
1

Πποχωπημένη Κατανεμημένη

Υπολογιστική

ΗΥ623

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 10η

Memcached Overview

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 4

•  A DRAM-based key-value store
•  GET(key)
•  SET(key, value)

•  LRU eviction for high hit rate

•  Typical use:
•  Speed up webservers
•  Alleviate db load

Webserver Webserver

Memcached
server

Webserver

get(x) set(y,"123") get(z)

Database

Memcached
server

on misson miss

Typical Workloads

• Often used for small objects (Facebook[Atikoglu12])
– 90% keys < 31 bytes
– Some apps only use 2-byte values

• Tens of millions of queries per second for large
memcached clusters (Facebook[Nishtala13])

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 5

Small Objects, High Rate

Bin Fan © April 13!
!

http://www.pdl.cmu.edu/ 6

Hash table
w/ chaining

K V

K V

K V K V

K V

•  Key-Value Index:
–  Chaining hash table

Memcached: Core Data Structures

Memcached: Core Data Structures

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 7

•  Key-Value Index:
–  Chaining hash table

Hash table
w/ chaining

K V

K V

K V K V

K V

LRU header

Doubly-linked-list
(for each slab)

•  LRU Eviction:
–  Doubly-linked lists

Problems We Solve
•  Single-node scalability

•  Accessing hash table and updating LRU are serialized

•  Space overhead
•  56-byte header per object

– Including 3 pointers and 1 refcount
– For a 100B object, overhead > 50%

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 8

Solutions
Optimistic cuckoo hashing

• Better memory efficiency: 95% table occupancy
• Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
• Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 9

Solutions
Optimistic cuckoo hashing

• Better memory efficiency: 95% table occupancy
• Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
• Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 10

•  Chaining items hashed in same bucket:

Good: simple (Data Structure 101)

Bad: low cache locality:

 (dependent pointer dereference)

Bad: pointer costs space

Memcached Default Hash Table

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 11

K V K V K Vlookup

Linear Probing

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 12

•  Probing consecutive buckets for vacancy

Good: simple

Good: cache friendly

Bad: poor memory efficiency:

 (if occupancy > 50%, lookup needs to search a
long chain)

lookup

Cuckoo Hashing[Pagh04]
•  Each key has two candidate buckets

•  Assigned by hash1(key), hash2(key)
•  Stored in one of its candidate buckets

•  Lookup: read 2 buckets in parallel

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 13

hash1(x)

hash2(x)

0!

1!

2!

3!

4!

5!

6!

7!

lookup x

Cuckoo Hashing[Pagh04]
•  Each key has two candidate buckets

•  Assigned by hash1(key), hash2(key)
•  Stored in one of its candidate buckets

•  Lookup: read 2 buckets in parallel

•  Insert:
•  Perform key displacement

recursively
•  Still O(1) on average [Pagh04]

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 14

0!

1!

2!

3!

4!

5!

6!

7!

x

hash1(x)

a

b hash2(x)

hash1(b) c

hash2(c)
insert

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 15

Increase Set-Associativity

0
1
2
3
4
5
6
7

x

b

a

x

0
1
2
3
4
5
6
7

a c d

fe g h

b

•  2 cacheline-sized reads per lookup
•  50% space utilized

•  2 cacheline-sized reads per lookup
•  95% space utilized!

Each bucket still fits in 1 cacheline

Solutions
Optimistic cuckoo hashing

• Better memory efficiency: 95% table occupancy
• Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
• Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 16

False Miss Problem
•  During insertion:

–  always a “floating” item during insertion
–  a reader may miss

this floating item

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 17

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x
b

Floating Item

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 18

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x
b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 19

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x
b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 20

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x

b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 21

0!

1!

2!

3!

4!

5!

6!

7!

a
Insert x

b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 22

0!

1!

2!

3!

4!

5!

6!

7!

a

x

b

Only need to ensure each move
is atomic w.r.t. reader

How to Ensure Atomic Move
•  e.g., move key “b” from bucket 4 to bucket 2

•  A simple implementation:

•  Our approach: Optimistic locking
•  Optimized for read-heavy workloads
•  Each key mapped to a version counter
•  Reader detects version change

(described in paper)

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 23

0!

1!

2!

3!

4!

5!

6!

7!

b

Lock bucket 2 and 4
Move key
Unlock bucket 2 and 4

Solutions
Optimistic cuckoo hashing

• Better memory efficiency: 95% table occupancy
• Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
• Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 25

2ptr/key => 1bit/key, concurrent update

Solutions
Optimistic cuckoo hashing

• Better memory efficiency: 95% table occupancy
• Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
• Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 26

2ptr/key => 1bit/key, concurrent update

Avoid unnecessary full-key comparisons on hash collision

Conclusion
•  Optimistic cuckoo hashing

•  High space efficiency
•  Optimized for read-heavy workloads
•  Source Code available:

 github.com/efficient/libcuckoo

•  MemC3 improves Memcached
•  3x throughput, 30% more (small) objects
•  Optimistic Cuckoo Hashing, CLOCK, other system

tuning

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 31

Exercise

2

Making LRU able to manage non equi-sized items
• Each item is characterized by its size Si and its ΔTi (# of references from now until

the time that item i was last referenced)

• A different cache organization: all items of size 2i-1-(2i-1) are accommodated in

the same virtual LRU queue

• We compare the quantity Si*ΔΤi for the items that are in the tail of each LRU

queue, and we evict the item with the largest such value

• Prove that: this decision is never two times worse than the optimal case, i.e.,

evicting the item with the largest Si*ΔTi among all items

Solution

• Let j be the item that was selected for eviction, and let m be the item with the

largest S*ΔΤ value among all items, i.e., m=argmax{S*ΔΤ}

• Let x be the least recently used item in the virtual LRU queue where item m

belongs. Then Sx ≥Sm/2 (worst case scenario) and ΔΤx ≥ ΔΤm (x is at the tail of

LRU queue), and thus Sx*ΔΤx ≥ Sm*ΔΤm /2

• But, SjΔΤj ≥ SxΔΤx (because of our eviction policy)

• Therefore, SjΔΤj ≥ Sm*ΔΤm /2 Ο.Ε.Δ.

	adc_fall17_lec10
	adc_fall16_lec10_Partial
	fan_nsdi13_slides

	adc_fall17_lec10exercise

