Үлодоүเбтıки́

HY623
$\Delta t \delta \alpha ́ \sigma \kappa \omega v$ -
$\Delta \eta \mu \eta ́ \tau \rho 1 \circ \varsigma$ K $\alpha \tau \sigma \alpha \rho o ́ \varsigma$
@ T μ. HMMY
Паvєльбтท́川ıо Өєббалías
$\Delta \mathrm{tó} \lambda \varepsilon \xi \eta 7 \eta$

A-tree

Distributed indexing of multidimensional data for cloud computing environments

Introduction

- Need for fast and efficient processing (even for clouds) of huge volume datasets
- Need for index structures
- MUST properties of index structures for clouds
- Distributed
- Space efficient
- Support point and range queries
- Data belong to high dimensional space

Related work

- DHT \& RT-CAN
- Distributed B-tree
- Supports only point queries
- BR-tree
- Nodes as p2p network
- EEMINC (Extended Efficient Multi-dimensional Index with Node Cube)
- State-of-the-art for our problem
- Master nodes each with R-tree (global index)
- Slave nodes each with KD-tree

A-tree's architecture

- Nodes: Masters \& Slaves
- Users
- Query master nodes
- Master nodes forward queries to appropriate slave nodes
- Slave Nodes return the result set to the users
- Query processing
- Master node
- Locates the relevant slave nodes
- Forwards the query to these slaves
- Local processing at slaves to build the result set
- A table is used for the global index @ master nodes
- For local index at slave nodes:
- Bloom Filter
- R-Tree

Indexing tree nodes

- An update is a combination of some hyper bounding boxes from R-tree's nodes
- We have a tradeoff between how many nodes to index, as more nodes will result to higher resource consumption on master nodes for finding relevant nodes to a query
- An update should be kept to minimal in order to:
- Lower search cost at master nodes
- Lower bandwidth usage
- Bloom filter is included in the update

Indexing tree nodes

Processing queries

Processing queries

Processing queries

Processing queries

Experimental evaluation network topology

Experimental evaluation

(imulation6 	5,367 5,	5,41375	$5 \quad 5,4664$	
	2,3777 2,	2,6023	2,7371 2,8	
\#Records/Node	Range queries		Point queries	
	A-tree	EEMINC	A-tree	EEMINC
15000	37325	37339	199	37434
30000	37189	37212	707	37500
45000	37049	37123	1509	37500
60000	36911	36918	2516	37481
75000	36791	36803	3577	37499

Experimental evaluation

Experimental evaluation

Experimental evaluation

Queries Latency- \#Users

Conclusions

- Need for cloud data indexing
- A-tree
- R-tree \& Bloom filters @ slaves
- Array @ masters
- A-tree is particularly good for point queries
- A-tree scales linearly with system's growth
- Network usage is minimized
- Performs very well for slow network configurations

Cloud migration decisions I

To lease CPUs from cloud OR buy CPUs?

Lease-or-buy decisions

Johnson \& Lewellen ("Analysis of Lease-or-Buy Decision," J. Finance, vol. 27, no. 4, 1972, pp. 815-823) suggested modeling the lease-or-buy decision as a capital budgeting problem

```
NPV =
    \sum \sum=1 \frac{(P}{T}-\mp@subsup{L}{T}{})-t(\mp@subsup{P}{T}{}-\mp@subsup{L}{T}{}-\mp@subsup{D}{T}{})
    +\frac{S-\mp@subsup{t}{g}{\prime}(S-B)}{(1+k\mp@subsup{)}{}{T}}-A,
```

- $\mathrm{P}_{\mathrm{T}}=$ cash revenue expected from the use of the asset at year T
- $\mathrm{L}_{\mathrm{T}}=$ pretax cash cost required to operate the asset at year T
- $\mathrm{D}_{\mathrm{T}}=$ depreciation charge for year T
- $\mathrm{k}=$ cost of capital
- A = cash purchase price of the asset
- $S=$ expected salvage value of the asset at the end of its life
- $\quad \mathrm{B}=$ expected book value of the asset at the end of useful life
- $\mathrm{t}=$ corporate income tax
- $\mathrm{t}_{\mathrm{g}}=$ tax rate for gain or loss on disposal of the asset
-The first term approximates the net after-tax operating profit
- The second term approximates the after-tax proceeds from asset salvage after its retirement.
-The third term incurs the asset's initial purchase cost

The time value of CPU

- This principle basically states that an investor always prefers to receive some fixed amount of money today rather than in the future
- Hence, a popular technique for making lease-or-buy decisions involves comparing investment cash flows at their present value by discounting future cash consumption with a rate of interest

Present and future capacity of a CPU

- Moore's law: integrated circuit transistors are expected to double approximately every two years
- Its generalization to the microprocessor industry is that CPU performance is also expected to double every two years
- If Moore's law still describes the domineering CPU depreciation trend, the future capacity (FC) of a T-yearold CPU can be discounted to its present capacity (PC) through the biennial halving of CPU performance as follows:

$$
P C=\frac{F C}{(\sqrt{2})^{T}}
$$

Net Present Capacity (NPC)

Assuming the total useful capacity (TC) represents the expected CPU hours users consume annually in the cluster (for example, a 512 -CPU cluster with 40 percent utilization provides a TC of $512 \times 365 \times 24 \times 0.4$ CPU hours per year), from previous Equation we can calculate a cluster's net present capacity (NPC) over an operational life span of Y years as follows:

$$
\begin{gathered}
N P C=T C \times \sum_{T=0}^{Y-1}\left(\frac{1}{\sqrt{2}}\right)^{T} \Rightarrow N P C= \\
T C \times \frac{1-\left(\frac{1}{\sqrt{2}}\right)^{Y}}{1-\frac{1}{\sqrt{2}}}
\end{gathered}
$$

The cost R of a CPU hour

- We can define as the cost of CPU hour the following quantity: $R=\frac{N P V}{N P C}$
- Purchase case: R(purchase) =

$$
\frac{\left(1-\frac{1}{\sqrt{2}}\right) \times \sum_{T=0}^{Y-1} \frac{C_{T}}{(1+k)^{T}}}{\left(1-\left(\frac{1}{\sqrt{2}}\right)^{r}\right) \times T C}
$$

- Lease case: R (lease) $=\frac{\sum_{T=0}(1+k)^{T}}{Y \times T C^{2}}$
$Y \times T C$

No depreciation in the computational capacity because the lessee can always acquire the
latest IT capacity from a competitive market over the operational life span of Y years.

Thus: $\mathbf{N P C}=\mathbf{Y} \times \mathbf{T C}$

The cost R of a CPU hour

Purchasing a cluster and upgrading it annually with the newest CPU to avoid the performance degradation cost

- Annualized operating cost includes repurchasing new

CPUs (assum: price is equivalent to the server cluster's original purchase price)

- Thus: $N P V=C_{0}+\sum_{T=1}^{Y-1} \frac{C_{T}-A}{(1+k)^{T}}$
- Because I'm annually upgrading the purchased server cluster, the same CPU performance degradation of an aging cluster isn't a factor (similar to the leasing case)
- Purchase-Upgrade: R (purchase-upgrade) $=$

$$
\frac{C_{0}+\sum_{T=1}^{Y-1} \frac{C_{T}-A}{(1+k)^{T}}}{Y \times T C}
$$

Example

System

- 5,000 quad-core processors: 60000 CPUs TCPU $=60,000$ CPUs
- k= 5%
- Unavailability once per week
- 99 percent operational reliability

For leasing: $\$ 0.10$ per CPU hour

- 100% CPU utilization

