
CE 654 – Embedded Systems

Lecture 2

Specification and Modeling of
 Embedded Systems

Nikos Bellas

Computer and Communications Engineering Department
University of Thessaly

4/3/08 CE654 - Spring 2008 2

Specifications in Embedded Systems

Specification

Implementation

Design &
Development

4/3/08 CE654 - Spring 2008 3

Specifications in Embedded Systems
• Requirements and Constraints: informal description of

what the customer wants

• Specification: Detailed, technical description of what
the team will deliver.

• Requirements and analysis phase links customer with
designers

4/3/08 CE654 - Spring 2008 4

Types of specifications, requirements and
constraints
• Functional: Input-Output relationships

• Non-functional:
✔ Timing
✔ Power consumption
✔ Production cost
✔ Physical size, weight
✔ Time to market
✔ Safety requirements
✔ Environmental requirements

4/3/08 CE654 - Spring 2008 5

Specifications, requirements and
constraints

• They should be
✔ Correct
✔ Unambiguous
✔ Complete
✔ Verifiable: we should be able to check that the specifications,

requirements, and constraints are satisfied in the final system
✔ Consistent: they do not contradict each other
✔ Modifiable: they can be updated easily
✔ Reasonable: the specifications, requirements and constraints

should be easily understood, and designers should know why
they exist

26/2/08 CE654 - Spring 2008 6

Setting requirements and constraints

• Techniques include
✔ Customer interviews
✔ Comparisons with competitors
✔ Feedback from sales and marketing departments
✔ Experience from prototypes and similar products

26/2/08 CE654 - Spring 2008 7

Setting specifications

• A complete specification captures non-functional
requirements (speed, power, cost, size) and the
behavior of the system by providing:

– Relation between inputs and outputs
– Possibly internal states
– Algorithm for the system functionality

• The design team must have the capability to verify the
correctness of the specification and to compare the specification
with the implementation.

• Basic specification styles:
✔ Textual
✔ Graphical
✔ Mixed

26/2/08 CE654 - Spring 2008 8

Setting specifications properties

• Specifications can be formulated in:
✔ Natural language (informal)
✔ Specification languages or models (more detailed)

● A specification language or model has to be
✔ able to express the basic properties and basic aspects of the

system behavior in a clear manner
✔ able to check the system requirements and to ensure the

synthesis of an efficient system implementation
● Depending on the particularities of the system or parts of the

system, adequate languages or models have to be chosen
● The specification language or model has to contain the

appropriate constructs (textual or graphical) in order to express
the system's functionality and requirements.

26/2/08 CE654 - Spring 2008 9

Specifications and refinement

• The design process consists of a sequence of steps:
– each step performs a transformation from a more abstract

description to a more detailed one

• A design step takes a specification (model, code, etc.) of the
design at a level of abstraction and refines it to a lower one.

26/2/08 CE654 - Spring 2008 10

From specification to implementation

The designer gets a
specification (behavior
description and other
properties) as an input
and finally has to
produce an
implementation, after a
sequence of refinement
steps.

Specification

?

Ref.step 1

Ref.step 2

Implementation

 ...
Implementation
for Ref.step 1
Specification
for Ref.step 2

●Dedicated hw
●Machine code

26/2/08 CE654 - Spring 2008 11

Simplified design flow
1. Start from some informal specification of

functionality and a set of constraints (time,
power, cost limits, etc.)

2. Generate a more formal specification of the
functionality, based on some modeling
concept (e.g. finite state machines).
This model may be in Matlab, C, UML

3. Simulate the model in order to check the
functionality. If needed, make adjustments.

4. Choose an architecture (μprocessor, buses,
etc.) such that the cost limits are satisfied
and, hopefully, time and power constraints
will be fulfilled.

5. Build a prototype and implement the system
6. Verify the system: time, power constraints

satisfied?
● Go back to 4 and choose another

architecture to start a new
implementation

● Or negotiate with the customer on the
constraints.

Informal Specification
Constraints

Modeling

System Model

Select Architecture

HW and SW
Implementation

PrototypeTesting

Fabrication

Functional
Simulation

OK

26/2/08 CE654 - Spring 2008 12

System modeling: use of computation
models

• A computation model assists the designer to understand and
describe the behavior of a system by providing a “vehicle” to
compose the system's behavior from simpler objects.

• A computation model provides a set of objects and rules for
composing those objects in order then to be able to formally
represent (model) the behavior of our system

• A system is represented as a set of components, which can be
considered as isolated modules (often called processes or
tasks) interacting with each other and the environment

• Usually, computation models are based on some kind of graph
representation

• The computation models define the behavior and interaction
mechanisms of the system modules.

• The computation models help the designer to formally analyze,
estimate some useful parameters, verify (at the high level) the
system by using the proper tools.

26/2/08 CE654 - Spring 2008 13

System modeling: use of computation
models
• Thus, computation models

usually refer to:
✔ How each module (process or

task) performs internal
computation

✔ How the modules transfer
information between them
(communication)

✔ How they are related in terms
of execution order and
synchronization

• Some computation models do
not refer to aspects related to the
internal computation of the
modules but only to modules'
interaction.

26/2/08 CE654 - Spring 2008 14

Order of execution
• Two different approaches for ordering the

execution of tasks in computation models
✔ Data-driven
✔ Control-driven

26/2/08 CE654 - Spring 2008 15

Data-driven order of execution
• The system is specified as a set of processes

without any explicit specification of the ordering of
executions.

• The execution order of processes (and the
possible parallelism) is determined solely by data
dependencies

–Typical for many DSP applications.

26/2/08 CE654 - Spring 2008 16

Data-driven order of execution
• Processes communicate by passing

data through FIFO channels

• Each process is blocked until there is
sufficient data in the channel.

A process that tries to read from a
channel waits until data is available.

Process p1 (in a, out x, out y) {...};
Process p2 (in a, out x) {...};
Process p3 (in a, out x) {...};
Process p4 (in a, in b, out x) {...};
channels I, O, C1, C2, C3, C4;

p1

p2 p3

p4

I

O

C
1

C
2

C
3

C
4

p1(I, C1, C2)
p2(C1,C3);
p3(C2, C4);
p4(C3,C4,O);

It doesn't matter in which
order they are expressed

4/3/08 CE654 - Spring 2008 17

Control-driven order of execution
• The execution order of processes is given explicitly in

the system specification
• Explicit constructs are used to specify sequential

execution and concurrency
module p1

....

end p1

module p2

....

end p2

module p3

....

end p3

module p4

....

end p4

run p1
run p2 || run p3
run p4

– Here, p1 starts first, and has to
finish before the beginning pf
p2 and p3

– p2 and p3 start in parallel
– Both p2 and p3 have to finish

before p4 starts

4/3/08 CE654 - Spring 2008 18

Communication and Synchronization
• Processes have to communicate to exchange

information
• Various communication models are used:

✔ Shared memory
✔ Message passing

✗ Blocking
✗ Non-blocking

● Synchronization cannot be separated from communication. Any
interaction between two processes implies a certain degree of
communication and synchronization

● Synchronization: one process is suspended until another one
reaches a specific point in its execution

4/3/08 CE654 - Spring 2008 19

Shared memory communication

process p1 {

int a=0;

...........

Χ = a+1;

............

}

process p2 {

int b;

...........

b=X;

............

}

X

Shared Memory

a, b are private variables

X is a shared variable

Processes communicate by reading and writing to
shared variables in a global memory space

a, b are private variables

X is a shared variable

4/3/08 CE654 - Spring 2008 20

Message-passing communication

process p1 {

int a=0;

...........

C.send(a+1)

............

}

process p2 {

int b;

...........

b=C.recv()

............

}

Channel C

Shared Memory

Messages that carry data pass through an abstract
communication medium called channel

This communication model is adequate for describing
distributed systems.

4/3/08 CE654 - Spring 2008 21

Message-passing communication
• Blocking communication

– A communicating process blocks itself until the
receiving process is ready for data transfer

– The two processes have to synchronize before
communication

4/3/08 CE654 - Spring 2008 22

Message-passing communication
• Non-blocking communication

– The communication is asynchronous. However, buffers
have to be inserted between processes to
accommodate lack of synchronization

– The sending process has to place a message to the
buffer and continues execution

– The receiving process reads the next message from the
buffer when it is ready to do so

4/3/08 CE654 - Spring 2008 23

Common computation models
• Different computation models provide different

properties
• We choose the appropriate computation model for

the application domain we are working on
• The following computational models are

commonly used to describe the functionality and
structure of embedded systems

✔ Data flow models
✔ Finite state machines
✔ Petri Nets

4/3/08 CE654 - Spring 2008 24

Common computation models
• Most applications can be classified as control-

dominated or data-dominated
• A control-dominated application is dominate by

monitoring inputs and reacting by setting control
outputs

• A data-dominated application mainly consists of
transforming streams of input data to streams of
output data

4/3/08 CE654 - Spring 2008 25

Data flow models
• Systems are specified as

directed graphs where:
✔ Nodes represent

computations (processes)
✔ Arcs represent sequences

(streams) of data
● Suitable for signal processing

algorithms that are expressed
as block diagrams (filters,
encoders

p1

p2 p3

p4

I

O

C
1

C
2

C
3

C
4

4/3/08 CE654 - Spring 2008 26

Data flow model example

• vsign produces -1, 0, 1 for <0, ==0, >0
• Scalar s1 is rq
• Scalar s2 is b
• Vasr0 is arithmetic shift right and truncate towards zero

i.e. integer divide by power of 2

vsign vmul vsub vmul vasr0

vld v1

vst v0

vscalar s2 vscalar s1 vimm 16(b) (rq) (16)

(in)

(out)

(sign of c)
+/-b

c -/+b (c -/+b)*rq [(c -/+b)*rq]>>16

sgn/sub mul shifter

s1
s2

Input
Stream

Output
Stream

16

4/3/08 CE654 - Spring 2008 27

Finite State Machines
• The system is specified by representing its states and

its transitions from state to state
• One particular state is specified as the initial one
• Finite number of states and transitions
• Transitions are triggered by input events
• Transition generate outputs
• FSMs are used to model control-dominated reactive

systems, i.e. react on inputs with specific outputs
• Not too much computation

4/3/08 CE654 - Spring 2008 28

FSM example

4/3/08 CE654 - Spring 2008 29

Finite State Machines
• Complex systems tend to have a very large number of

states particularly in case of concurrency. This is
called state explosion.

• Expressing such a system with a single FSM is very
difficult

• There are two important tools that simplify the FSM
modeling:

✔ Hierarchy
✔ Concurrency

● These tools only reduce the size of the graphical
representation of the FSM. The inherent complexity does
not change.

● The FSM model that uses these two mechanisms is called
Hierarchical/Concurrent FSM (HCFSM)

4/3/08 CE654 - Spring 2008 30

Finite State Machines

• Hierarchy
✔ A single state s can represent a whole FSM F
✔ Being in state s means that the FSM F is active, and the

system is in one of the states of F.
• Concurrency

✔ Two or more finite state machines are viewed as being
simultaneously active

✔ The two FSMs operate in parallel or they may
communicate

● Another option is the Program State Machine (PSM) model
that extends FSMs to allow use of sequential program code
in order to define a state's action.

4/3/08 CE654 - Spring 2008 31

Computation models and specification
languages

• A single specification language can be used for the
specification of a whole system.

• This does not mean that we have a homogeneous
specification (one computational model)

• It means that the specification language can cover
multiple computation models, each one describing
components of the system

• For example, it is possible to specify in the same HDL
language parts of the program using the FSM model,
and parts of the program using the data-flow model

• Several languages are capable of describing a system
✔ Specific languages for the hardware part (Verilog) and

the software part (C, or Java)

4/3/08 CE654 - Spring 2008 32

Specification languages
• General purpose programming languages (Matlab, C,

C++, Java) or hardware programming languages
(VHDL, Verilog, SystemC). They may support multiple
models of computation

• Synchronous languages (FSM-based): Esterel
✔ It describes set of interacting synchronous FSMs

• Languages for description of networks of communicating
processes: UML, SDL

• Streaming languages for hardware description (ImpulseC,
mitrion-C, etc.)

