Array

3D IO 3D IO

3D IO 3D IO

Through Silicon Via (TSV)

PackagePackage

Thinned DRAMThinned DRAM

CPUCPU

Heat-sink
Memory

Array

3D IO 3D IO

3D IO 3D IO

Through Silicon Via (TSV)

Figure 10: Assembly of 3D memory

This 3D integration of memory will consume only a few watts of
IO power, and provide substantial memory bandwidth to the
many-core system. Of course, architecturally, this adds another
level of memory hierarchy and needs further attention.

9. Resiliency
As technology scales further, variations become prominent [5].
Chips will encounter dynamic variations of supply voltage and
temperature; frequent and intermittent soft-errors; and
transistors that slowly age and degrade over time, degrading
circuit performance [6]. Despite these difficulties, users expect
the system to remain reliable and to continue to deliver the rated
performance. This challenge will undoubtedly require a major
paradigm shift in all aspects of VLSI design—fabrication,
design, microarchitecture, testing, software, and applications.
Many-cores, with hundreds to thousands of cores provide
resiliency to combat this problem.

Many-cores in a system will provide redundancy with spare
cores, and functional redundancy checking employed at a
coarse-grained level. For example, one core could check results
produced by several cores; of course, software and applications
will have to support this concept whenever possible. We could
distribute test functionality as a part of the hardware to
dynamically detect errors, or to isolate and correct aging and
faulty cores, by replacing from the spare cores.

This microarchitecture strategy, with many-cores to assist in
redundancy, is called resilient microarchitecture. It continually
detects errors, isolates faults, confines faults, reconfigures the
hardware, and thus adapts. If we can make such a strategy work,
there is no need for one-time factory testing or burn-in, since the
system is capable of testing and reconfiguring itself to make
itself work reliably throughout its lifetime.

10. Conclusion
The many-core architecture with hundreds to thousands of small
cores delivers unprecedented compute performance in an
affordable power envelope. Fine grain system power
management, an optimized on-die-network, and 3D memory
technology are vital, and a many-core system also provides
resiliency to combat variability and reliability.

11. References
[1] Shekhar Borkar, “Design Challenges of Technology Scaling,
IEEE Micro”, July-August 1999.

[2] Tschanz J., et al, “ Dynamic sleep transistor and body bias
for active leakage power control of microprocessors”, IEEE
Journal of Solid State Circuits, November 2003.

[3] Pham D. et al, “The design and implementation of a first-
generation CELL processor”, ISSCC 2005.

[4] Vangal et al, “An 80-Tile 1.28TFLOPS Network-on-Chip in
65nm CMOS”, ISSCC 2007.

[5] Shekhar Borkar et al, “Parameter Variations and Impact on
Circuits and Microarchitecture”, Proceedings, DAC 2003.

[6] Shekhar Borkar, “Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation”, IEEE Micro, November-
December 2005.

749

