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Specifications in Embedded Systems
• Requirements and Constraints: informal description of 

what the customer wants

• Specification: Detailed, technical description of what 
the team will deliver.

• Requirements and analysis phase links customer with 
designers
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Types of specifications, requirements and 
constraints
• Functional: Input-Output relationships

• Non-functional:
✔ Timing
✔ Power consumption
✔ Production cost
✔ Physical size, weight
✔ Time to market
✔ Safety requirements
✔ Environmental requirements
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Specifications, requirements and 
constraints

• They should be
✔ Correct
✔ Unambiguous
✔ Complete
✔ Verifiable: we should be able to check that the specifications, 

requirements, and constraints are satisfied in the final system
✔ Consistent: they do not contradict each other
✔ Modifiable: they can be updated easily
✔ Reasonable: the specifications, requirements and constraints 

should be easily understood, and designers should know why 
they exist
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Setting requirements and constraints

• Techniques include
✔ Customer interviews
✔ Comparisons with competitors 
✔ Feedback from sales and marketing departments
✔ Experience from prototypes and similar products
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Setting specifications

• A complete specification captures non-functional 
requirements (speed, power, cost, size) and the 
behavior of the system by providing:

– Relation between inputs and outputs
– Possibly internal states
– Algorithm for the system functionality

• The design team must have the capability to verify the 
correctness of the specification and to compare the specification 
with the implementation.

• Basic specification styles:
✔ Textual
✔ Graphical
✔ Mixed
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Setting specifications properties

• Specifications can be formulated in:
✔ Natural language (informal)
✔ Specification languages or models (more detailed)

● A specification language or model has to be 
✔ able to express the basic properties and basic aspects of the 

system behavior in a clear manner
✔ able to check the system requirements and to ensure the 

synthesis of an efficient system implementation
● Depending on the particularities of the system or parts of the 

system, adequate languages or models have to be chosen
● The specification language or model has to contain the 

appropriate constructs (textual or graphical) in order to express 
the system's functionality and requirements.
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Specifications and refinement

• The design process consists of a sequence of steps:
– each step performs a transformation from a more abstract 

description to a more detailed one

• A design step takes a specification (model, code, etc.) of the 
design at a level of abstraction and refines it to a lower one.
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From specification to implementation

The designer gets a 
specification (behavior 
description and other 
properties) as an input 
and finally has to 
produce an 
implementation, after a 
sequence of refinement 
steps.

Specification

?

Ref.step 1

Ref.step 2

Implementation

 ... 
Implementation
for Ref.step 1
Specification
for Ref.step 2

●Dedicated hw
●Machine code
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Simplified design flow
1. Start from some informal specification of 

functionality and a set of constraints (time, 
power, cost limits, etc.)

2. Generate a more formal specification of the 
functionality, based on some modeling 
concept (e.g. finite state machines). 
This model may be in Matlab, C, UML

3. Simulate the model in order to check the 
functionality. If needed, make adjustments.

4. Choose an architecture (μprocessor, buses, 
etc.) such that the cost limits are satisfied 
and, hopefully, time and power constraints 
will be fulfilled.

5. Build a prototype and implement the system
6. Verify the system: time, power constraints 

satisfied?
● Go back to 4 and choose another 

architecture to start a new 
implementation

● Or negotiate with the customer on the 
constraints.    

Informal Specification
Constraints

Modeling

System Model

Select Architecture

HW and SW 
Implementation

PrototypeTesting

Fabrication

Functional
Simulation

OK
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System modeling: use of computation 
models

• A computation model assists the designer to understand and 
describe the behavior of a system by providing a “vehicle” to 
compose the system's behavior from simpler objects.

• A computation model provides a set of objects and rules for 
composing those objects in order then to be able to formally 
represent (model) the behavior of our system

• A system is represented as a set of components, which can be 
considered as isolated modules (often called processes or 
tasks) interacting with each other and the environment

• Usually, computation models are based on some kind of graph 
representation

• The computation models define the behavior and interaction 
mechanisms of the system modules.

• The computation models help the designer to formally analyze, 
estimate some useful parameters, verify (at the high level) the 
system by using the proper tools.
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System modeling: use of computation 
models
• Thus, computation models 

usually refer to:
✔ How each module (process or 

task) performs internal 
computation

✔ How the modules transfer 
information between them 
(communication)

✔ How they are related in terms 
of execution order and 
synchronization

• Some computation models do 
not refer to aspects related to the 
internal computation of the 
modules but only to modules' 
interaction. 
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Order of execution
• Two different approaches for ordering the 

execution of tasks in computation models
✔ Data-driven
✔ Control-driven



26/2/08 CE654 - Spring 2008 15

Data-driven order of execution
• The system is specified as a set of processes 

without any explicit specification of the ordering of 
executions.

• The execution order of processes (and the 
possible parallelism) is determined solely by data 
dependencies

–Typical for many DSP applications.
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Data-driven order of execution
• Processes communicate by passing 

data through FIFO channels

• Each process is blocked until there is 
sufficient data in the channel.

A process that tries to read from a 
channel waits until data is available.

Process p1 (in a, out x, out y) {...};
Process p2 (in a, out x) {...};
Process p3 (in a, out x) {...};
Process p4 (in a, in b, out x) {...};
channels I, O, C1, C2, C3, C4;

p1

p2 p3

p4

I

O

C
1

C
2

C
3

C
4

p1(I, C1, C2)
p2(C1,C3);
p3(C2, C4);
p4(C3,C4,O);

It doesn't matter in which 
order they are expressed
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Control-driven order of execution
• The execution order of processes is given explicitly in 

the system specification
• Explicit constructs are used to specify sequential 

execution and concurrency
module p1

....

end p1

module p2

....

end p2

module p3

....

end p3

module p4

....

end p4

run p1
run p2  || run p3
run p4

– Here, p1 starts first, and has to 
finish before the beginning pf 
p2 and p3

– p2 and p3 start in parallel
– Both p2 and p3 have to finish 

before p4 starts
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Communication and Synchronization
• Processes have to communicate to exchange 

information
• Various communication models are used:

✔ Shared  memory
✔ Message passing

✗ Blocking
✗ Non-blocking

● Synchronization cannot be separated from communication. Any 
interaction between two processes implies a certain degree of 
communication and synchronization

● Synchronization: one process is suspended until another one 
reaches a specific point in its execution
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Shared memory communication

process p1 {

int a=0;

...........

Χ = a+1;

............

}

process p2 {

int b;

...........

b=X;

............

}

X

Shared Memory

a, b are private variables

X is a shared variable

Processes communicate by reading and writing to 
shared variables in a global memory space 

a, b are private variables

X is a shared variable
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Message-passing communication

process p1 {

int a=0;

...........

C.send(a+1)

............

}

process p2 {

int b;

...........

b=C.recv()

............

}

Channel C

Shared Memory

Messages that carry data pass through an abstract 
communication medium called channel

This communication model is adequate for describing 
distributed systems.
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Message-passing communication
• Blocking communication

–  A communicating process blocks itself until the 
receiving process is ready for data transfer

– The two processes have to synchronize before 
communication
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Message-passing communication
• Non-blocking communication

– The communication is asynchronous. However, buffers 
have to be inserted between processes to 
accommodate lack of synchronization

– The sending process has to place a message to the 
buffer and continues execution

– The receiving process reads the next message from the 
buffer when it is ready to do so
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Common computation models
• Different computation models provide different 

properties
• We choose the appropriate computation model for 

the application domain we are working on
• The following computational models are 

commonly used to describe the functionality and 
structure of embedded systems

✔ Data flow models
✔ Finite state machines
✔ Petri Nets



4/3/08 CE654 - Spring 2008 24

Common computation models
• Most applications can be classified as control-

dominated or data-dominated 
• A control-dominated application is dominate by 

monitoring inputs and reacting by setting control 
outputs

• A data-dominated application mainly consists of 
transforming streams of input data to streams of 
output data
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Data flow models
• Systems are specified as 

directed graphs where:
✔ Nodes represent 

computations (processes)
✔ Arcs represent sequences 

(streams) of data
● Suitable for signal processing 

algorithms that are expressed 
as block diagrams (filters, 
encoders

p1

p2 p3

p4

I

O

C
1

C
2

C
3

C
4
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Data flow model example

• vsign produces -1, 0, 1 for <0, ==0, >0
• Scalar s1 is rq
• Scalar s2 is b
• Vasr0 is arithmetic shift right and truncate towards zero

i.e. integer divide by power of 2

vsign vmul vsub vmul vasr0

vld v1

vst v0

vscalar s2 vscalar s1 vimm 16(b) (rq) (16)

(in)

(out)

(sign of c)
+/-b

c -/+b (c -/+b)*rq [(c -/+b)*rq]>>16

sgn/sub mul shifter

s1
s2

Input 
Stream

Output 
Stream

16
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Finite State Machines
• The system is specified by representing its states and 

its transitions from state to state
• One particular state is specified as the initial one
• Finite number of states and transitions
• Transitions are triggered by input events
• Transition generate outputs
• FSMs are used to model control-dominated reactive 

systems, i.e. react on inputs with specific outputs
• Not too much computation
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FSM example
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Finite State Machines
• Complex systems tend to have a very large number of 

states particularly in case of concurrency. This is 
called state explosion.

• Expressing such a system with a single FSM is very 
difficult

• There are two important tools that simplify the FSM 
modeling:

✔ Hierarchy
✔ Concurrency

● These tools only reduce the size of the graphical 
representation of the FSM. The inherent complexity does 
not change. 

● The FSM model that uses these two mechanisms is called 
Hierarchical/Concurrent FSM (HCFSM)



4/3/08 CE654 - Spring 2008 30

Finite State Machines

• Hierarchy
✔ A single state s can represent a whole FSM F
✔ Being in state s means that the FSM F is active, and the 

system is in one of the states of F.
• Concurrency

✔ Two or more finite state machines are viewed as being 
simultaneously active 

✔ The two FSMs operate in parallel or they may 
communicate 

● Another option is the Program State Machine (PSM) model 
that extends FSMs to allow use of sequential program code 
in order to define a state's action. 
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Computation models and specification 
languages

• A single specification language can be used for the 
specification of a whole system. 

• This does not mean that we have a homogeneous 
specification (one computational model)

• It means that the specification language can cover 
multiple computation models, each one describing 
components of the system

• For example, it is possible to specify in the same HDL 
language parts of the program using the FSM model, 
and parts of the program using the data-flow model

• Several languages are capable of describing a system
✔ Specific languages for the hardware part (Verilog) and 

the software part (C, or Java)
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Specification languages
• General purpose programming languages (Matlab, C, 

C++, Java) or hardware programming languages 
(VHDL, Verilog, SystemC). They may support multiple 
models of computation

• Synchronous languages (FSM-based): Esterel
✔ It describes set of interacting synchronous FSMs

• Languages for description of networks of communicating 
processes: UML, SDL

• Streaming languages for hardware description (ImpulseC, 
mitrion-C, etc.)


