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ABSTRACT  
This paper presents the many-core architecture, with hundreds to 
thousands of small cores, to deliver unprecedented compute 
performance in an affordable power envelope. We discuss fine 
grain power management, memory bandwidth, on die networks, 
and system resiliency for the many-core system.   
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1. Introduction 
Moore’s Law continues with technology scaling, improving 
transistor performance to increase frequency, increasing 
transistor integration capacity to realize complex architectures, 
and reducing energy consumed per logic operation to keep 
power dissipation within limit. Advances in software 
technology, such as rich multimedia applications and run time 
systems, exploited this performance explosion, delivering end 
users with higher productivity, seamless internet connectivity, 
and even multimedia & entertainment. The technology treadmill 
will continue, providing integration capacity of billions of 
transistors; however, with several fundamental barriers [1]. In 
this paper, we will examine some of the barriers, ways to get 
around them, how it changes the landscape, and how the future 
advances in technology, architecture, and software, all together 
could help continue this treadmill.  

2. Is Multi-Core enough? 
Integration capacity of billions of transistors exists today, and 
will double every two years. This trend is shown in Figure 1, 
starting from 2001 with 130nm technology generation, with a 
300mm2 die capable of integrating one billion transistors.  

Assuming about half the die area being allocated for logic, and 
the other half for large memory arrays such as caches, the trend 
shows that by 2015 you will have 100B transistors on a 300mm2 
die, with almost 1.5B transistors available for logic. The logic 
transistors tend to be larger than transistors in the memory, take 
larger space, and consume more power.  

How will you employ these logic transistors to deliver 

performance? The evolutionary approach is to continue today’s 
trend with a few large processor cores, each employing 20 to 
100 million logic transistors, and a large shared cache.  
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Figure 1: Transistor integration capacity 

Performance increase by microarchitecture alone is governed by 
Pollack’s Rule, which states that performance increase is 
roughly proportional to square root of increase in complexity. In 
other words, if you double the logic in a processor core, then it 
delivers only 40% more performance—as evidenced by all the 
leading processors in the past as shown in Figure 2. It plots 
integer performance increase of new microarchitectures against 
area (power) increase from the previous generation 
microarchitecture, in the same process technology.  
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Figure 2: Pollack's Rule 

A multi-core microarchitecture, on the other hand, has potential 
to provide near linear performance improvement with 
complexity and power. Two smaller processor cores, instead of a 
large monolithic processor core, can potentially provide 70-80% 
more performance, as compared to only 40% from a large 
monolithic core. Multiprocessors have several other benefits as 
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well: (1) each processor core can be individually turned on or 
off, thereby saving power; (2) each processor core can be run at 
its own optimized supply voltage and frequency; (3) easier to 
load balance among processor cores to distribute heat across the 
die; and (4) can potentially produce lower die temperatures 
improving reliability and leakage. 

As technology scales further, transistor performance will not 
increase at the historic rates, due to excessive sub-threshold 
leakage current, and supply voltage scaling slowing down [1]. 
Taking these effects into consideration, Figure 3 estimates 
power consumption of a 300mm2 processor die. 
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Figure 3: Frequency and Power Consumption 

Notice that such a multi-core die will consume almost 1,000 
watts of power, which is unreasonable. Therefore, we need to go 
beyond multi-core, and apply Pollack’s rule to the extreme to 
deliver compute performance in a reasonable power envelope. 

3. From Multi—to Many-Cores 
Therefore, business as usual is not an option. You cannot simply 
follow the path of multi-core evolution, integrating multiple 
complex cores on a die. Instead, we propose that you integrate 
lots of smaller cores. Each small core delivers lower 
performance than a large complex core; however, the total 
compute throughput of the system is much higher as follows. 

If you have 1B logic transistor budget, instead of integrating 10 
large 100M transistor cores, we propose to integrate 100 
medium 10M transistor cores, or even 1,000 small 1M transistor 
cores. Applying Pollack’s rule inversely, performance of a 
smaller core reduces as square-root of the size, but power 
reduction is linear, resulting in smaller performance degradation 
with much larger power reduction. Overall, the compute 
throughput of the system, on the other hand, increases linearly 
with the larger number of small cores. 

A many-core system on a die does not necessarily have to be 
symmetric or homogenous. An asymmetric system may have a 
few large cores to deliver higher single-thread performance, but 
will predominantly have large number of small cores. A 
heterogeneous system may even integrate diverse special 
purpose cores for hardware acceleration, e.g. graphics engines. 

Figure 4 illustrates such a heterogeneous many-core system with 
general purpose cores (GP), and special purpose cores (SP), 
each core having local cache memory, and all cores connected 
together with an on-die interconnection network. 
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Figure 4: Illustration of a Many Core System 

4. Performance of a Many-Core System 
Although it is true that a many-core system will deliver higher 
compute throughput than a multi-core system for the same die 
size and in the same power envelope, it may be difficult to 
harvest the performance. The limitation is Amdahl’s Law, which 
states that the parallel speedup is limited by the serial code in a 
program: 

Parallel Speedup = 1/(Serial% +(1-Serial%)/N) 

If the serial percentage in a program is large, then parallel 
speedup saturates with small number of cores. Figure 5 
illustrates impact of serial percentage of code on parallel 
speedup. 
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Figure 5: Amdahl's Law limits parallel speedup 

Notice that even 7% serial code impacts parallel speedup 
adversely with diminishing return beyond 16 cores, delivering 
the performance of only 8 cores, thereby limiting application of 
inverse Pollack’s rule up to only 16 cores. This limitation is true 
if only one application is running on the system at any given 
time, and you try to parallelize a single application across all the 
cores. In practice there are multiple applications running, each 
with multiple tasks and multiple threads, and thus there exists 
opportunity to harvest the performance of a many core system. 

To explore this concept further, consider three systems on a chip 
comprising 1: 12 large (60MT) cores, 2: 48 medium (15MT) 
cores, and 3: 144 small (5MT) cores, all of them with the same 
amount of total cache, and all of them in the same power 
envelope. Figure 6 compares their relative performance. 

747



0
5

10
15

20
25

30
35

40

TPT One
App

Two
App

Four
App

Eight
App

S
ys

te
m

 P
er

fo
rm

an
ce

12 Large Cores
48 Medium Cores
144 Small Cores

Single Core 
Performance

1

0.5

0.3

0

0.2

0.4

0.6

0.8

1

1.2

La
rg

e

M
ed

S
m

al
l

R
el

at
iv

e 
P

er
fo

rm
an

ce

0
5

10
15

20
25

30
35

40

TPT One
App

Two
App

Four
App

Eight
App

S
ys

te
m

 P
er

fo
rm

an
ce

12 Large Cores
48 Medium Cores
144 Small Cores

Single Core 
Performance

1

0.5

0.3

0

0.2

0.4

0.6

0.8

1

1.2

La
rg

e

M
ed

S
m

al
l

R
el

at
iv

e 
P

er
fo

rm
an

ce

 

Figure 6: Performance of Large, Medium, and Small Cores 

Small core is 12 times smaller than the large core, but its 
performance is only about a third of the large core. Total 
throughput of the small core system (TPT), however, is much 
higher than the large core system. If you parallelize one 
application for a 12 large core system and a 144 small core 
system then the small core system performs poorly, as expected 
from Amdahl’s Law. Notice that as the number of applications 
increase, total system performance of medium and small core 
systems increase. Therefore, to harvest the performance of a 
many-core system, we cannot just depend on parallelizing a 
single application, but must utilize task level and application 
level parallelism. 

5. Power and Energy 
So far we have discussed how to maximize compute 
performance using many-cores, using hundreds or even 
thousands of small cores. Now we discuss how to fit the system 
in an affordable power envelope. 

The best lever to reduce power with minimal impact on 
performance is to use voltage scaling. Applying voltage scaling 
indiscriminately to the entire system would lower power, but 
may not be optimal. Instead we propose to exploit the fact that 
there are hundreds to thousands of cores, and each core can be 
voltage scaled individually, thus employing fine grain power 
management. Individual cores can be voltage and frequency 
scaled to any arbitrary voltage and frequency in the possible 
range, but this could be difficult and cumbersome. Different 
cores running at different voltages and frequency would create 
asynchronous interfaces, adding latency, meta-stability, and 
would require complex power delivery system.  
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Figure 7: Fine grain power management 

We propose a much simpler method of fine grain power 
management illustrated in Figure 7. A core operates at one of 
the two frequencies: f and f/2, where f is the maximum 
frequency of operation. When a core operates at f/2, it uses 
lower voltage, say 0.7xVdd, thus consuming only 25% of the 
maximum power. Idle cores could be turned off to save leakage 
power. Thus you need only two supply voltages, two sleep 
transistors [2] in each core to select a supply voltage, and a 
frequency divider in each core to select the frequency of 
operation. Since the number of cores is large, this coarse grain 
power management of a core enables fine grain power 
management of the entire many core system, with only two 
supply voltages, simplifying design and power delivery. 

If all the cores were operating at half the frequency then the 
power consumption would be approximately 200W. Therefore, 
we estimate power consumption of about 300W for a 300mm2 
die, or 100W for a 100mm2 die, fitting in the affordable power 
envelope. 

6. Design Considerations 
Since a core should be capable of operating at a much lower 
voltage, it warrants careful design practices. In the past, designs 
had to operate at the highest possible frequency to deliver high 
performance, but not anymore; it’s the system performance that 
matters. Hence, design styles, such as domino logic, which are 
power hungry and do not scale well with voltage should not be 
employed. Instead, simple and robust static CMOS logic, which 
consumes much lower power, must be used. Large memory 
arrays such as caches and register files tend to be sensitive to 
lower voltages too, often due to design tradeoffs to increase their 
density. These arrays will have to be designed for robustness for 
low voltage operation, sacrificing some density. 

7. On die network 
The backbone of the many-core system is the network on the 
chip, connecting all the cores together, and carrying memory 
and IO traffic. In a shared memory system, this network carries 
cache coherence traffic to keep caches coherent, which is 
bandwidth intensive and latency sensitive.  The network can be 
a ring [3] or a higher dimensional network such as a mesh [4] to 
reduce latency. It is typically implemented as a packet switched 
network carrying packets buffered at each node.  
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Figure 8: Network power estimate 

These packet switched networks tend to be power hungry, 
consuming almost 500mW of power at each node. Assuming 

748



even narrow 4 byte wide links, 4 per core, with 1MT small 
cores, Figure 8 shows estimated network power for a many core 
die, confirming that the network power is substantial. 

Power management in the network is difficult, if not impractical, 
because any power management technique, such as clock gating 
or sleep-states, incurs wake up latency, impacting system 
performance. On the one hand, smaller cores give you higher 
throughput performance in the same power envelope as 
discussed before, but on the other hand, it also increases the 
number of network nodes, increasing the network power. A 
careful study of the system power and performance is necessary 
to balance the size of the core, and the number of cores. 

8. Memory Bandwidth 
A many core system with thousands of cores will demand 100’s 
of GB of memory bandwidth, and a traditional memory 
subsystem solution is not sufficient. A memory bus IO circuit 
consumes ~25mW/Gbps, and consequently a memory bus alone 
would consume about 25W to deliver 100GB/s memory 
bandwidth, which is excessive. The IO circuits employ 
sophisticated signal processing techniques to attain high data 
rate, consuming much of the power. If the bus lengths are 
somehow made substantially smaller, say a few millimeters, then 
the buses behave like lumped capacitor, rather than as 
transmission lines, and the IO circuits would consume 
substantially lower power, of the order of 1-2mW/Gbps.  
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Figure 9: Three dimensional interconnect with stacking 

A three dimensional integration (3D) of a memory with 
processor is a potential solution, where a thinned memory die is 
placed between the processor and the package [4]. Signals and 
power to the processor are routed through the memory die using 
through silicon vias, as shown in Figure 9 & Figure 10. 
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Figure 10: Assembly of 3D memory 

This 3D integration of memory will consume only a few watts of 
IO power, and provide substantial memory bandwidth to the 
many-core system. Of course, architecturally, this adds another 
level of memory hierarchy and needs further attention. 

9. Resiliency 
As technology scales further, variations become prominent [5]. 
Chips will encounter dynamic variations of supply voltage and 
temperature; frequent and intermittent soft-errors; and 
transistors that slowly age and degrade over time, degrading 
circuit performance [6]. Despite these difficulties, users expect 
the system to remain reliable and to continue to deliver the rated 
performance. This challenge will undoubtedly require a major 
paradigm shift in all aspects of VLSI design—fabrication, 
design, microarchitecture, testing, software, and applications. 
Many-cores, with hundreds to thousands of cores provide 
resiliency to combat this problem. 

Many-cores in a system will provide redundancy with spare 
cores, and functional redundancy checking employed at a 
coarse-grained level. For example, one core could check results 
produced by several cores; of course, software and applications 
will have to support this concept whenever possible. We could 
distribute test functionality as a part of the hardware to 
dynamically detect errors, or to isolate and correct aging and 
faulty cores, by replacing from the spare cores. 

This microarchitecture strategy, with many-cores to assist in 
redundancy, is called resilient microarchitecture. It continually 
detects errors, isolates faults, confines faults, reconfigures the 
hardware, and thus adapts. If we can make such a strategy work, 
there is no need for one-time factory testing or burn-in, since the 
system is capable of testing and reconfiguring itself to make 
itself work reliably throughout its lifetime. 

10. Conclusion 
The many-core architecture with hundreds to thousands of small 
cores delivers unprecedented compute performance in an 
affordable power envelope. Fine grain system power 
management, an optimized on-die-network, and 3D memory 
technology are vital, and a many-core system also provides 
resiliency to combat variability and reliability. 
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